Enhancing Quasi-Newton Acceleration for Fluid-Structure Interaction
Abstract
:1. Introduction
2. Methods—Introduction to Quasi-Newton Coupling
2.1. Partitioned Coupling
2.2. Introduction to Quasi-Newton Coupling Methods
2.3. IQN-ILS Enhancement Techniques
2.3.1. Filtering
Algorithm 1 : QR2 Filter [10] |
|
2.3.2. Pre-Scaling
2.4. Current Good Practice for IQN-ILS
Algorithm 2 : IQN-ILS |
|
3. Computational Improvements for the Quasi-Newton Method
3.1. Pre-Scaling Weight Monitoring
- 1.
- We alter the QR-decomposition strategy for the QR1 filter, such that it only recomputes the QR-decomposition if pre-scaling weights change. Previously, the full re-computation was done in every iteration if pre-scaling was enabled.
- 2.
- We develop a new faster QR filter, QR3, that can mimic the behaviour of the QR2 filter. The previous QR2 inherently required to recompute the QR-decomposition in each iteration independent on whether pre-scaling was enabled. We describe the new filter below in Section 3.2).
3.2. Fast Alternative QR Filter
- the number of columns in can grow very large and the cost of inserting a column into QR has a computational complexity of ,
- in volume coupling, the number of coupling DoF is equal to the number of all DoF in the domain, and is not negligible.
- the newest column of is inserted into an existing QR decomposition (see Section 2.3.1),
- a check is performed to tag any column that should be removed according to the same criteria as QR2,
- only if any one column is tagged to be removed, then a normal QR2 filter step is performed instead, that is, a complete QR-decomposition is performed and columns are removed in this step.
Algorithm 3 : QR3 Filter |
|
4. Numerical Setup
4.1. Test Cases
4.2. Quasi-Newton Configuration
- number of time steps reused: or ;
- maximal number of previous iterations: or ;
- convergence threshold for IQN-ILS: ;
- maximum number of iterations allowed per time step before proceeding to the next time step, even if is not reached: 30 or 50 (Breaking-Dam-3D);
- limit for QR2 or QR3 filter: , , or ;
- type of pre-scaling: residual-sum pre-scaling as defined in Equation (15);
- initial under-relaxation value: .
4.3. Software
- Fluid solver: https://www.openfoam.com/news/main-news/openfoam-v20-12, accessed on (OpenFOAM v2012) [30]; 15 February 2022
- Fluid solver adapter: https://github.com/precice/openfoam-adapter/releases/tag/v1.0.0, accessed on OpenFOAM-preCICE Adapter v1.0.0; 15 February 2022
- Solid solver: http://www.calculix.de/, accessed on CalculiX v2.17 [31]; 15 February 2022
- Solid solver adapter: https://github.com/precice/calculix-adapter/tree/5d42fb6160ede35926a59786ef8ae25dd71d7cdb, accessed on CalculiX-preCICE Adapter, commit 5d42fb6, 15 February 2022
- https://github.com/precice/precice/releases/tag/v2.3.0 accessed on 15 February 2022, as baseline without the enhancements presented in Section 3
- https://github.com/precice/precice/tree/3fb3d8d465e45e1eadba766a8ce5f1f96c138b20 accessed on 15 February 2022, for the enhancements presented in Section 3.
4.4. Hardware
5. Results and Discussion
5.1. Pre-Scaling Weight Monitoring
5.2. QR3 Filter
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grognuz, J. A New Heart Valve Replacement Procedure Modeled with Multiphysics Simulation Could Eliminate the Need for Open-Heart Surgery. Available online: https://www.enginsoft.com/expertise/a-new-heart-valve-replacement-procedure.html (accessed on 2 February 2021).
- Jain, R.K.; Saha, P. Fluid-Structure Interaction Simulations Prove Ability of Solar Artifacts to Withstand Wind Gusts; ANSYS Inc.: Canonsburg, PA, USA, 2021; Available online: https://www.ansys.com/content/dam/product/3d-design/aim/csir-cmeri-cs.pdf (accessed on 15 February 2022).
- Schmidt, P.; Jaust, A.; Steeb, H.; Schulte, M. Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. Comput. Geosci. 2022, 26, 381–400. [Google Scholar] [CrossRef]
- Bungartz, H.J.; Lindner, F.; Gatzhammer, B.; Mehl, M.; Scheufele, K.; Shukaev, A.; Uekermann, B. preCICE—A fully parallel library for multi-physics surface coupling. Comput. Fluids 2016, 141, 250–258. [Google Scholar] [CrossRef]
- Slattery, S.; Wilson, P.P.H.; Pawlowski, R.P. The data transfer kit: A geometric rendezvous-based tool for multiphysics data transfer. In Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2013), Sun Valley, ID, USA, 5–9 May 2013. [Google Scholar]
- Duchaine, F.; Jauré, S.; Poitou, D.; Quémerais, E.; Staffelbach, G.; Morel, T.; Gicquel, L. Analysis of high performance conjugate heat transfer with the OpenPALM coupler. Comput. Sci. Discov. 2015, 8, 015003. [Google Scholar] [CrossRef] [Green Version]
- Chourdakis, G.; Davis, K.; Rodenberg, B.; Schulte, M.; Simonis, F.; Uekermann, B. preCICE V2: A Sustainable and User-Friendly Coupling Library. arXiv 2021, arXiv:2109.14470. [Google Scholar] [CrossRef]
- Degroote, J.; Bathe, K.J.; Vierendeels, J. Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct. 2009, 87, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Bogaers, A.E.J.; Kok, S.; Reddy, B.D.; Franz, T. Quasi-Newton methods for implicit black-box FSI coupling. Comput. Methods Appl. Mech. Eng. 2014, 279, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Haelterman, R.; Bogaers, A.; Uekermann, B.; Scheufele, K.; Mehl, M. Improving the performance of the partitioned QN-ILS procedure for fluid-structure interaction problems: Filtering. Comput. Struct. 2016, 171, 9–17. [Google Scholar] [CrossRef]
- Mehl, M.; Uekermann, B.; Bijl, H.; Blom, D.; Gatzhammer, B.; van Zuijlen, A. Parallel coupling numerics for partitioned fluid–structure interaction simulations. Comput. Math. Appl. 2016, 71, 869–891. [Google Scholar] [CrossRef]
- Scheufele, K.; Mehl, M. Robust multisecant Quasi-Newton variants for parallel fluid-structure simulations and other multiphysics applications. SIAM J. Sci. Comput. 2016, 39, 404–433. [Google Scholar] [CrossRef]
- Spenke, T.; Hosters, N.; Behr, M. A Multi-Vector Interface Quasi-Newton Method with Linear Complexity for Partitioned Fluid-Structure Interaction. Comput. Methods Appl. Mech. Eng. 2020, 361, 112810. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.G. Iterative procedures for nonlinear integral equations. J. ACM 1965, 12, 547–560. [Google Scholar] [CrossRef]
- Miller, K. Nonlinear krylov and moving nodes in the method of lines. J. Comput. Appl. Math. 2005, 183, 275–287. [Google Scholar] [CrossRef]
- Ni, P. Anderson Acceleration of Fixed-Point Iteration with Applications to Electronic Structure Computations. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 13 November 2009. Available online: https://www.semanticscholar.org/paper/Anderson-Acceleration-of-Fixed-point-Iteration-with-Ni/8ca4703c5ec5c4580950a9c5c806604a595db3cb (accessed on 15 February 2022).
- Oosterlee, C.W.; Washio, T. Krylov subspace acceleration of nonlinear multigrid with application to recirculating flows. SIAM J. Sci. Comput. 2000, 21, 1670–1690. [Google Scholar] [CrossRef] [Green Version]
- Risseeuw, D. Fluid Structure Interaction Modelling of Flapping Wings. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar]
- Bungartz, H.J.; Lindner, F.; Mehl, M.; Uekermann, B. A plug-and-play coupling approach for parallel multi-field simulations. Comput. Mech. 2015, 55, 1119–1129. [Google Scholar] [CrossRef]
- Lindner, F.; Mehl, M.; Scheufele, K.; Uekermann, B. A Comparison of various Quasi-Newton Schemes for Partitioned Fluid-Structure Interaction. In Proceedings of the VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, Venice, Italy, 18–20 May 2015; pp. 477–488. [Google Scholar]
- Scheufele, K. Coupling Schemes and Inexact Newton for Multi-Physics and Coupled Optimization Problems. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2019. [Google Scholar]
- Uekermann, B. Partitioned Fluid-Structure Interaction on Massively Parallel Systems. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2016. [Google Scholar]
- Daniel, J.W.; Gragg, W.B.; Kaufman, L.; Stewart, G. Reorthogonalization and stable algorithms for updating the Gram–Schmidt QR factorization. Math. Comput. 1976, 30, 772–795. [Google Scholar] [CrossRef]
- Marks, L.; Luke, D. Robust mixing for ab initio quantum mechanical calculations. Phys. Rev. B 2008, 78, 075114. [Google Scholar] [CrossRef] [Green Version]
- Förster, C.; Wall, W.A.; Ramm, E. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 2007, 196, 1278–1293. [Google Scholar] [CrossRef]
- Van Brummelen, E.H. Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction. J. Appl. Mech. 2009, 76, 021206. [Google Scholar] [CrossRef]
- Gerbeau, J.F.; Vidrascu, M. A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows; [Research Report] RR-4691, INRIA; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bogaers, A.E.J.; Kok, S.; Reddy, B.D.; Franz, T. An evaluation of quasi-Newton methods for application to FSI problems involving free surface flow and solid body contact. Comput. Struct. 2016, 173, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Walhorn, E.; Kölke, A.; Hübner, B.; Dinkler, D. Fluid–structure coupling within a monolithic model involving free surface flows. Comput. Struct. 2005, 83, 2100–2111. [Google Scholar] [CrossRef]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Dhondt, G. The Finite Element Method for Three-Dimensional Thermomechanical Applications; John Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
Test Case | Baseline | Freeze | Monitoring | ||
---|---|---|---|---|---|
Elastic-Tube-3D Heavy | 10 | 100 | 4.51 | 4.45 | 4.48 |
Elastic-Tube-3D Heavy | 20 | 200 | 3.84 | 3.96 | 3.94 |
Elastic-Tube-3D Light | 10 | 100 | 7.23 | 7.30 | 7.16 |
Elastic-Tube-3D Light | 20 | 200 | 5.84 | 6.00 | 5.83 |
Breaking-Dam-2D | 10 | 100 | 7.08 (2) | 8.59 (8) | 7.9 (3) |
Breaking-Dam-2D | 20 | 200 | 8.06 (6) | 9.16 (10) | 8.14 (2) |
Breaking-Dam-3D | 10 | 100 | 4.34 | 4.77 | 4.33 |
Breaking-Dam-3D | 20 | 200 | 4.3 | 5.19 | 4.15 |
Test Case | Its | Upd 1 | Upd 2- | ||||
---|---|---|---|---|---|---|---|
Elastic-Tube-3D-Heavy | 10 | 100 | 448 (4.48) | 14 | 1 | 17.38–3155.7 | 0.071–1.0 |
Elastic-Tube-3D-Heavy | 20 | 200 | 394 (3.94) | 14 | 1 | 17.38–3155.7 | 0.071–1.0 |
Elastic-Tube-3D-Light | 10 | 100 | 716 (7.16) | 22 | 6 | 4.68–2365.8 | 0.045–1.0 |
Elastic-Tube-3D-Light | 20 | 200 | 583 (5.83) | 22 | 7 | 2.13–2401.5 | 0.045–1.0 |
Breaking-Dam-2D | 10 | 100 | 1525 (7.63) | 4 | 54 | 0.98–1018.5 | 0.09–1.0 |
Breaking-Dam-2D | 20 | 200 | 1651 (8.23) | 4 | 75 | 0.98–621.3 | 0.09–1.0 |
Breaking-Dam-3D | 10 | 100 | 649 (4.33) | 10 | 11 | 9.67 –3.23 | 0.1–1.0 |
Breaking-Dam-3D | 20 | 200 | 623 (4.15) | 10 | 6 | 2.19 –3.23 | 0.1–1.0 |
QR2 | QR3 | |||||||
---|---|---|---|---|---|---|---|---|
Test Case | ||||||||
Elastic-Tube-3D-Heavy | 10 | 100 | 4.26 | 4.51 | 5.12 | 4.59 | 4.48 | 5.24 |
Elastic-Tube-3D-Heavy | 20 | 200 | 4.09 | 3.84 | 4.91 | 4.05 | 3.94 | 3.92 |
Elastic-Tube-3D-Light | 10 | 100 | 7.27 | 7.23 | 8.83 | 7.18 | 7.16 | 8.69 |
Elastic-Tube-3D-Light | 20 | 200 | 5.78 | 5.84 | 7.88 | 5.83 | 5.83 | 7.67 |
Breaking-Dam-2D | 10 | 100 | div | 7.08 (2) | 5.87 (3) | 12.5 (25) | 7.63 (3) | 5.76 (2) |
Breaking-Dam-2D | 20 | 200 | 12.12 (19) | 8.10 (6) | 6.11 (2) | div | 8.26 (2) | 5.74 (2) |
Breaking-Dam-3D | 10 | 100 | 4.45 | 4.34 | 4.21 | 4.8 | 4.33 | 4.31 |
Breaking-Dam-3D | 20 | 200 | 4.51 | 4.30 | 4.15 | 4.51 | 4.15 | 4.33 |
QR2 | QR3 | |||||||
---|---|---|---|---|---|---|---|---|
Test Case | ||||||||
Elastic-Tube-3D-Heavy | 10 | 100 | 0.01 | 0.1 | 2.01 | 0.01 | 0.03 | 1.61 |
Elastic-Tube-3D-Heavy | 20 | 200 | 0.01 | 0.04 | 2.19 | 0.01 | 0.03 | 0.31 |
Elastic-Tube-3D-Light | 10 | 100 | 0.01 | 0.04 | 2.67 | 0.01 | 0.01 | 2.88 |
Elastic-Tube-3D-Light | 20 | 200 | 0.01 | 0.03 | 2.8 | 0.01 | 0.03 | 2.65 |
Breaking-Dam-2D | 10 | 100 | div | 3.45 | 3.95 | 4.42 | 3.82 | 3.8 |
Breaking-Dam-2D | 20 | 200 | 8.25 | 5.81 | 4.64 | div | 5.81 | 4.19 |
Breaking-Dam-3D | 10 | 100 | 1.99 | 2.06 | 2.19 | 2.14 | 1.88 | 2.17 |
Breaking-Dam-3D | 20 | 200 | 2.03 | 2.27 | 2.45 | 2.26 | 2.03 | 2.38 |
QR2 | QR3 | |||||||
---|---|---|---|---|---|---|---|---|
Test Case | ||||||||
Elastic-Tube-3D-Heavy | 10 | 100 | 1.99% | 2.48% | 1.51% | 0.06% | 0.06% | 0.62% |
Elastic-Tube-3D-Heavy | 20 | 200 | 6.67% | 4.9% | 3.18% | 0.08% | 0.09% | 0.36% |
Elastic-Tube-3D-Light | 10 | 100 | 7.41% | 7.23% | 6.60% | 0.15% | 0.15% | 2.42% |
Elastic-Tube-3D-Light | 20 | 200 | 12.99% | 13.12% | 13.20% | 0.38% | 0.43% | 5.04% |
Breaking-Dam-2D | 10 | 100 | div | 4.69% | 1.27% | 3.21% | 2.52% | 0.85% |
Breaking-Dam-2D | 20 | 200 | 27.98% | 9.72% | 2.33% | div | 5.75% | 1.65% |
Breaking-Dam-3D | 10 | 100 | 0.61% | 0.59% | 0.54% | 0.08% | 0.03% | 0.04% |
Breaking-Dam-3D | 20 | 200 | 1.75% | 1.57% | 1.44% | 0.23% | 0.09% | 0.07% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, K.; Schulte, M.; Uekermann, B. Enhancing Quasi-Newton Acceleration for Fluid-Structure Interaction. Math. Comput. Appl. 2022, 27, 40. https://doi.org/10.3390/mca27030040
Davis K, Schulte M, Uekermann B. Enhancing Quasi-Newton Acceleration for Fluid-Structure Interaction. Mathematical and Computational Applications. 2022; 27(3):40. https://doi.org/10.3390/mca27030040
Chicago/Turabian StyleDavis, Kyle, Miriam Schulte, and Benjamin Uekermann. 2022. "Enhancing Quasi-Newton Acceleration for Fluid-Structure Interaction" Mathematical and Computational Applications 27, no. 3: 40. https://doi.org/10.3390/mca27030040
APA StyleDavis, K., Schulte, M., & Uekermann, B. (2022). Enhancing Quasi-Newton Acceleration for Fluid-Structure Interaction. Mathematical and Computational Applications, 27(3), 40. https://doi.org/10.3390/mca27030040