Morlet Cross-Wavelet Analysis of Climatic State Variables Expressed as a Function of Latitude, Longitude, and Time: New Light on Extreme Events
Abstract
:1. Introduction
1.1. Marine Heatwaves
1.2. Extreme Subtropical Cyclones
1.3. Oceanic Rossby Waves at Mid-Latitudes
2. Materials and Methods
2.1. The Caldirola–Kanai Oscillator
2.2. Data
2.3. Wavelet Analysis
2.3.1. Marine Heatwaves
2.3.2. Subtropical Cyclones
3. Results
3.1. Marine Heatwaves
3.1.1. The Marine Heatwave That Occurred on 21 July 2021
3.1.2. Wavelet Analysis of Climatic State Variables
3.2. The Marine Cold Wave That Accurred on 5 January 2020
3.3. Subtropical Cyclones
3.3.1. An Extreme Precipitation Event, Germany, July 2021
3.3.2. Wavelet Analysis of State Variables
4. Discussion
4.1. Marine Heatwaves
4.2. Subtropical Cyclones
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pinault, J.-L. A Review of the Role of the Oceanic Rossby Waves in Climate Variability. J. Mar. Sci. Eng. 2022, 10, 493. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Yin, J.; Zou, X. Marine heatwaves in China’s marginal seas and adjacent offshore waters: Past, Present, and Future. J. Geophys. Res. Oceans 2020, 125, e2019JC015801. [Google Scholar] [CrossRef]
- Li, Z.; Holbrook, N.J.; Zhang, X.; Oliver, E.C.J.; Cougnon, E.A. Remote Forcing of Tasman Sea Marine Heatwaves. J. Clim. 2020, 33, 5337–5354. [Google Scholar] [CrossRef]
- Liu, K.; Xu, K.; Zhu, C.; Liu, B. Diversity of Marine Heatwaves in the South China Sea Regulated by ENSO Phase. J. Clim. 2022, 35, 877–893. [Google Scholar] [CrossRef]
- Walsh, J.E.; Thoman, R.L.; Bhatt, U.S.; Bieniek, P.A.; Brettschneider, B.; Brubaker, M.; Danielson, S.; Lader, R.; Fetterer, F.; Holderied, K.; et al. The High Latitude Marine Heat Wave of 2016 and Its Impacts on Alaska. Bull. Am. Meteorol. Soc. 2018, 99, S39–S43. [Google Scholar] [CrossRef]
- Chen, K.; Gawarkiewicz, G.; Yang, J. Mesoscale and Submesoscale Shelf-Ocean Exchanges Initialize an Advective Marine Heatwave. J. Geophys. Res. Oceans 2021, 127, e2021JC017927. [Google Scholar] [CrossRef]
- Maggiorano, A.; Feng, M.; Wang, X.H.; Ritchie, L.; Stark, C.; Colberg, F.; Greenwood, J. Hydrodynamic drivers of the 2013 marine heatwave on the North West Shelf of Australia. J. Geophys. Res. Oceans 2021, 126, e2020JC016495. [Google Scholar] [CrossRef]
- Benthuysen, J.A.; Oliver, E.C.J.; Feng, M.; Marshall, A.G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 2018, 123, 1301–1326. [Google Scholar] [CrossRef]
- Kuroda, H.; Taniuchi, Y.; Kasai, H.; Nakanowatari, T.; Setou, T. Co-occurrence of marine extremes induced by tropical storms and an ocean eddy in summer 2016: Anomalous hydrographic conditions in the Pacific shelf waters off southeast Hokkaido, Japan. Atmosphere 2021, 12, 888. [Google Scholar] [CrossRef]
- Marin, M.; Bindoff, N.L.; Feng, M.; Phillips, H.E. Slower long-term coastal warming drives dampened trends in coastal marine heatwave exposure. J. Geophys. Res. Oceans 2021, 126, e2021JC017930. [Google Scholar] [CrossRef]
- Marin, M.; Feng, M.; Phillips, H.E.; Bindoff, N.L. A global, multiproduct analysis of coastal marine heatwaves: Distribution, characteristics and long-term trends. J. Geophys. Res. Oceans 2021, 126, e2020JC016708. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, X.; Oke, P.; Monselesan, D.; Chamberlain, M.; Matear, R.; Schiller, A. Invigorating Ocean boundary current systems around Australia during 1979–2014: As simulated in a near-global eddy-resolving ocean model. J. Geophys. Res. Oceans 2016, 121, 3395–3408. [Google Scholar] [CrossRef] [Green Version]
- Perkins-Kirkpatrick, S.E.; King, A.D.; Cougnon, E.A.; Holbrook, N.J.; Grose, M.R.; Oliver EC, J.; Lewis, S.C.; Pourasghar, F. The Role of Natural Variability and Anthropogenic Climate Change in the 2017/2018 Tasman Sea Marine Heatwave. Bull. Am. Meteorol. Soc. 2019, 100, S105–S110. [Google Scholar] [CrossRef]
- Dosser, H.V.; Waterman, S.; Jackson, J.M.; Hannah, C.G.; Evans, W.; Hunt, B.P.V. Stark physical and biogeochemical differences and implications for ecosystem stressors in the Northeast Pacific coastal ocean. J. Geophys. Res. Oceans 2021, 126, e2020JC017033. [Google Scholar] [CrossRef]
- Delgadillo-Hinojosa, F.; Félix-Bermúdez, A.; Torres-Delgado, E.V.; Durazo, R.; Camacho-Ibar, V.; Mejía, A.; Ruiz, M.C.; Linacre, L. Impacts of the 2014–2015 warm-water anomalies on nutrients, chlorophyll-a and hydrographic conditions in the coastal zone of northern Baja California. J. Geophys. Res. Oceans 2020, 125, e2020JC016473. [Google Scholar] [CrossRef]
- Fumo, J.T.; Carter, M.L.; Flick, R.E.; Rasmussen, L.L.; Rudnick, D.L.; Iacobellis, S.F. Contextualizing marine heatwaves in the Southern California bight under anthropogenic climate change. J. Geophys. Res. Oceans 2020, 125, e2019JC015674. [Google Scholar] [CrossRef]
- Miyama, T.; Minobe, S.; Goto, H. Marine heatwave of sea surface temperature of the Oyashio region in summer in 2010–2016. Front. Mar. Sci. 2021, 7, 576240. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C. Variations in summer marine heatwaves in the South China Sea. J. Geophys. Res. Oceans 2021, 126, e2021JC017792. [Google Scholar] [CrossRef]
- Gao, G.; Marin, M.; Feng, M.; Yin, B.; Yang, D.; Feng, X.; Ding, Y.; Song, D. Drivers of marine heatwaves in the East China Sea and the South Yellow Sea in three consecutive summers during 2016–2018. J. Geophys. Res. Oceans 2020, 125, e2020JC016518. [Google Scholar] [CrossRef]
- Saranya, J.S.; Roxy, M.K.; Dasgupta, P.; Anand, A. Genesis and trends in marine heatwaves over the tropical Indian Ocean and their interaction with the Indian summer monsoon. J. Geophys. Res. Oceans 2020, 127, e2021JC017427. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive Marine Heatwaves at the Sea Surface in the Northwestern Pacific Ocean in Summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Hayashi, M.; Shiogama, H.; Emori, S.; Ogura, T.; Hirota, N. The northwestern Pacific warming record in August 2020 occurred under anthropogenic forcing. Geophys. Res. Lett. 2021, 48, e2020GL090956. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate Extremes Indices in the CMIP5 Multimodel Ensemble. Part 2: Future Climate Projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Raffaele, F. A Consistent Picture of the Hydroclimatic Response to Global Warming from Multiple Indices: Models and Observations. J. Geophys. Res. Atmos. 2014, 119, 11695–11708. [Google Scholar] [CrossRef]
- Lehmann, J.; Coumou, D.; Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Chang. 2015, 132, 501–515. [Google Scholar] [CrossRef]
- Fischer, E.; Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 2014, 41, 547–554. [Google Scholar] [CrossRef]
- Dong, S.; Sun, Y.; Li, C.; Zhang, X.; Min, S.K.; Kim, Y.H. Attribution of extreme precipitation with updated observations and CMIP6 simulations. J. Clim. 2021, 34, 871–881. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V. A global, continental, and regional analysis of changes in extreme precipitation. J. Clim. 2021, 34, 243–258. [Google Scholar] [CrossRef]
- Hawcroft, M.; Walsh, E.; Hodges, K.; Zappa, G. Significantly increased extreme precipitation expected in Europe and North America from subtropical cyclones. Environ. Res. Lett. 2018, 13, 124006. [Google Scholar] [CrossRef]
- Pinault, J.-L. Regions Subject to Rainfall Oscillation in the 5–10 Year Band. Climate 2018, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.-L. Global warming and rainfall oscillation in the 5–10 year band in Western Europe and Eastern North America. Clim. Chang. 2012, 114, 621–650. [Google Scholar] [CrossRef]
- Easterling, D.R.; Arnold, J.R.; Knutson, T.; Kunkel, K.E.; LeGrande, A.N.; Leung, L.R.; Vose, R.S.; Waliser, D.E.; Wehner, M.F. Precipitation Change in the United States. In Climate Science Special Report: Fourth National Climate Assessment, Volume I; Wuebbles, D., Fahey, J.D.W., Hibbard, K.A., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
- Feng, Z.; Leung, L.R.; Hagos, S.; Houze, R.A.; Burleyson, C.D.; Balaguru, K. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 2016, 7, 13429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Changnon, S.A.; Westcott, N.E. Heavy rainstorms in Chicago: Increasing frequency, altered impacts and future implications. J. Am. Water Resour. Assoc. 2002, 38, 1467–1475. [Google Scholar] [CrossRef]
- Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; Available online: https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/ (accessed on 27 April 2022).
- Rajczak, J.; Pall, P.; Schär, C. Projections of Extreme Precipitation Events in Regional Climate Simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 2013, 118, 3610–3626. [Google Scholar] [CrossRef]
- Rajczak, J.; Schär, C. Projects of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations. J. Geophys. Res. Atmos. 2017, 122, 10773–10800. [Google Scholar] [CrossRef]
- Zeder, J.; Fischer, E.M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extrem. 2020, 29, 100266. [Google Scholar] [CrossRef]
- Ali, H.; Fowler, H.J.; Lenderink, G.; Lewis, E.; Pritchard, D. Consistent Large-Scale Response of Hourly Extreme Precipitation to Temperature Variation Over Land. Geophys. Res. Lett. 2021, 48, e2020GL090317. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Blöschl, G.; Kiss, A.; Viglione, A.; Barriendos, M.; Böhm, O.; Brázdil, R.; Coeur, D.; Demarée, G.; Llasat, M.C.; Macdonald, N. Current European flood-rich period exceptional compared with past 500 years. Nature 2020, 583, 560–566. [Google Scholar] [CrossRef]
- Willner, S.N.; Levermann, A.; Zhao, F.; Frieler, K. Adaptation required to preserve future high-end river flood risk at present levels. Sci. Adv. 2018, 4, eaao1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dottori, F.; Szewczyk, W.; Ciscar, J.C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New High-Resolution Climate Change Projections for European Impact Research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Chakravorty, S.; Gnanaseelan, C.; Chowdary, J.S.; Luo, J.-J. Relative role of El Niño and IOD forcing on the southern tropical Indian Oceanic Rossby waves. J. Geophys. Res. Oceans 2014, 119, 8. [Google Scholar] [CrossRef]
- Sprintall, J.; Cravatte, S.; Dewitte, B.; Du, Y.; Gupta, A.S. ENSO Oceanic Teleconnections. In El Niño Southern Oscillation in a Changing Climate; McPhaden, M.J., Santoso, A., Cai, W., Eds.; American Geophysical Union: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Webber, B.G.; Matthews, A.J.; Heywood, K.J.; Kaiser, J.; Schmidtko, S. Seaglider observations of equatorial Indian Oceanic Rossby waves associated with the Madden-Julian Oscillation. J. Geophys. Res. Oceans 2014, 119, 6. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere-Ocean Dynamics, International Geophysics Series 30; Academic Press: Cambridge, MA, USA, 1982; 662p. [Google Scholar]
- Pinault, J.-L. Resonantly Forced Baroclinic Waves in the Oceans: Subharmonic Modes. J. Mar. Sci. Eng. 2018, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.-L. Resonantly Forced Baroclinic Waves in the Oceans: A New Approach to Climate Variability. J. Mar. Sci. Eng. 2021, 9, 13. [Google Scholar] [CrossRef]
- Choi, M.Y.; Thouless, D.J. Topological interpretation of subharmonic mode locking in coupled oscillators with inertia. Phys. Rev. B 2001, 64, 014305. [Google Scholar] [CrossRef] [Green Version]
- Sea Level Anomaly and Geostrophic Currents, Multi-Mission, Global, Optimal Interpolation, Gridded, Are Provided by the National Oceanic and Atmospheric Administration (NOAA). Available online: https://coastwatch.noaa.gov/pub/socd/lsa/rads/sla/daily/nrt/ (accessed on 19 November 2021).
- Daily Sea Surface Temperature Is Provided by NOAA. Available online: https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/ (accessed on 8 January 2022).
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.; Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version v2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Global Daily Precipitation Is Provided by NOAA. Available online: https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-daily/access/ (accessed on 25 March 2022).
- Report of Global Precipitation Climatology Project (GPCP). Available online: https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-daily/doc/CDRP-ATBD-0913%20Rev%200%20Precipitation%20-%20GPCP%20Daily%20C-ATBD%20(01B-35)%20(DSR-1159).pdf (accessed on 25 March 2022).
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.-L.; Pereira, L. What Speleothems Tell Us about Long-Term Rainfall Oscillation throughout the Holocene on a Planetary Scale. J. Mar. Sci. Eng. 2021, 9, 853. [Google Scholar] [CrossRef]
- The Watchers. Available online: https://watchers.news/2021/07/28/record-breaking-heatwave-hokkaido-japan-july-2021/ (accessed on 7 January 2021).
- Wash, C.H.; Heikkinen, S.H.; Liou, C.S.; Nuss, W.A. A Rapid Cyclogenesis Event during GALE IOP 9. Mon. Weather Rev. 1990, 118, 234–257. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; University of Washington: Seattle, WA, USA, 2006. [Google Scholar]
- The July 2021 Floods in Germany and the Climate Crisis—A Statement by Members of Scientists for Future. Available online: https://info-de.scientists4future.org/the-july-2021-floods-in-germany-and-the-climate-crisis/ (accessed on 22 January 2022).
- Coumou, D.; Lehmann, J.; Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 2015, 348, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, K.; Tamarin-Brodsky, T. Future Changes in Northern Hemisphere Summer Weather Persistence Linked to Projected Arctic Warming. Geophys. Res. Lett. 2021, 48, e2020GL091603. [Google Scholar] [CrossRef]
- Pfleiderer, P.; Coumou, D. Quantification of temperature persistence over the Northern Hemisphere land-area. Clim. Dyn. 2018, 51, 627–637. [Google Scholar] [CrossRef]
- Harvey, B.J.; Cook, P.; Shaffrey, L.C.; Schiemann, R. The Response of the Northern Hemisphere Storm Tracks and Jet Streams to Climate Change in the CMIP3, CMIP5, and CMIP6 Climate Models. J. Geophys. Res. Atmos. 2020, 125, e2020JD032701. [Google Scholar] [CrossRef]
Harmonic | ni from (1) | Mean Period (Days) | Lower Limit (Days) | Upper Limit (Days) |
---|---|---|---|---|
1 | _ | 365.2 | _ | _ |
1/3 | 3 | 121.7 | 91.3 | 182.6 |
1/6 | 2 | 60.9 | 45.7 | 91.3 |
1/12 | 2 | 30.4 | 22.8 | 45.7 |
1/24 | 2 | 15.2 | 11.4 | 22.8 |
1/48 | 2 | 7.6 | 5.7 | 11.4 |
1/96 | 2 | 3.8 | 2.9 | 5.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinault, J.-L. Morlet Cross-Wavelet Analysis of Climatic State Variables Expressed as a Function of Latitude, Longitude, and Time: New Light on Extreme Events. Math. Comput. Appl. 2022, 27, 50. https://doi.org/10.3390/mca27030050
Pinault J-L. Morlet Cross-Wavelet Analysis of Climatic State Variables Expressed as a Function of Latitude, Longitude, and Time: New Light on Extreme Events. Mathematical and Computational Applications. 2022; 27(3):50. https://doi.org/10.3390/mca27030050
Chicago/Turabian StylePinault, Jean-Louis. 2022. "Morlet Cross-Wavelet Analysis of Climatic State Variables Expressed as a Function of Latitude, Longitude, and Time: New Light on Extreme Events" Mathematical and Computational Applications 27, no. 3: 50. https://doi.org/10.3390/mca27030050
APA StylePinault, J. -L. (2022). Morlet Cross-Wavelet Analysis of Climatic State Variables Expressed as a Function of Latitude, Longitude, and Time: New Light on Extreme Events. Mathematical and Computational Applications, 27(3), 50. https://doi.org/10.3390/mca27030050