Magneto Mixed Convection of Williamson Nanofluid Flow through a Double Stratified Porous Medium in Attendance of Activation Energy
Abstract
:1. Introduction
2. Development of the Flow Analysis
3. The Solution Methodology
4. Results and Discussion
5. Conclusions
- The velocity profile was reduced by the Weissenberg number and Forchheimer number, while the mixed convective parameter shows the increasing tendency in velocity profile.
- The temperature distribution was raised with a high thermal relaxation time and radiation values.
- For higher estimations of Schmidt number and mass relaxation time, the concentration profile diminished.
- Increases in the thermal and mass stratification parameters reduce the temperature and concentration profile.
- Heat and mass transfer rates were declined for large values of thermal radiation, thermal relaxation time, mass stratification, and suction parameter.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
List of Symbols | ||
a | Stretching rate | |
Drag coefficient | ||
Specific heat | () | |
Magnetic field | () | |
Surface concentration | () | |
Acceleration due to gravity | () | |
Ambient fluid concentration | () | |
Mass diffusivity | () | |
C | Fluid concentration | () |
Thermophoretic diffusion coefficient | () | |
Activation energy | Dimensionless | |
= | Forchheimer number | Dimensionless |
Local Grashof number | Dimensionless | |
Heat generation parameter | Dimensionless | |
Thermal conductivity | ||
Permeability of porous medium | Dimensionless | |
= − | Suction/injection parameter | Dimensionless |
Mean absorption coefficient | Dimensionless | |
Reaction rate | Dimensionless | |
M = | Magnetic parameter | Dimensionless |
n | Fitted rate | Dimensionless |
= | Brownian diffusion parameter | Dimensionless |
Buoyancy ratio parameter | Dimensionless | |
Prandtl number | Dimensionless | |
Local Reynolds number | Dimensionless | |
Richardson number | Dimensionless | |
Schmidt number | Dimensionless | |
Fluid temperature | (K) | |
Weissenberg number | Dimensionless | |
Ambient temperature | (K) | |
Velocity components | () | |
Stretching surface velocity | () | |
Thermal stratification | Dimensionless | |
Direction coordinates | (m) | |
Solutal stratification | Dimensionless | |
Wall temperature | (K) | |
Thermophoresis parameter | Dimensionless | |
Thermal Radiation | Dimensionless | |
Heat capacity | ( | |
Greek Symbols | ||
Thermal relaxation time parameter | Dimensionless | |
Temperature difference parameter | Dimensionless | |
Mass relaxation parameter | Dimensionless | |
Fluid density | ( | |
Thermal diffusivity | ( | |
Williamson parameter | Dimensionless | |
Non dimensional temperature | Dimensionless | |
Non dimensional concentration | Dimensionless | |
Dimensionless reaction rate | Dimensionless |
References
- Choi, S. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 12–17 November 1995; pp. 99–105. [Google Scholar]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Williamson, R.V. The Flow of Pseudoplastic Materials. Ind. Eng. Chem. 1929, 21, 1108–1111. [Google Scholar] [CrossRef]
- Nadeem, S.; Hussain, S.T.; Lee, C. Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 2013, 30, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Shafiq, A.; Alsaedi, A. Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation. Alex. Eng. J. 2016, 55, 2229–2240. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, S.; Bhuvaneswari, M.; Sivasankaran, S.; Rajan, S. Cross diffusion, radiation and chemical reaction effects on MHD combined convective flow towards a stagnation-point upon vertical plate with heat generation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 390, 012088. [Google Scholar] [CrossRef]
- Zeeshan, A.; Shehzad, N.; Atif, M.; Ellahi, R. SS symmetry Electromagnetic Flow of SWCNT/MWCNT Suspensions in Two Immiscible Water- and Engine-Oil-Based Newtonian Fluids through Porous Media. Symmetry 2022, 14, 406. [Google Scholar] [CrossRef]
- Ahmed, K.; Akbar, T.; Muhammad, T. Physical Aspects of Homogeneous–Heterogeneous Reactions on MHD Williamson Fluid Flow across a Nonlinear Stretching Curved Surface Together with Convective Boundary Conditions. Math. Probl. Eng. 2021, 2021, 7016961. [Google Scholar] [CrossRef]
- Waqas, H.; Farooq, U.; Ali, S.; Hashim, K.; Marjan, M.A. Numerical analysis of dual variable of conductivity in bioconvection flow of Carreau–Yasuda nanofluid containing gyrotactic motile microorganisms over a porous medium. J. Therm. Anal. Calorim. 2021, 145, 2033–2044. [Google Scholar] [CrossRef]
- Shehzad, N.; Zeeshan, A.; Shakeel, M.; Ellahi, R.; Sait, S.M. Effects of Magnetohydrodynamics Flow on Multilayer Coatings of Newtonian and Non-Newtonian Fluids through Porous Inclined Rotating Channel. Coatings 2022, 12, 430. [Google Scholar] [CrossRef]
- Loganathan, K.; Mohana, K.; Mohanraj, M.; Sakthivel, P.; Rajan, S. Impact of third-grade nanofluid flow across a convective surface in the presence of inclined Lorentz force: An approach to entropy optimization. J. Therm. Anal. Calorim. 2020, 144, 1935–1947. [Google Scholar] [CrossRef]
- Yusuf, T.A.; Mabood, F.; Prasannakumara, B.C.; Sarris, I.E. Magneto-bioconvection flow of Williamson nanofluid over an inclined plate with gyrotactic microorganisms and entropy generation. Fluids 2021, 6, 109. [Google Scholar] [CrossRef]
- Qureshi, M.A. Numerical simulation of heat transfer flow subject to MHD of Williamson nanofluid with thermal radiation. Symmetry 2021, 13, 10. [Google Scholar] [CrossRef]
- Salahuddin, T.; Malik, M.Y.; Hussain, A.; Bilal, S.; Awais, M. MHD flow of Cattaneo–Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach. J. Magn. Magn. Mater. 2016, 401, 991–997. [Google Scholar] [CrossRef]
- Qayyum, S.; Khan, M.I.; Hayat, T.; Alsaedi, A.; Tamoor, M. Entropy generation in dissipative flow of Williamson fluid between two rotating disks. Int. J. Heat Mass Transf. 2018, 127, 933–942. [Google Scholar] [CrossRef]
- Hayat, T.; Qayyum, A.; Alsaedi, A. Three-dimensional mixed convection squeezing flow. Appl. Math. Mech. 2015, 36, 47–60. [Google Scholar] [CrossRef]
- Ibrahim, W.; Negara, M. Viscous dissipation effect on mixed convective heat transfer of MHD flow of Williamson nanofluid over a stretching cylinder in the presence of variable thermal conductivity and chemical reaction. Heat Transf. 2021, 50, 2427–2453. [Google Scholar] [CrossRef]
- Khan, W.A.; Khan, M.; Alshomrani, A.S.; Ahmad, L. Numerical investigation of generalized Fourier’s and Fick’s laws for Sisko fluid flow. J. Mol. Liq. 2016, 224, 1016–1021. [Google Scholar] [CrossRef]
- Eswaramoorthi, S.; Loganathan, K.; Jain, R.; Gyeltshen, S. Darcy-Forchheimer 3D Flow of Glycerin-Based Carbon Nanotubes on a Riga Plate with Nonlinear Thermal Radiation and Cattaneo–Christov Heat Flux. J. Nanomater. 2022, 2022, 5286921. [Google Scholar] [CrossRef]
- Conduzionedelcalore, C.C.S. Atti del Seminario Matematico e Fisico dell'Universita di Modena e Reggio Emilia. Modena by Seminario matematico e fisico Università di Modena 1948, 3, 83–101. [Google Scholar]
- Christov, C.I. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 2009, 36, 481–486. [Google Scholar] [CrossRef]
- Eswaramoorthi, S.; Alessa, N.; Sangeethavaanee, M.; Namgyel, N. Numerical and Analytical Investigation for Darcy-Forchheimer Flow of a Williamson fluid over a Riga Plate with Double Stratification and Cattaneo–Christov Dual Flux. Adv. Math. Phys. 2021, 2021, 1867824. [Google Scholar] [CrossRef]
- Hayat, T.; Khan, M.I.; Farooq, M.; Alsaedi, A.; Waqas, M.; Yasmeen, T. Impact of Cattaneo–Christov heat flux model inflow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 2016, 99, 702–710. [Google Scholar] [CrossRef]
- Shankar, B. Goud Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection. Int. J. Thermofluids 2020, 7–8, 100044. [Google Scholar] [CrossRef]
- Ali, B.; Nie, Y.; Hussain, S.; Manan, A.; Sadiq, M.T. Unsteady magneto-hydrodynamic transport of rotating Maxwell nanofluid flow on a stretching sheet with Cattaneo–Christov double diffusion and activation energy. Therm. Sci. Eng. Prog. 2020, 20, 100720. [Google Scholar] [CrossRef]
- Abu-Hamden, N.H.; Alsulami, R.A.; Rawa, M.J.H.; Alazwari, M.A.; Goodarzi, M.; Safaei, M.R. A Significant Solar Energy Note on Powell-Eyring Nanofluid with Thermal Jump Conditions: Implementing Cattaneo–Christov Heat Flux Model. Mathematics 2021, 9, 669. [Google Scholar] [CrossRef]
- Rashid, S.; Khan, M.I.; Hayat, T.; Ayub, M.; Alsaedi, A. Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface. Appl. Nanosci. 2020, 10, 2965–2975. [Google Scholar] [CrossRef]
- Shafiq, A.; Rasool, G.; Khalique, C.M. Significance of thermal slip and convective boundary conditions in three dimensional rotating darcy-forchheimer nanofluid flow. Symmetry 2020, 12, 741. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy generation and consequences of binary chemical reaction on mhd darcy-forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 2020, 22, 18. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. Darcy–Forchheimer Three-Dimensional Flow of Williamson Nanofluid over a Convectively Heated Nonlinear Stretching Surface. Commun. Theor. Phys. 2017, 68, 387–394. [Google Scholar] [CrossRef]
- Bestman, A.R. Natural convection boundary layer with suction mass transfer in a porous medium. Int. J. Energy Res. 1990, 14, 389–396. [Google Scholar] [CrossRef]
- Dawar, A.; Shah, Z.; Islam, S. Mathematical modeling and study of MHD flow of Williamson nanofluid over a nonlinear stretching plate with activation energy. Heat Transf. 2021, 50, 2558–2570. [Google Scholar] [CrossRef]
- Alsaadi, F.E.; Hayat, T.; Khan, M.I.; Alsaadi, F.E. Heat transport and entropy optimization inflow of magneto-Williamson nanomaterial with Arrhenius activation energy. Comput. Methods Programs Biomed. 2020, 183, 105051. [Google Scholar] [CrossRef]
- Muhammad, R.; Khan, M.I.; Jameel, M.; Khan, N.B. Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Comput. Methods Programs Biomed. 2020, 188, 105298. [Google Scholar] [CrossRef] [PubMed]
- Danook, S.H.; Jasim, Q.K.; Hussein, A.M. Nanofluid Convective Heat Transfer Enhancement Elliptical Tube inside Circular Tube under Turbulent Flow. Math. Comput. Appl. 2018, 23, 78. [Google Scholar] [CrossRef] [Green Version]
- Jamshed, W.; Goodarzi, M.; Prakash, M.; Nisar, K.S.; Zakarya, M.; Abdel-Aty, A.H. Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study. Case Stud. Therm. Eng. 2021, 26, 101160. [Google Scholar] [CrossRef]
- Alghamdi, M.; Wakif, A.; Thumma, T.; Khan, U. Case Studies in Thermal Engineering Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface. Case Stud. Therm. Eng. 2021, 28, 101428. [Google Scholar] [CrossRef]
- Loganathan, K.; Rajan, S. An entropy approach of Williamson nanofluid flow with Joule heating and zero nanoparticle mass flux. J. Therm. Anal. Calorim. 2020, 141, 2599–2612. [Google Scholar] [CrossRef]
- Ibrahim, W.; Negara, M. The Investigation of MHD Williamson Nanofluid over Stretching Cylinder with the Effect of Activation Energy. Adv. Math. Phys. 2020, 2020, 9523630. [Google Scholar] [CrossRef]
- Sajid, T.; Tanveer, S.; Sabir, Z.; Guirao, J.L.G. Impact of Activation Energy and Temperature-Dependent Heat Source/Sink on Maxwell-Sutterby Fluid. Math. Probl. Eng. 2020, 2020, 5251804. [Google Scholar] [CrossRef]
- Zaib, A.; Abelman, S.; Chamkha, A.J.; Rashidi, M.M. Entropy Generation of Williamson Nanofluid near a Stagnation Point over a Moving Plate with Binary Chemical Reaction and Activation Energy. Heat Transf. Res. 2018, 49, 1131–1149. [Google Scholar] [CrossRef]
- Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy–Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J. Therm. Anal. Calorim. 2019, 136, 1769–1779. [Google Scholar] [CrossRef]
- Ibrahim, W.; Negara, M. Viscous dissipation effect on Williamson nanofluid over stretching/ shrinking wedge with thermal radiation and chemical reaction. J. Phys. Commun. 2020, 4, 045015. [Google Scholar] [CrossRef]
- Ramzan, M.; Gul, H.; Kadry, S.; Chu, Y.M. Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo–Christov heat flux and activation energy. Int. Commun. Heat Mass Transf. 2021, 120, 104994. [Google Scholar] [CrossRef]
- Kumar, R.; Sood, S.; Shehzad, S.A.; Sheikholeslami, M. Radiative heat transfer study for flow of non-Newtonian nanofluid past a Riga plate with variable thickness. J. Mol. Liq. 2017, 248, 143–152. [Google Scholar] [CrossRef]
- Khan, W.A.; Khan, M.; Alshomrani, A.S. Impact of chemical processes on 3D Burgers fluid utilizing Cattaneo–Christov double-diffusion: Applications of non-Fourier’s heat and non-Fick’s mass flux models. J. Mol. Liq. 2016, 223, 1039–1047. [Google Scholar] [CrossRef]
- Hayat, T.; Muhammad, K.; Farooq, M.; Alsaedi, A. Squeezed flow subject to Cattaneo–Christov heat flux and rotating frame. J. Mol. Liq. 2016, 220, 216–222. [Google Scholar] [CrossRef]
- Loganathan, K.; Alessa, N.; Kayikci, S. Heat Transfer Analysis of 3-D Viscoelastic Nano-fluid Flow Over a Convectively Heated Porous Riga Plate with Cattaneo–Christov Double Flux. Front. Phys. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Karthik, T.S.; Loganathan, K.; Shankar, A.N.; Carmichael, M.J.; Mohan, A.; Kaabar, M.K.A.; Kayikci, S. Zero and Nonzero Mass Flux Effects of Bioconvective Viscoelastic Nanofluid over a 3D Riga Surface with the Swimming of Gyrotactic Microorganisms. Adv. Math. Phys. 2021, 2021, 9914134. [Google Scholar] [CrossRef]
- Ahmad, A.G.; Kaabar, M.K.A.; Rashid, S.; Abid, M. A Novel Numerical Treatment of Nonlinear and Nonequilibrium Model of Gradient Elution Chromatography considering Core-Shell Particles in the Column. Math. Probl. Eng. 2022, 2022, 1619702. [Google Scholar] [CrossRef]
- Yavuz, M.; Sene, N.; Yıldız, M. Analysis of the Influences of Parameters in the Fractional Second-Grade Fluid Dynamics. Mathematics 2022, 10, 1125. [Google Scholar] [CrossRef]
- Islam, T.; Yavuz, M.; Parveen, N.; Fayz-Al-Asad, M. Impact of Non-Uniform Periodic Magnetic Field on Unsteady Natural Convection Flow of Nanofluids in Square Enclosure. Fractal Fract. 2022, 6, 101. [Google Scholar] [CrossRef]
- Fayz-Al-Asad, M.; Yavuz, M.; Alam, M.; Sarker, M.; Alam, M.; Bazighifan, O. Influence of fin length on magneto-combined convection heat transfer performance in a lid-driven wavy cavity. Fractal Fract. 2021, 5, 107. [Google Scholar] [CrossRef]
- Sene, N. Second-grade fluid with Newtonian heating under Caputo fractional derivative: Analytical investigations via Laplace transforms. Math. Model. Numer. Simul. Appl. 2022, 2, 13–25. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.; Sinan, M. Ion temperature gradient modes driven soliton and shock by reduction perturbation method for electron-ion magneto-plasma. Math. Model. Numer. Simul. Appl. 2022, 2, 1–12. [Google Scholar] [CrossRef]
- Sreelakshmi, K.; Sarojamma, G.; Makinde, O.D. Dual stratification on the Darcy–Forchheimer flow of a maxwell nanofluid over a stretching surface. In Defect and Diffusion Forum; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2018; Volume 387, pp. 207–217. [Google Scholar] [CrossRef]
- Hayat, T.; Shah, F.; Hussain, Z.; Alsaedi, A. Outcomes of double stratification in Darcy–Forchheimer MHD flow of viscoelastic nanofluid. J. Brazilian Soc. Mech. Sci. Eng. 2018, 40, 145. [Google Scholar] [CrossRef]
- Eswaramoorthi, S.; Alessa, N.; Sangeethavaanee, M.; Kayikci, S.; Namgyel, N. Mixed Convection and Thermally Radiative Flow of MHD Williamson Nanofluid with Arrhenius Activation Energy and Cattaneo–Christov Heat-Mass Flux. J. Math. 2021, 2021, 2490524. [Google Scholar] [CrossRef]
- Ahmed, K.; Khan, W.A.; Akbar, T.; Rasool, G.; Alharbi, S.O.; Khan, I. Numerical Investigation of Mixed Convective Williamson Fluid Flow Over an Exponentially Stretching Permeable Curved Surface. Fluids 2021, 6, 260. [Google Scholar] [CrossRef]
- Ramzan, M.; Gul, H.; Darcy-Forchheimer, M.Z. 3D Williamson nanofluid flow with generalized Fourier and Fick’s laws in a stratified medium. Bull. Polish Acad. Sci. Technol. Sci. 2020, 68, 327–335. [Google Scholar] [CrossRef]
- Haider, F.; Hayat, T.; Alsaedi, A. Flow of hybrid nanofluid through Darcy-Forchheimer porous space with variable characteristics. Alex. Eng. J. 2021, 60, 3047–3056. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, M. Simultaneous impact of nonlinear radiative heat flux and Arrhenius activation energy inflow of chemically reacting Carreau nanofluid. Appl. Nanosci. 2020, 10, 2977–2988. [Google Scholar] [CrossRef]
- Hayat, T.; Naz, S.; Waqas, M.; Alsaedi, A. Effectiveness of Darcy-Forchheimer and nonlinear mixed convection aspects in stratified Maxwell nanomaterial flow induced by convectively heated surface. Appl. Math. Mech. 2018, 39, 1373–1384. [Google Scholar] [CrossRef]
- Kumar, K.A.; Reddy, J.V.R.; Sugunamma, V.; Sandeep, N. MHD Carreau fluid flow past a melting surface with Cattaneo–Christov heat flux. In Applied Mathematics and Scientific Computing; Trends in Mathematics; Birkhäuser: Cham, Switzerland, 2019; pp. 325–336. [Google Scholar] [CrossRef]
- Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A.; Al-Solamy, F. Radiative Three-Dimensional Flow with Chemical Reaction. Int. J. Chem. React. Eng. 2016, 14, 79–91. [Google Scholar] [CrossRef]
- Sahoo, A.; Nandkeolyar, R. Entropy generation in convective radiative flow of a Casson nanofluid in non-Darcy porous medium with Hall current and activation energy: The multiple regression model. Appl. Math. Comput. 2021, 402, 125923. [Google Scholar] [CrossRef]
- Chu, Y.M.; Nazeer, M.; Khan, M.I.; Ali, W.; Zafar, Z.; Kadry, S.; Abdelmalek, Z. Entropy analysis in the Rabinowitsch fluid model through inclined Wavy Channel: Constant and variable properties. Int. Commun. Heat Mass Transf. 2020, 119, 104980. [Google Scholar] [CrossRef]
- Hayat, T.; Javed, M.; Imtiaz, M.; Alsaedi, A. Double stratification in the MHD flow of a nanofluid due to a rotating disk with variable thickness. Eur. Phys. J. Plus 2017, 132, 146. [Google Scholar] [CrossRef]
- Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A. Buoyancy Effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Transf. 2017, 108, 1340–1346. [Google Scholar] [CrossRef]
- Loganathan, K.; Alessa, N.; Namgyel, N.; Karthik, T.S. MHD Flow of Thermally Radiative Maxwell Fluid Past a Heated Stretching Sheet with Cattaneo—Christov Dual Diffusion. J. Math. 2021, 2021, 5562667. [Google Scholar] [CrossRef]
Pr | |||||||
---|---|---|---|---|---|---|---|
Mustafa et al. [69] | Present | ||||||
2 | 0.5 | 1 | 1 | 0.5 | 0.5 | 0.706605 | 0.706604 |
4 | 0.5 | 1 | 1 | 0.5 | 0.5 | 0.935952 | 0.935955 |
7 | 0.5 | 1 | 1 | 0.5 | 0.5 | 1.132787 | 1.132788 |
10 | 0.5 | 1 | 1 | 0.5 | 0.5 | 1.257476 | 1.257482 |
5 | 0.1 | 1 | 1 | 0.5 | 0.5 | 1.426267 | 1.426269 |
5 | 0.5 | 1 | 1 | 0.5 | 0.5 | 1.013939 | 1.013938 |
5 | 0.7 | 1 | 1 | 0.5 | 0.5 | 0.846943 | 0.846928 |
5 | 1.0 | 1 | 1 | 0.5 | 0.5 | 0.649940 | 0.649939 |
5 | 0.5 | 0 | 1 | 0.5 | 0.5 | 0.941201 | 0.941209 |
5 | 0.5 | 1 | 1 | 0.5 | 0.5 | 1.013939 | 1.013943 |
5 | 0.5 | 2 | 1 | 0.5 | 0.5 | 1.064551 | 1.064563 |
5 | 0.5 | 4 | 1 | 0.5 | 0.5 | 1.114549 | 1.114191 |
5 | 0.5 | 1 | 0 | 0.5 | 0.5 | 1.145304 | 1.145301 |
5 | 0.5 | 1 | 1 | 0.5 | 0.5 | 1.013939 | 1.013938 |
5 | 0.5 | 1 | 2 | 0.5 | 0.5 | 0.926282 | 0.926281 |
5 | 0.5 | 1 | 5 | 0.5 | 0.5 | 0.798671 | 0.798669 |
5 | 0.5 | 1 | 2 | −1 | 0.5 | 1.030805 | 1.030804 |
5 | 0.5 | 1 | 2 | −0.5 | 0.5 | 0.999470 | 0.999468 |
5 | 0.5 | 1 | 2 | 0 | 0.5 | 0.964286 | 0.964285 |
10 | 0.5 | 1 | 2 | 1 | 0.5 | 0.886830 | 0.886830 |
10 | 0.5 | 1 | 2 | 0.5 | 0 | 1.032281 | 1.032280 |
10 | 0.5 | 1 | 2 | 0.5 | 0.5 | 1.056704 | 1.056706 |
10 | 0.5 | 1 | 2 | 0.5 | 3 | 1.154539 | 1.154538 |
10 | 0.5 | 1 | 2 | 0.5 | 5 | 1.215937 | 1.215938 |
Wi | Fc | λ | M | fw | |||
---|---|---|---|---|---|---|---|
0 | 0.4 | 0.5 | 0.5 | 0.3 | −1.493123 | 1.667677 | 0.688683 |
0.1 | 0.4 | 0.5 | 0.5 | 0.3 | −1.455877 | 1.661396 | 0.681731 |
0.2 | 0.4 | 0.5 | 0.5 | 0.3 | −1.41351 | 1.653626 | 0.673835 |
0.3 | 0.4 | 0.5 | 0.5 | 0.3 | −1.362763 | 1.643289 | 0.664469 |
0.2 | 0 | 0.5 | 0.5 | 0.3 | −1.329383 | 1.662128 | 0.682787 |
0.2 | 0.2 | 0.5 | 0.5 | 0.3 | −1.372209 | 1.657807 | 0.678189 |
0.2 | 0.4 | 0.5 | 0.5 | 0.3 | −1.41351 | 1.653626 | 0.673835 |
0.2 | 0.6 | 0.5 | 0.5 | 0.3 | −1.45342 | 1.649575 | 0.669706 |
0.2 | 0.4 | 0 | 0.5 | 0.3 | −1.470747 | 1.646644 | 0.666783 |
0.2 | 0.4 | 0.2 | 0.5 | 0.3 | −1.44786 | 1.64946 | 0.669584 |
0.2 | 0.4 | 0.4 | 0.5 | 0.3 | −1.424968 | 1.652245 | 0.672411 |
0.2 | 0.4 | 0.6 | 0.5 | 0.3 | −1.402068 | 1.655 | 0.675269 |
0.2 | 0.4 | 0.5 | 0 | 0.3 | −1.167756 | 1.642785 | 0.789742 |
0.2 | 0.4 | 0.5 | 0.5 | 0.3 | −1.41351 | 1.653626 | 0.673835 |
0.2 | 0.4 | 0.5 | 1 | 0.3 | −1.56368 | 1.632112 | 0.646948 |
0.2 | 0.4 | 0.5 | 1.5 | 0.3 | −1.696232 | 1.612796 | 0.626083 |
0.2 | 0.4 | 0.5 | 0.5 | −0.3 | −1.13794 | 1.366538 | 0.605637 |
0.2 | 0.4 | 0.5 | 0.5 | −0.1 | −1.22469 | 1.476979 | 0.612521 |
0.2 | 0.4 | 0.5 | 0.5 | 0.1 | −1.316926 | 1.576889 | 0.632016 |
0.2 | 0.4 | 0.5 | 0.5 | 0.3 | −1.41351 | 1.653626 | 0.673835 |
R | |||
---|---|---|---|
0 | 0.1 | 0.2 | 1.292138 |
0.5 | 0.1 | 0.2 | 1.653626 |
1 | 0.1 | 0.2 | 1.877266 |
1.5 | 0.1 | 0.2 | 1.926091 |
0.5 | −0.1 | 0.2 | 1.64429 |
0.5 | 0 | 0.2 | 1.662016 |
0.5 | 0.1 | 0.2 | 1.653626 |
0.5 | 0.2 | 0.2 | 1.561214 |
0.5 | 0.1 | 0 | 1.849146 |
0.5 | 0.1 | 0.1 | 1.753203 |
0.5 | 0.1 | 0.2 | 1.653626 |
0.5 | 0.1 | 0.3 | 1.550338 |
Sc | ||||
---|---|---|---|---|
0.5 | 0.5 | 0.1 | 0.2 | 0.015548 |
1 | 0.5 | 0.1 | 0.2 | 0.673835 |
1.5 | 0.5 | 0.1 | 0.2 | 1.186802 |
2 | 0.5 | 0.1 | 0.2 | 1.628294 |
1 | 0.2 | 0.1 | 0.2 | 1.038076 |
1 | 0.3 | 0.1 | 0.2 | 0.911577 |
1 | 0.4 | 0.1 | 0.2 | 0.790267 |
1 | 0.5 | 0.1 | 0.2 | 0.673835 |
1 | 0.5 | 0 | 0.2 | 0.591323 |
1 | 0.5 | 0.1 | 0.2 | 0.673835 |
1 | 0.5 | 0.2 | 0.2 | 0.759523 |
1 | 0.5 | 0.3 | 0.2 | 0.848478 |
1 | 0.5 | 0.1 | 0 | 0.899109 |
1 | 0.5 | 0.1 | 0.1 | 0.786382 |
1 | 0.5 | 0.1 | 0.2 | 0.673835 |
1 | 0.5 | 0.1 | 0.3 | 0.561474 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamilzharasan, B.M.; Karthikeyan, S.; Kaabar, M.K.A.; Yavuz, M.; Özköse, F. Magneto Mixed Convection of Williamson Nanofluid Flow through a Double Stratified Porous Medium in Attendance of Activation Energy. Math. Comput. Appl. 2022, 27, 46. https://doi.org/10.3390/mca27030046
Tamilzharasan BM, Karthikeyan S, Kaabar MKA, Yavuz M, Özköse F. Magneto Mixed Convection of Williamson Nanofluid Flow through a Double Stratified Porous Medium in Attendance of Activation Energy. Mathematical and Computational Applications. 2022; 27(3):46. https://doi.org/10.3390/mca27030046
Chicago/Turabian StyleTamilzharasan, B. M., S. Karthikeyan, Mohammed K. A. Kaabar, Mehmet Yavuz, and Fatma Özköse. 2022. "Magneto Mixed Convection of Williamson Nanofluid Flow through a Double Stratified Porous Medium in Attendance of Activation Energy" Mathematical and Computational Applications 27, no. 3: 46. https://doi.org/10.3390/mca27030046
APA StyleTamilzharasan, B. M., Karthikeyan, S., Kaabar, M. K. A., Yavuz, M., & Özköse, F. (2022). Magneto Mixed Convection of Williamson Nanofluid Flow through a Double Stratified Porous Medium in Attendance of Activation Energy. Mathematical and Computational Applications, 27(3), 46. https://doi.org/10.3390/mca27030046