Exploration of Darcy–Forchheimer Flows of Non-Newtonian Casson and Williamson Conveying Tiny Particles Experiencing Binary Chemical Reaction and Thermal Radiation: Comparative Analysis
Abstract
:1. Introduction
2. Mathematical Formulation
3. Numerical Solution
4. Results and Discussion
5. Conclusions
- The fluid speed enhances for Richardson number but it slows against porosity, suction/injection and magnetic field parameters.
- The fluid becomes more warmed as the radiation, heat generation parameters and Eckert number increase.
- The nanoparticle concentration enhances upon strengthening the suction/injection and thermophoresis parameters and it downfalls upon escalating the reaction rate.
- The skin friction reduces after enriching the Forchheimer number, porosity and magnetic field parameters.
- The heat transfer gradient increases when escalating the values of radiation parameter and it downturns against radiation and heat generation parameters.
- The mass transfer gradient enhances upon heightening the Brownian motion parameter and it weakens against the thermophoresis parameter.
- In the future, we extend this flow model through the Riga plate with the convective heating condition.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Nomenclature
C | |
f | |
g | |
k | |
n | |
Q | Heat generation/absorption coefficient |
Thermal radiation | |
Local Reynolds number | |
Richardson number | |
Schmith number | |
T | Fluid temperature |
Ambient temperature | |
Velocity components | |
Stretching surface velocity | |
Weissenberg number | |
Direction coordinates | |
Thermal diffusivity | |
Casson parameter | |
Temperature difference parameter | |
Williamson parameter or time constant | |
Thermal relaxation parameter | |
Solute relaxation parameter | |
Local porosity parameter | |
Relaxation time of mass flux | |
Relaxation time of heat flux | |
Kinetic viscosity | |
Non-dimensional nanofluid concentration | |
Fluid density | |
Electrical conductivity | |
Stefan-Boltzmann constant | |
Dimensionless reaction rate | |
Heat capacity ratio | |
Non-dimensional temperature | |
Temperature ratio parameter | |
Similarity variable | |
Dynamic viscosity | |
p | Dust phase |
∞ | Fluid properties at ambient condition |
References
- Elnaqeeb, T.; Animasaun, I.L.; Shah, N.A. Ternary-hybrid nanofluids: Significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities. Z. Naturforsch. A 2021, 76, 231–243. [Google Scholar] [CrossRef]
- Islam, T.; Yavuz, M.; Parveen, N.; Fayz-Al-Asad, M. Impact of non-uniform periodic magnetic field on unsteady natural convection flow of nanofluids in square enclosure. Fractal Fract 2022, 6, 101. [Google Scholar] [CrossRef]
- Saleem, S.; Animasaun, I.L.; Yook, S.J.; Al-Mdallal, Q.M.; Shah, N.A.; Faisal, M. Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: Significance of thermo-migration and Brownian motion. Surf. Interfaces 2022, 30, 101854. [Google Scholar] [CrossRef]
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 1995, 231, 99–106. [Google Scholar]
- Sheikholeslami, M. Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J. Braz. Soc. Mech. Sci. Eng. 2015, 37, 1623–1633. [Google Scholar] [CrossRef]
- Ramana Reddy, J.V.; Sugunamma, V.; Sandeep, N. Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects. Alex. Eng. J. 2018, 57, 2465–2473. [Google Scholar] [CrossRef]
- Makinde, O.D.; Mabood, F.; Khan, W.A.; Tshehla, M.S. MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. J. Mol. Liq. 2016, 219, 624–630. [Google Scholar] [CrossRef]
- Shafey, A.M.E.; Alharbi, F.M.; Javed, A.; Abbas, N.; ALrafai, H.A.; Nadeem, S.; Issakhov, A. Theoretical analysis of Brownian and thermophoresis motion effects for Newtonian fluid flow over nonlinear stretching cylinder. Case Stud. Therm. Eng. 2021, 28, 101369. [Google Scholar] [CrossRef]
- Rasheed, H.U.; Islam, S.; Khan, Z.; Khan, J.; Mashwani, W.K.; Abbas, T.; Shah, Q. Computational analysis of hydromagnetic boundary layer stagnation point flow of nano liquid by a stretched heated surface with convective conditions and radiation effect. Adv. Mech. Eng. 2021, 13, 16878140211053142. [Google Scholar] [CrossRef]
- Alotaibi, H.; Althubiti, S.; Eid, M.R.; Mahny, K.L. Numerical treatment of MHD flow of Casson nanofluid via convectively heated non-linear extending surface with viscous dissipation and suction/injection effects. Comput. Mater. Continua 2021, 66, 229–245. [Google Scholar] [CrossRef]
- Nayak, M.K.; Prakash, J.; Tripathi, D.; Pandey, V.S.; Shaw, S. 3D Bioconvective multiple slip flow of chemically reactive Casson nanofluid with gyrotactic microorganisms. Heat Transf. Res. 2020, 49, 135–153. [Google Scholar] [CrossRef]
- Butt, A.S.; Maqbool, K.; Imran, S.M.; Ahmad, B. Entropy generation effects in MHD Casson nanofluid past a permeable stretching surface. Int. J. Exergy 2020, 31, 150–171. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; Lorenzini, G.; Vijaya Kumar, P.; Raju, C.S.K. Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet. Int. J. Heat Mass Transf. 2017, 111, 346–355. [Google Scholar] [CrossRef]
- Afify, A.A. The influence of slip boundary condition on Casson nanofluid flow over a stretching sheet in the presence of viscous dissipation and chemical reaction. Math. Probl. Eng. 2017, 2017, 3804751. [Google Scholar] [CrossRef] [Green Version]
- Varun Kumar, R.S.; Dhananjaya, P.G.; Naveen Kumar, R.; Punith Gowda, R.J.; Prasannakumara, B.C. Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction. Int. J. Comput. Methods Eng. Sci. Mech. 2022, 23, 12–19. [Google Scholar] [CrossRef]
- Naveen Kumar, R.; Punith Gowda, R.J.; Madhukesh, J.K.; Prasannakumara, B.C.; Ramesh, G.K. Impact of thermophoretic particle deposition on heat and mass transfer across the dynamics of Casson fluid flow over a moving thin needle. Phys. Scr. 2021, 96, 075210. [Google Scholar] [CrossRef]
- Khan, T.S.; Sene, N.; Mouldi, A.; Brahmia, A. Heat and mass transfer of the Darcy–Forchheimer Casson hybrid nanofluid flow due to an extending curved surface. J. Nanomat. 2022, 2022, 3979168. [Google Scholar]
- Waqas, S.H.; Khan, S.U.; Imran, M.; Bhatti, M.M. Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno’s nanofluid model. Phys. Scr. 2019, 94, 115304. [Google Scholar] [CrossRef]
- Li, Y.X.; Alshbool, M.H.; Lv, Y.P.; Khan, I.; Khan, M.R.; Issakhov, A. Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface. Case Stud. Therm. Eng. 2021, 26, 100975. [Google Scholar] [CrossRef]
- Ahmed, K.; Akbar, T. Numerical investigation of magnetohydrodynamics Williamson nanofluid flow over an exponentially stretching surface. Adv. Mech. Eng. 2021, 13, 168781402110198. [Google Scholar] [CrossRef]
- Iqbal, W.; Naeem, M.N.; Jalil, M. Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder. AIP Adv. 2019, 9, 055118. [Google Scholar] [CrossRef] [Green Version]
- Gorla, R.S.R.; Gireesha, B.J. Dual solutions for stagnation-point flow and convective heat transfer of a Williamson nanofluid past a stretching/shrinking sheet. Heat Mass Transf. 2016, 52, 1153–1162. [Google Scholar] [CrossRef]
- Srinivasulu, T.; Goud, B.S. Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Stud. Therm. Eng. 2021, 23, 100819. [Google Scholar] [CrossRef]
- Mahanta, G.; Das, M.; Nayak, M.K.; Shaw, S. Irreversibility Analysis of 3D Magnetohydrodynamic Casson Nanofluid Flow Past Through Two Bi-Directional Stretching Surfaces with Nonlinear Radiation. J. Nanofluids 2021, 10, 316–326. [Google Scholar] [CrossRef]
- Humane, P.P.; Patil, V.S.; Patil, A.B. Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of Casson–Williamson nanofluid over a porous stretching surface. Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 2021, 235, 2008–2018. [Google Scholar] [CrossRef]
- Akinshilo, A.T.; Mabood, F.; Ilegbusi, A.O. Heat generation and nonlinear radiation effects on MHD Casson nanofluids over a thin needle embedded in porous medium. Int. Commun. Heat Mass Transf. 2021, 127, 105547. [Google Scholar] [CrossRef]
- Ghasemi, S.E.; Mohsenian, S.; Gouran, S.; Zolfagharian, A. A novel spectral relaxation approach for nanofluid flow past a stretching surface in presence of magnetic field and nonlinear radiation. Results Phys. 2022, 32, 105141. [Google Scholar] [CrossRef]
- Imran, M.; Farooq, U.; Muhammad, T.; Khan, S.U.; Waqas, H. Bioconvection transport of Carreau nanofluid with magnetic dipole and nonlinear thermal radiation. Case Stud. Therm. Eng. 2021, 26, 101129. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, T.; Rashidi, M.M. Numerical study of entropy generation with nonlinear thermal radiation on magnetohydrodynamics non-Newtonian nanofluid through a porous shrinking sheet. J. Magn. 2016, 21, 468–475. [Google Scholar] [CrossRef] [Green Version]
- Mahanthesh, B.; Thriveni, K. Significance of inclined magnetic field on nano-bioconvection with nonlinear thermal radiation and exponential space based heat source: A sensitivity analysis. Eur. Phys. J. Spec. Top. 2021, 230, 1487–1501. [Google Scholar] [CrossRef]
- Cao, W.; Animasaun, I.L.; Yook, S.J.; Oladipupo, V.A.; Ji, X. Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid. Int. Commun. Heat Mass Transf 2022, 135, 106069. [Google Scholar] [CrossRef]
- Eswaramoorthi, S.; Divya, S.; Faisal, M.; Namgyel, N. Entropy and heat transfer analysis for MHD flow of-water-based nanofluid on a heated 3D plate with nonlinear radiation. Math. Probl. Eng. 2022, 2022, 7319988. [Google Scholar] [CrossRef]
- Shah, Z.; Kumam, P.; Deebani, W. Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. Sci. Rep. 2020, 10, 4402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, S.; Ahmad, I.; Khan, S.U.; Ali, N. A three-dimensional bioconvection Williamson nanofluid flow over bidirectional accelerated surface with activation energy and heat generation. Int. J. Mod. Phys. B 2021, 35, 2150132. [Google Scholar] [CrossRef]
- Kalaivanan, R.; Vishnu Ganesh, N.; Al-Mdallal, Q.M. An investigation on Arrhenius activation energy of second grade nanofluid flow with active and passive control of nanomaterials. Case Stud. Therm. Eng. 2020, 22, 100774. [Google Scholar] [CrossRef]
- Zeeshan, A.; Mehmood, O.U.; Mabood, F.; Alzahrani, F. Numerical analysis of hydromagnetic transport of Casson nanofluid over permeable linearly stretched cylinder with Arrhenius activation energy. Int. Commun. Heat Mass Transf. 2022, 130, 105736. [Google Scholar] [CrossRef]
- Tayyab, M.; Siddique, I.; Jarad, F.; Ashraf, M.K.; Ali, B. Numerical solution of 3D rotating nanofluid flow subject to Darcy–Forchheimer law, bio-convection and activation energy. S. Afr. J. Chem. Eng. 2022, 40, 48–56. [Google Scholar] [CrossRef]
- Rashid, S.; Hayat, T.; Qayyum, S.; Ayub, M.; Alsaedi, A. Three dimensional rotating Darcy–Forchheimer flow with activation energy. Int. J. Numer. Methods Heat Fluid Flow 2018, 29, 935–948. [Google Scholar] [CrossRef]
- Alsaadi, F.E.; Hayat, T.; Khan, M.I.; Alsaadi, F.E. Heat transport and entropy optimization in flow of magneto-Williamson nanomaterial with Arrhenius activation energy. Comput. Methods Progr. Biomed. 2020, 183, 105051. [Google Scholar] [CrossRef]
- Punith Gowda, R.J.; Naveen Kumar, R.; Jyothi, A.M.; Prasannakumara, B.C.; Sarris, I.E. Impact of binary chemical reaction and activation energy on heat and mass transfer of marangoni driven boundary layer flow of a non-Newtonian nanofluid. Processes 2021, 9, 702. [Google Scholar] [CrossRef]
- Varun Kumar, R.S.; Alhadhrami, A.; Punith Gowda, R.J.; Naveen Kumar, R.; Prasannakumara, B.C. Exploration of Arrhenius activation energy on hybrid nanofluid flow over a curved stretchable surface. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 2021, 101, e202100035. [Google Scholar] [CrossRef]
- Tamilzharasan, B.M.; Karthikeyan, S.; Kaabar, M.K.; Yavuz, M.; Özköse, F. Magneto Mixed Convection of Williamson Nanofluid Flow through a Double Stratified Porous Medium in Attendance of Activation Energy. Math. Comput. Appl. 2022, 27, 46. [Google Scholar] [CrossRef]
- Nadeem, S.; Hussain, S.T. Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 2014, 4, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Raju, C.S.K.; Sandeep, N.; Ali, M.E.; Nuhait, A.O. Heat and mass transfer in 3-D MHD Williamson–Casson fluids flow over a stretching surface with non-uniform heat source/sink. Therm. Sci. 2019, 23, 281–293. [Google Scholar] [CrossRef]
- Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A. Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int. J. Heat Mass Transf. 2017, 108, 1340–1346. [Google Scholar] [CrossRef]
- Ali, F.; Loganathan, K.; Eswaramoorthi, S.; Prabu, K.; Zaib, A.; Chaudhary, D.K. Heat transfer analysis on Carboxymethyl cellulose water-based cross hybrid nanofluid flow with entropy generation. J. Nanomater. 2022, 2022, 5252918. [Google Scholar] [CrossRef]
- Eswaramoorthi, S.; Loganathan, K.; Jain, R.; Gyeltshen, S. Darcy–Forchheimer 3D flow of glycerin-based carbon nanotubes on a Riga plate with nonlinear thermal radiation and Cattaneo–Christov heat flux. J. Nanomater. 2022, 2022, 5286921. [Google Scholar] [CrossRef]
fw | Fr | M | Ri | Nr | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Casson | Williamson | Casson | Williamson | Casson | Williamson | ||||||
−0.6 | 0.2 | 0.4 | 0.5 | 0.5 | 0.5 | −0.509450 | −0.391709 | 0.579321 | 0.583070 | −0.325537 | −0.327817 |
−0.3 | −0.540008 | −0.427964 | 0.641809 | 0.642974 | −0.363858 | −0.364580 | |||||
0.0 | −0.571635 | −0.468255 | 0.708673 | 0.706679 | −0.405644 | −0.404386 | |||||
0.3 | −0.603205 | −0.511666 | 0.779139 | 0.773945 | −0.450585 | −0.447240 | |||||
0.6 | −0.633606 | −0.556634 | 0.852262 | 0.844421 | −0.498239 | −0.493078 | |||||
0.4 | 0.0 | 0.4 | 0.5 | 0.5 | 0.5 | −0.594642 | −0.508055 | 0.806499 | 0.800459 | −0.468292 | −0.464370 |
0.4 | −0.629919 | −0.543188 | 0.800562 | 0.794198 | −0.464437 | −0.460312 | |||||
0.8 | −0.657162 | −0.571883 | 0.796283 | 0.789413 | −0.461663 | −0.457217 | |||||
1.2 | −0.679033 | −0.595949 | 0.793056 | 0.785643 | −0.459573 | −0.454781 | |||||
0.4 | 0.2 | 0.0 | 0.5 | 0.5 | 0.5 | −0.603953 | −0.514606 | 0.804272 | 0.798227 | −0.466845 | −0.462923 |
0.6 | −0.617898 | −0.532082 | 0.802808 | 0.796584 | −0.465894 | −0.461858 | |||||
1.2 | −0.629722 | −0.547022 | 0.801560 | 0.795165 | −0.465084 | −0.460939 | |||||
1.8 | −0.639957 | −0.560048 | 0.800480 | 0.737920 | −0.464384 | −0.460133 | |||||
0.4 | 0.2 | 0.4 | 0.0 | 0.5 | 0.5 | −0.560068 | −0.475720 | 0.812721 | 0.806599 | −0.472339 | −0.468357 |
0.5 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | |||||
1.0 | −0.650934 | −0.565199 | 0.797237 | 0.790500 | −0.462281 | −0.457920 | |||||
1.5 | −0.679033 | −0.595949 | 0.793786 | 0.785643 | −0.459573 | −0.454781 | |||||
0.4 | 0.2 | 0.4 | 0.5 | 0.0 | 0.5 | −0.660336 | −0.580349 | 0.798424 | 0.788312 | −0.463051 | −0.456505 |
0.4 | −0.622571 | −0.536848 | 0.802412 | 0.795557 | −0.465637 | −0.461193 | |||||
0.7 | −0.595805 | −0.506627 | 0.804836 | 0.799939 | −0.467212 | −0.464033 | |||||
1.0 | −0.570084 | −0.477980 | 0.806865 | 0.803636 | −0.468530 | −0.466432 | |||||
0.4 | 0.2 | 0.4 | 0.5 | 0.5 | −1.0 | −0.606275 | −0.522759 | 0.808362 | 0.804310 | −0.469503 | −0.466870 |
−0.5 | −0.608591 | −0.523896 | 0.806752 | 0.802074 | −0.468456 | −0.465418 | |||||
0.0 | −0.611002 | −0.525165 | 0.805055 | 0.799680 | −0.467353 | −0.463865 | |||||
0.5 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | |||||
1.0 | −0.616151 | −0.528155 | 0.801381 | 0.794318 | −0.464969 | −0.460390 |
R | Hg | Ec | Nb | Nt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Casson | Williamson | Casson | Williamson | Casson | Williamson | |||||||
0.0 | −0.5 | 0.4 | 0.1 | 0.5 | 0.5 | 1.2 | −0.629685 | −0.5443759 | 0.552386 | 0.545982 | −0.552386 | −0.545982 |
0.4 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | ||||||
0.8 | −0.600650 | −0.513580 | 1.023377 | 1.017386 | −0.411036 | −0.408267 | ||||||
1.2 | −0.590235 | −0.503470 | 1.221039 | 1.215175 | −0.372078 | −0.370007 | ||||||
0.4 | −0.4 | 0.4 | 0.1 | 0.5 | 0.5 | 1.2 | −0.609973 | −0.522867 | 0.776546 | 0.770393 | −0.448914 | −0.444955 |
−0.2 | −0.600663 | −0.513212 | 0.708901 | 0.702637 | −0.405788 | −0.401838 | ||||||
0.0 | −0.586188 | −0.498333 | 0.608328 | 0.600989 | −0.343240 | −0.338747 | ||||||
0.2 | −0.560224 | −0.471686 | 0.431109 | 0.417147 | −0.237329 | −0.229206 | ||||||
0.4 | −0.548398 | −0.443644 | 0.248746 | 0.158094 | −0.133635 | −0.083938 | ||||||
0.4 | −0.5 | 0.0 | 0.1 | 0.5 | 0.5 | 1.2 | −0.616797 | −0.530165 | 0.828958 | 0.830200 | −0.482937 | −0.483750 |
0.5 | −0.612698 | −0.525686 | 0.796834 | 0.788861 | −0.462020 | −0.456860 | ||||||
1.0 | −0.608584 | −0.521271 | 0.764598 | 0.747832 | −0.441233 | −0.430502 | ||||||
1.5 | −0.604457 | −0.516918 | 0.732266 | 0.707121 | −0.420586 | −0.404665 | ||||||
0.4 | −0.5 | 0.4 | 0.0 | 0.5 | 0.5 | 1.2 | −0.612511 | −0.525620 | 0.799275 | 0.793245 | −0.463602 | −0.459696 |
0.2 | −0.614542 | −0.527555 | 0.807356 | 0.801051 | −0.468849 | −0.464754 | ||||||
0.4 | −0.616637 | −0.529576 | 0.815834 | 0.809232 | −0.474367 | −0.470068 | ||||||
0.6 | −0.618798 | −0.531690 | 0.824758 | 0.817834 | −0.480190 | −0.475670 | ||||||
0.4 | −0.5 | 0.4 | 0.1 | 0.1 | 0.5 | 1.2 | −0.624871 | −0.534266 | 0.795002 | 0.784238 | −2.304167 | −2.269369 |
0.5 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | ||||||
1.0 | −0.612246 | −0.525851 | 0.804174 | 0.798416 | −0.233391 | −0.231523 | ||||||
1.5 | −0.611828 | −0.525618 | 0.804470 | 0.798843 | −0.155658 | −0.154441 | ||||||
0.4 | −0.5 | 0.4 | 0.1 | 0.5 | 0.5 | 1.2 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.46295 |
1.0 | −0.614246 | −0.526134 | 0.790345 | 0.783132 | −0.915639 | −0.906320 | ||||||
1.5 | −0.614786 | −0.525509 | 0.777196 | 0.768887 | −1.347998 | −1.331962 | ||||||
2.0 | −0.615136 | −0.524713 | 0.763870 | 0.754421 | −1.763066 | −1.738850 | ||||||
0.4 | −0.5 | 0.4 | 0.1 | 0.5 | 0.5 | 1.0 | −0.617049 | −0.530398 | 0.748078 | 0.741525 | −0.487877 | −0.483603 |
1.2 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | ||||||
1.4 | −0.609177 | −0.521923 | 0.871668 | 0.865948 | −0.440864 | −0.437192 | ||||||
1.6 | −0.603889 | −0.516328 | 0.956034 | 0.950777 | −0.412023 | −0.408740 |
n | E | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Casson | Williamson | Casson | Williamson | Casson | Williamson | |||||
0.0 | 1.0 | 1.0 | 0.5 | 1.0 | −0.613044 | −0.526039 | 0.803508 | 0.797397 | −0.466349 | −0.462385 |
0.1 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | ||||
0.2 | −0.613985 | −0.527112 | 0.803024 | 0.796807 | −0.466035 | −0.462003 | ||||
0.3 | −0.614443 | −0.528172 | 0.802775 | 0.796199 | −0.465873 | −0.461608 | ||||
0.1 | 0.0 | 1.0 | 0.5 | 1.0 | −0.621718 | −0.537316 | 0.802043 | 0.793644 | −0.465398 | −0.459954 |
0.4 | −0.616422 | −0.529896 | 0.803344 | 0.796616 | −0.466243 | −0.461879 | ||||
0.8 | −0.614204 | −0.527324 | 0.803393 | 0.797110 | −0.466274 | −0.462199 | ||||
1.2 | −0.612990 | −0.526016 | 0.803097 | 0.797019 | −0.466082 | −0.462140 | ||||
0.1 | 1.0 | 0.0 | 0.5 | 1.0 | −0.613684 | −0.526784 | 0.803713 | 0.797484 | −0.466482 | −0.462441 |
0.3 | −0.613634 | −0.526719 | 0.803572 | 0.797365 | −0.466391 | −0.462364 | ||||
0.6 | −0.613585 | −0.526657 | 0.803438 | 0.797250 | −0.466303 | −0.462290 | ||||
1.0 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | ||||
0.1 | 1.0 | 1.0 | 0.0 | 1.0 | −0.613558 | −0.526629 | 0.803468 | 0.797283 | −0.466323 | −0.462311 |
0.5 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | ||||
1.0 | −0.613492 | −0.526540 | 0.803029 | 0.796883 | −0.466038 | −0.462052 | ||||
1.5 | −0.613478 | −0.526520 | 0.802745 | 0.796615 | −0.465854 | −0.461878 | ||||
0.1 | 1.0 | 1.0 | 0.5 | 0.0 | −0.611041 | −0.524071 | 0.802264 | 0.796452 | −0.465541 | −0.461773 |
1.0 | −0.613519 | −0.526577 | 0.803268 | 0.797104 | −0.466193 | −0.462195 | ||||
2.0 | −0.616499 | −0.529962 | 0.803240 | 0.796521 | −0.466175 | −0.461817 | ||||
3.0 | −0.618951 | −0.533118 | 0.802802 | 0.795459 | −0.465891 | −0.461129 |
E | n | ||||||
---|---|---|---|---|---|---|---|
Ref. [45] | Present | ||||||
2.0 | 0.5 | 1.0 | 1.0 | 0.5 | 0.5 | 0.706605 | 0.706604 |
4.0 | 0.935952 | 0.935955 | |||||
7.0 | 1.132787 | 1.132788 | |||||
10.0 | 1.257476 | 1.257482 | |||||
5.0 | 0.1 | 1.0 | 1.0 | 0.5 | 0.5 | 1.426267 | 1.426269 |
0.5 | 1.013939 | 1.013938 | |||||
0.7 | 0.846943 | 0.846928 | |||||
1.0 | 0.649940 | 0.649939 | |||||
5.0 | 0.5 | 0.0 | 1.0 | 0.5 | 0.5 | 0.941201 | 0.941209 |
1.0 | 1.013939 | 1.013943 | |||||
2.0 | 1.064551 | 1.064563 | |||||
4.0 | 1.114549 | 1.114191 | |||||
5.0 | 0.5 | 1.0 | 0.0 | 0.5 | 0.5 | 1.145304 | 1.145301 |
1.0 | 1.013939 | 1.013938 | |||||
2.0 | 0.926282 | 0.926281 | |||||
5.0 | 0.798671 | 0.798669 | |||||
5.0 | 0.5 | 1.0 | 2.0 | −1.0 | 0.5 | 1.030805 | 1.030804 |
−0.5 | 0.999470 | 0.999468 | |||||
0.0 | 0.964286 | 0.964285 | |||||
1.0 | 0.886830 | 0.886830 | |||||
10.0 | 0.5 | 1.0 | 2.0 | 0.5 | 0.0 | 1.032281 | 1.032280 |
0.5 | 1.056704 | 1.056706 | |||||
3.0 | 1.154539 | 1.154538 | |||||
5.0 | 1.215937 | 1.215938 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eswaramoorthi, S.; Thamaraiselvi, S.; Loganathan, K. Exploration of Darcy–Forchheimer Flows of Non-Newtonian Casson and Williamson Conveying Tiny Particles Experiencing Binary Chemical Reaction and Thermal Radiation: Comparative Analysis. Math. Comput. Appl. 2022, 27, 52. https://doi.org/10.3390/mca27030052
Eswaramoorthi S, Thamaraiselvi S, Loganathan K. Exploration of Darcy–Forchheimer Flows of Non-Newtonian Casson and Williamson Conveying Tiny Particles Experiencing Binary Chemical Reaction and Thermal Radiation: Comparative Analysis. Mathematical and Computational Applications. 2022; 27(3):52. https://doi.org/10.3390/mca27030052
Chicago/Turabian StyleEswaramoorthi, Sheniyappan, S. Thamaraiselvi, and Karuppusamy Loganathan. 2022. "Exploration of Darcy–Forchheimer Flows of Non-Newtonian Casson and Williamson Conveying Tiny Particles Experiencing Binary Chemical Reaction and Thermal Radiation: Comparative Analysis" Mathematical and Computational Applications 27, no. 3: 52. https://doi.org/10.3390/mca27030052
APA StyleEswaramoorthi, S., Thamaraiselvi, S., & Loganathan, K. (2022). Exploration of Darcy–Forchheimer Flows of Non-Newtonian Casson and Williamson Conveying Tiny Particles Experiencing Binary Chemical Reaction and Thermal Radiation: Comparative Analysis. Mathematical and Computational Applications, 27(3), 52. https://doi.org/10.3390/mca27030052