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Abstract: LSP(n), the largest small polygon with n vertices, is a polygon with a unit diameter
that has a maximal of area A(n). It is known that for all odd values n ≥ 3, LSP(n) is a regular
n-polygon; however, this statement is not valid even for values of n. Finding the polygon LSP(n)
and A(n) for even values n ≥ 6 has been a long-standing challenge. In this work, we developed
high-precision numerical solution estimates of A(n) for even values n ≥ 4, using the Mathematica
model development environment and the IPOPT local nonlinear optimization solver engine. First, we
present a revised (tightened) LSP model that greatly assists in the efficient numerical solution of the
model-class considered. This is followed by results for an illustrative sequence of even values of n, up
to n ≤ 1000. Most of the earlier research addressed special cases up to n ≤ 20, while others obtained
numerical optimization results for a range of values from 6 ≤ n ≤ 100. The results obtained were
used to provide regression model-based estimates of the optimal area sequence {A(n)}, for even
values n of interest, thereby essentially solving the LSP model-class numerically, with demonstrably
high precision.

Keywords: nonlinear programming; largest small polygons (LSP); {LSP(n)} model-class; optimal area
sequence {A(n)}; revised LSP model; mathematica model development environment; IPOPT solver
engine; numerical optimization results and regression model for estimating {A(n)}

1. Introduction

The diameter of a convex planar polygon is defined as the length of its longest diagonal.
The largest small polygon (LSP) with n vertices is defined as a polygon of a unit diameter
that has a maximal area. For a given integer n ≥ 3, we refer to this polygon as LSP(n)
with a corresponding area A(n). To illustrate, Figure 1 shows visual representations of our
conjectured maximal area LSP(6) and LSP(18).

Nearly a century ago, Reinhardt (1922) [1] proved that for all odd values n ≥ 3, LSP(n)
is the regular n-polygon; perhaps surprisingly, the corresponding statement is not valid for
even values of n. For brevity, here we only refer to the discussion of the low-dimensional
cases studied elsewhere. Specifically, Graham (1975) [2] presented an exact solution of
the hexagon; Audet et al. 2002 [3] presented the first numerical solutions of the octagon,
followed by the exact optimal axially symmetric octagon in Audet et al. (2021) [4]; Henrion
and Messine (2013) [5] provided numerical guarantees of global optimality and successfully
found the largest small polygons for n = 10 and n = 12. Mossinghoff (2006) [6] presented
some related theoretical background, confirmed earlier best-known results, and gave
additional numerical estimates through n = 20. In more recent studies, Bingane (2020) [7]
gave near-optimal numerical estimates of A(n) with up to n = 128, and Pintér (2021) [8]
gave globally optimized numerical estimates of A(n) for all even values 6 ≤ n ≤ 80, both
studies share comparative references to earlier works. These works—and several others
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cited by both Bingane (2020) [7] and Pintér (2021) [8]—clearly indicate the limitations and
varying performance level of the modeling and optimization software packages used earlier.

Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 2 of 11 
 

 

values 6 ≤ 𝑛 ≤ 80, both studies share comparative references to earlier works. These 
works—and several others cited by both Bingane (2020) [7] and Pintér (2021) [8]—clearly 
indicate the limitations and varying performance level of the modeling and optimization 
software packages used earlier. 

  
Figure 1. Our conjectured largest small polygons 𝐿𝑆𝑃(6) and 𝐿𝑆𝑃(18). 

Here we present the results of a numerical optimization study aimed at finding con-
jectured 𝐿𝑆𝑃(𝑛) configurations and corresponding values 𝐴(𝑛), for a substantial selec-
tion of even values covering the range of 4 ≤ 𝑛 ≤ 1000. We propose a revised (tightened) 
LSP model, then solve model instances using the Mathematica model development plat-
form with the callable IPOPT nonlinear optimization solver. Based on the results obtained, 
we also developed a regression model to estimate {𝐴(𝑛)} for all of the even values of 𝑛. 
Since, for large 𝑛, the actual calculated optimum estimates 𝐴(𝑛) already closely approx-
imate the theoretical limit of 𝐴(∞) = 𝜋 4⁄ , our numerical study enables high-precision es-
timates covering the LSP model-class. 

2. Revised LSP Optimization Model 
For unambiguity, we consider all 𝐿𝑆𝑃(𝑛) instances for even 𝑛 ≥ 4 with a fixed po-

sition corresponding to the appropriate variants of the instances shown in Figure 1. Fol-
lowing the standard assumptions also postulated by others, each even 𝑛-polygon consid-
ered here is symmetrical with respect to the diagonal that connects its lowest positioned 
vertex placed at the origin with its highest vertex. We refer to this configuration as the 
standard model: it has been used in all topical works referenced by Pintér (2021) [8]. 

The standard LSP model uses polar coordinates to describe the 𝐿𝑆𝑃(𝑛): the vertex 𝑖 
is positioned at the polar radius 𝑟 and at angle 𝜃. For unambiguity, we postulate that 
the vertices 𝑖 = 1, … , 𝑛 − 1 are arranged according to increasing angles 𝜃 . Placing the 
last vertex at the origin, we set 𝑟 = 0, 𝜃 = 𝜋: recall Figure 1 that shows examples of such 
a configuration. The corresponding standard LSP optimization model is presented next. 

Maximize total area of the 𝑛-polygon: 

max 𝐴(𝑛) = 12  𝑟𝑟ାଵ sin(𝜃ାଵ − 𝜃)ିଵ
ୀଵ . (1)

Prescribed upper bound for the pairwise distance between vertices 𝑖 and 𝑗: 𝑟ଶ + 𝑟ଶ − 2𝑟𝑟 cos൫𝜃 − 𝜃൯ ≤ 1, for 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 − 1. (2)

Vertex angle ordering relations: 𝜃ାଵ − 𝜃 ≥ 0, for 1 ≤ 𝑖 ≤ 𝑛 − 2. (3)

Figure 1. Our conjectured largest small polygons LSP(6) and LSP(18).

Here we present the results of a numerical optimization study aimed at finding con-
jectured LSP(n) configurations and corresponding values A(n), for a substantial selection
of even values covering the range of 4 ≤ n ≤ 1000. We propose a revised (tightened) LSP
model, then solve model instances using the Mathematica model development platform
with the callable IPOPT nonlinear optimization solver. Based on the results obtained, we
also developed a regression model to estimate {A(n)} for all of the even values of n. Since,
for large n, the actual calculated optimum estimates A(n) already closely approximate the
theoretical limit of A(∞) = π/4, our numerical study enables high-precision estimates
covering the LSP model-class.

2. Revised LSP Optimization Model

For unambiguity, we consider all LSP(n) instances for even n ≥ 4 with a fixed position
corresponding to the appropriate variants of the instances shown in Figure 1. Following the
standard assumptions also postulated by others, each even n-polygon considered here is
symmetrical with respect to the diagonal that connects its lowest positioned vertex placed
at the origin with its highest vertex. We refer to this configuration as the standard model: it
has been used in all topical works referenced by Pintér (2021) [8].

The standard LSP model uses polar coordinates to describe the LSP(n): the vertex i is
positioned at the polar radius ri and at angle θi. For unambiguity, we postulate that the
vertices i = 1, . . . , n− 1 are arranged according to increasing angles θi. Placing the last
vertex at the origin, we set rn = 0, θn = π: recall Figure 1 that shows examples of such a
configuration. The corresponding standard LSP optimization model is presented next.

Maximize total area of the n-polygon:

maxA(n) =
1
2

n−1

∑
i=1

riri+1 sin(θi+1 − θi). (1)

Prescribed upper bound for the pairwise distance between vertices i and j:

r2
i + r2

j − 2rirj cos
(
θi − θj

)
≤ 1, for 1 ≤ i ≤ n− 2, i + 1 ≤ j ≤ n− 1. (2)

Vertex angle ordering relations:

θi+1 − θi ≥ 0, for 1 ≤ i ≤ n− 2. (3)
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Decision variable bounds, and the two fixed variable settings:

0 ≤ θi ≤ π and 0 ≤ ri ≤ 1, for 1 ≤ i ≤ n− 1; rn = 0, θn = π. (4)

Based on the structure of the LSP configurations found in all of the earlier studies,
next we revise this standard model, by adding the relations shown below.

(i) We postulate bounds on the angle differences, for even n:

θi+1 − θi ≥
π

n
, for 1 ≤ i ≤ n− 2, (5)

θn/2 =
π

2
. (6)

(ii) We postulate the symmetry of the LSP configuration to be found, for even n:

rn/2+i−1 = rn/2−i+1, for 2 ≤ i ≤ n
2

, (7)

θn/2+i−1 = π − θn/2−i+1, for 2 ≤ i ≤ n
2

. (8)

To illustrate these added constraints, we refer again to Figure 1; further examples will
be presented later on. Our preliminary experimentation demonstrated that the symmetry
postulates (7)–(8) for even n, despite reducing the number of decision variables, were
not useful within our numerical optimization study. However, the bound postulates on
the angle differences were useful by effectively tightening the LSP model. As it turns
out, the new constraints are essential to guarantee the performance of the local solver
IPOPT in numerically solving the global optimization problem (1)–(4), with the added
considerations (5)–(6) for even n.

Observe the potential numerical challenge implied by the nonconvex objective function (1)
and constraints (2): the number of these constraints increases quadratically as a function of
n. While the standard LSP(n) model instances have a unique globally optimal solution, the
number of local optima increases with n. Many of the local optima are close in quality to the
(numerically estimated, hence only approximately known) global optimum. These features
make the {LSP(n)} problem-class hard to solve, similarly to many other of the object
configuration design and packing problems arising e.g., in computational mathematics,
physics, chemistry, biology, as well as across a range of engineering applications.

3. Numerical Results for Even Values 4 ≤ n ≤ 1000

The study summarized here was conducted on a laptop PC with the following specifi-
cations: Intel Core i7-7700 CPU @ 3.6 GHz (x-64 processor), 16.0 GB RAM, running under
the Windows 10 Pro (64-bit) operating system.

To formulate directly scalable LSP model versions, we use the Mathematica model
development environment (Wolfram Research, 2022a [9]). To handle these models numer-
ically, we use the IPOPT local nonlinear optimization solver engine (Wächter and Laird,
2022 [10]) linked to Mathematica (Wolfram Research, 2022b [11]). The result analysis and
visualization was also conducted in Mathematica.

Since IPOPT is a local scope solver, it requires an initial solution “guess:” hence, it
greatly benefits from a good choice of that estimate. Considering the postulated structure
of the LSP configurations to be found, for a given n our initial angle settings are chosen
as θi = i(π/n), for 1 ≤ i ≤ n, together with the initial polar radius settings ri = 1 for
1 ≤ i ≤ n− 1; rn = 0

The numerical results obtained by using Mathematica and IPOPT are summarized
below. Detailed LSP(n) configurations (listing all decision variable values found and all
constraints) can be optionally reported by our Mathematica code. All of the optimization
results, with related analysis and visualization, are directly cited from the corresponding
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Mathematica (notebook) documents: thereby, our study is completely reproducible. The
Mathematica notebook is available upon request from the authors.

Table 1 summarizes our results for the selected even values of 4 ≤ n ≤ 1000. Since
the solution times become rather substantial as n increases, we report results only for a
representative selection of even values; however, in principle we could handle all instances
of LSP(n), provably at least up to n ≤ 1000. For example (see Table 1), the runtime for
n = 10 is only 0.06 s; for n = 100 it is still just 9.44 s; but for n = 1000 it becomes 5417.51 s.
We did not conduct systematic tests to find the largest possible numerical instance that we
could handle using Mathematica with IPOPT, noting that all of the modeling systems and
optimization engines have their limitations, also depending on the hardware platform and
other circumstances.

Table 1. Mathematica-IPOPT numerical results for a selection of even values of n.

n Decision Variables Constraints Runtime (Seconds) Objective Function Maximum Violation

4 6 5 0.03 0.500000 9.9636 × 10−9

6 10 14 0.03 0.674981 † 9.9432 × 10−9

8 14 27 0.05 0.726868 † 9.9236 × 10−9

10 18 44 0.06 0.749137 † 9.9046 × 10−9

12 22 65 0.08 0.760730 † 9.8855 × 10−9

14 26 90 0.11 0.767531 † 9.8663 × 10−9

16 30 119 0.15 0.771861 † 9.8472 × 10−9

18 34 152 0.17 0.774788 † 9.8296 × 10−9

20 38 189 0.23 0.776859 † 9.8101 × 10−9

24 46 275 0.32 0.779524 † 9.7801 × 10−9

28 54 377 0.45 0.781111 † 9.7647 × 10−9

32 62 495 0.68 0.782133 † 9.8456 × 10−9

36 70 629 0.82 0.782828 † 9.6522 × 10−9

40 78 779 1.05 0.783323 † 9.6132 × 10−9

44 86 945 1.34 0.783687 † 9.5741 × 10−9

48 94 1127 1.53 0.783964 † 9.5352 × 10−9

52 102 1325 1.85 0.784178 † 9.4967 × 10−9

56 110 1539 3.04 0.784252 * 9.6754 × 10−9

60 118 1769 3.34 0.784408 * 9.6548 × 10−9

70 138 2414 3.92 0.784729 † 9.3199 × 10−9

80 158 3159 4.98 0.784886 † 9.2227 × 10−9

90 178 4004 7.59 0.784994 † 9.1242 × 10−9

100 198 4949 9.44 0.785072 † 9.0264 × 10−9

110 218 5994 11.18 0.785129 † 8.9291 × 10−9

120 238 7139 14.21 0.785172 † 8.8306 × 10−9

130 258 8384 17.52 0.785205 8.7330 × 10−9

140 278 9729 21.39 0.785232 8.7013 × 10−9

150 298 11,174 25.11 0.785254 8.8048 × 10−9

160 318 12,719 29.16 0.785271 8.4389 × 10−9

180 358 16,109 52.43 0.785298 8.2424 × 10−9

200 398 19,899 51.31 0.785317 8.0460 × 10−9

220 438 24,089 64.43 0.785331 7.8491 × 10−9

240 478 28,679 81.60 0.785342 7.6515 × 10−9

260 518 33,669 97.73 0.785350 7.6285 × 10−9

280 558 39,059 118.77 0.785357 7.2925 × 10−9

300 598 44,849 142.19 0.785362 7.0879 × 10−9

320 638 51,039 170.00 0.785367 6.8695 × 10−9

340 678 57,629 202.27 0.785370 6.6526 × 10−9

360 718 64,619 235.11 0.785373 6.4506 × 10−9

380 758 72,009 269.55 0.785376 6.2473 × 10−9

400 798 79,799 316.30 0.785378 6.0432 × 10−9

420 838 87,989 363.92 0.785380 5.8990 × 10−9

440 878 96,579 393.75 0.785381 5.6483 × 10−9
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Table 1. Cont.

n Decision Variables Constraints Runtime (Seconds) Objective Function Maximum Violation

460 918 105,569 464.32 0.785383 5.4201 × 10−9

480 958 114,959 514.01 0.785384 5.2503 × 10−9

500 998 124,749 577.96 0.785385 5.0971 × 10−9

550 1098 150,974 739.51 0.785387 4.4905 × 10−9

600 1198 179,699 948.26 0.785389 4.0205 × 10−9

650 1298 210,924 1228.83 0.785391 3.4442 × 10−9

700 1398 244,649 1460.31 0.785392 2.9080 × 10−9

750 1498 280,874 1857.58 0.785392 2.3883 × 10−9

800 1598 319,599 2342.02 0.785393 1.8715 × 10−9

850 1698 360,824 3177.43 0.785394 1.3518 × 10−9

900 1798 404,549 3846.06 0.785394 8.2861 × 10−10

950 1898 450,774 3721.68 0.785395 * 3.0161 × 10−10

1000 1998 499,499 5417.51 0.785395 * 0.0000 × 100

* Instances for which A(n) ≤ An*. † Instances 6 ≤ n ≤ 120 for which A(n) ≥ An* as reported in Bingane (2020) [7].

The legend used is self-explanatory, “Maximum violation” refers to the maximal
constraint violation at the numerical optimal solution. One can verify the linear increase
in the number of decision variables and the rapid quadratic increase in the number of
constraints as a function of n (recall the LSP model). The model instance for n = 1000 has
almost two thousand decision variables and nearly half a million constraints.

For even n ≥ 6, it was shown in Mossinghoff (2006) [6] and Bingane (2022) [12] that the
best known general lower bound is given by the diameter graph of an optimal n-polygon
that has a cycle of length n− 1 plus one additional edge from the remaining vertex. As such,

A(n) > An =
n− 1

2

(
sin

π

n− 1
− tan

π

2n− 2

)
+ sin

π

2n− 2
− 1

2
sin

π

n− 1
. (9)

Our results satisfy this general lower bound except for A(56), A(60), A(950), and
A(1000). See Table 1. Indeed, equation (9) provides a very good general lower bound and
it could be used as an additional constraint in the LSP optimization model. We note that
Mossinghoff (2006) [6] and Bingane (2022) [12] obtained better asymptotic lower bounds
by explicit instance constructions, which are not generally applicable as equation (9). In
Table 1, we also indicate the instances 6 ≤ n ≤ 120 for which A(n) ≥ A∗n (the optimal
values of the maximal area problem for even n) as reported in Bingane (2020) [7].

Although Table 1 shows the optimized A(n) values with only six digits after the deci-
mal point, the reported precision in our detailed numerical tests (within Mathematica) is set
to ten digits after the decimal point. To illustrate, our estimate for A(1000) approximately
equals 0.7853949284. Using such higher precision is in line with the required constraint
satisfaction level, all in the order of 10−9 as shown in the table. The preset 10-digit precision
also supports the in-depth comparisons with results obtained earlier. Specifically, our
results are in close agreement with or surpass all of the best numerical results reported
earlier, including Mossinghoff (2006) [6], Bingane (2020) [7], and Pintér (2021) [8], with
reported comparisons to all earlier topical works known to us. Our modeling and opti-
mization approach enables solving LSP(n) instances for significantly higher values of n
than previously achieved by other researchers using a variety of modeling platforms and
solver engines.

Figures 2 and 3 display the solutions found for a selection of even sequences of n,
showing all of the pairwise vertex connections. As expected, the configurations found
quickly approach the circle, as n increases.

Figure 4 summarizes the difference between the area A(n) of the optimized polygon
and π/4 as a function of n, on a loglog-plot scale. Our calculations reveal a small, but
non-negligible difference: the numerically estimated slope of the plot for an even number
of sides is approximately −2.04618.
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We conclude the presentation of numerical results by emphasizing that the tightened
LSP model offers advantages over the standard model. Specifically, IPOPT performs well
on the tightened model, but it exhibits inferior performance on the standard model for
values 6 ≤ n ≤ 80, as observed by Pintér (2021) [8]. Figure 5 illustrates the superior
IPOPT performance on tightened LSP model-instances up to n = 300, when compared to
Figure 6 (standard LSP model with the same fixed starting solution as used in the tightened
model) and Figure 7 (standard LSP model with n random starting solutions). In the latter
case, the solver runtimes also become longer; therefore, we conducted experiments only
up to n = 100.
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4. LSP(n) Regression Model for Even n

As it is known, and illustrated by Figures 2 and 3, for large n the optimal LSP(n)
configuration approaches the circle with unit diameter; hence the corresponding area limit
is A(∞) = π/4 ∼ 0.7853981634. Comparing this limit value to our optimum estimate
obtained for A(1000) ∼ 0.7853949284, the ratio A(1000)/(π/4) approximately equals
0.9999958811. Hence, our A(1000) estimate already leads to a fairly close approximation of
the limit value.

Based on this observation and using our numerical results, we developed the following
regression model for even values of n.

A(n) ∼ π

4
− 5π3

48n2 − 3.530190
(

1
n3

)
− 2.391836

(
1
n4

)
− 19.489487

(
1
n5

)
. (10)

This regression model follows the form outlined in Foster and Szabo (2007) [13] and
we received p-values (observed significance levels) well below 0.000001 for all coefficients.
This finding indicates that we have very strong statistical evidence suggesting that the
regression coefficients are all different from zero. Figure 8 depicts the predicted results
using model (10).
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Since the two sequences closely overlap, the preceding figure depicting observed vs.
predicted A(n) results become more useful when we zoom in and reduce the ranges
considerably. In Figure 9, we display observed vs. predicted A(n) results for 24 ≤ n ≤ 100
and 0.779 ≤ A(n) ≤ 0.785. The observed vs. predicted sequences appear visually different
from each other only with high levels of magnification.
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Figure 9. Zooming in: observed vs. predicted A(n) results applying the regression model (10) for
even 24 ≤ n ≤ 100.

The regression model (10) can be used to directly estimate the selected values from the
entire sequence {A(n)}, including larger values of n which have not been studied earlier
and may be out of the range of current optimization solver capabilities. For example,

A(2000) ∼ 0.7853973555, A(10000) ∼ 0.7853981311.

It is instructive to compare these estimates to A(∞) = π/4 ∼ 0.7853981634. Earlier
numerical examples, with a different regression model based on results for even 6 ≤ n ≤ 80,
are presented in Pintér (2021) [8].

5. Conclusions

Our study addresses the problem of numerically finding the sequence of the largest
small n-polygons LSP(n) with a unit diameter and maximal area of A(n), in principle
aiming for all of the even values of n ≥ 4. This long-standing mathematical “puzzle”
leads to an interesting class of nonlinear (global) optimization problems. We proposed a
tightened LSP model and demonstrated its numerical advantages compared to the standard
model. Using the Mathematica modeling environment with the IPOPT solver option, and
our new initial solution estimate, we can find numerical solutions efficiently for a range of
even values of n, up to n ≤ 1000. Our results compare well to all the best results reported
earlier for significantly lower values of n. We also propose a regression model that enables
the direct estimation of the optimal area sequence {A(n)}, for even values of n.

The LSP problem-class is one of those entertaining “puzzles” that can be described
in a few words yet lead to surprisingly hard theoretical and numerical challenges. There-
fore, this model-class—similarly to many other scientifically important configuration design
models—can also be used in software benchmarking tests. We think that such problems serve
as a significant addendum to the collection of (well-frequented, and often much simpler)
unconstrained or box-constrained test problems. For further examples of increasingly hard-to-
solve object configuration models, we refer to some of our studies: consult, e.g., Castillo et al.
(2008) [14], Pintér et al. (2017) [15], Kampas et al. (2019) [16], Kampas et al. (2020) [17].
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