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Abstract

:

This article aims to study the effect of the vertical rotation and magnetic field on the dissolution-driven convection in a saturated porous layer with a first-order chemical reaction. The system’s physical parameters depend on the Vadasz number, the Hartmann number, the Taylor number, and the Damkohler number. We analyze them in an in-depth manner. On the other hand, based on an artificial neural network (ANN) technique, the Levenberg–Marquardt backpropagation algorithm is adopted to predict the distribution of the critical Rayleigh number and for the linear stability analysis. The simulated critical Rayleigh numbers obtained by the numerical study and the predicted critical Rayleigh numbers by the ANN are compared and are in good agreement. The system becomes more stable by increasing the Damkohler and Taylor numbers.
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1. Introduction


Dissolution-driven convection occurs in the host phase of a partially miscible system when a buoyantly unstable density stratification develops upon dissolution. The onset of convection in a porous layer has received considerable interest in science, engineering, and technology, such as food engineering, oil recovery, chemical reactor design, and plastic processing. Dissolution-driven convection in porous media has received recent interest in the context of the long-term geological storage of carbon dioxide in the underground, natural, brine-filled caverns, often referred to as saline aquifers, in the production of mineral deposits, and a variety of other applications. Following injection into the saline aquifer, dissolution of supercritical carbon dioxide in the host brine causes a local density increase, leading to gravitational instability of the diffusive boundary layer and the formation of convective fingers [1,2,3,4,5,6]. In addition, Benard and chemical instabilities were studied for the dissociation of a horizontal layer of Navier–Stokes fluid due to the Boussinesq approximation. Dissolution-driven convection of a binary fluid in a reactive porous layer was foremost studied [7,8], then secondary instabilities [9], and constant temperatures and chemical equilibrium in binary fluid at the boundary surfaces while the solubility of the dissolved issue relies upon temperature [10,11,12,13,14,15,16,17,18]. The diffusive boundary layer becomes unstable in anisotropic porous media where both the capillary transition zone and dispersion are considered, even if the geochemical reaction is significantly large. While the reaction enhances stability by consuming the solute, porous media anisotropy, hydrodynamic dispersion, and capillary transition zone destabilize the diffusive boundary layer that is unstably formed in a gravitational field [19,20,21]. Stability techniques that look at and broaden the way the solute’s dissolution influences the thermal convection and prolongs this evaluation by the use of an asymptotic energy method, Galerkin and spectral techniques, are expecting the structure of the preliminary bifurcation. Darcy, Darcy Brinkmann, and Darcy Lapwood Brinkmann’s models were used to study porous, anisotropic porous, and sparsely packed porous medium over multiple diffusive convection [22,23,24,25].



Exhausting the magnetic field is an adequate method to regulate a thermally induced flow. The magnetic field will propagate a Lorentz force to permeate the convective flow. The penetration effect depends on the strength of the applied magnetic field and its assimilation into the convective flow direction. The magnetic field is significant for engineering applications such as magnetohydrodynamics, cooling of nuclear reactors, micropump electronic packages, and microelectronic devices. The density can be enhanced or reduced depending on the magnetic field and electrode configuration. The magnetic field effect on formally charged transfer-controlled active dissolution and the Lorentz force reduces the field gradient force, which boosts active dissolution. The convective cavities of various aspect ratios in the magnetohydrodynamics of fluids are broadly studied [26,27,28,29,30,31,32,33,34,35,36,37,38]. Due to the simultaneous action of buoyancy and induced magnetic forces, heat transfer to liquid metals may be significantly affected by the presence of a magnetic field, but very small effects are experienced by other fluids. The Coriolis and centrifugal buoyancy forces arising from rotation have a remarkable influence on the local heat transfer when compared with the nonrotating results. A series of interferograms, stream functions, and isotherm plots demonstrated the strong effect of rotation on the flow field and heat transfer. A correlation of the Nusselt number as a function of Taylor and Rayleigh numbers is presented [15,19,39,40,41,42].



Various machine learning techniques, in particular artificial neural networks (ANN), have been widely used in different research areas for predicting data. Recently, many researchers have used ANN to predict the data and compare them with their results. Neural networks are used to solve different types of large data-related problems and solve the Navier–Stokes equations for turbulence by using the Bayesian cluster. The combination of ANN and gene expression programming compares the local Nusselt number with their numerical results [43,44,45]. The investigation of bifurcating fluid phenomena using a reduced-order modeling setting was aided by artificial neural networks, ANNs, to study the flow and thermal fields of the onset of convection in a rectangular channel. From their results, they found that the ANN can precisely predict the Nusselt number with less computational time and cost compared to the DNS [46,47,48,49,50,51].



The purpose of this article is to explore the magnetic effect, the Coriolis effect, and chemical reaction effects on the onset of convection in a porous medium. To the best of our knowledge, linear stability theory and ANN prediction of threshold Rayleigh number for the onset of magneto-rotating convection in a porous medium with first-order chemical reaction have not been studied so far. The plan for this article is as follows: Section 2 describes the mathematical modeling under consideration, Section 3 presents the ANN methodology, and Section 4 discusses the results. The paper ends with a conclusion in Section 5.




2. Mathematical Modeling


2.1. Basic Equations


Consider an electrically conducting fluid-saturated porous layer of thickness d that is salted from below and confined between two parallel horizontal planes at   z = 0   and   z = d  . The horizontal coordinate x and vertical coordinate z increase upwards in a Cartesian coordinate with the origin at the bottom of the porous medium. The surfaces are extended infinitely in x and y directions and a constant salinity gradient C is maintained across the porous layer. Let   Ω = Ω   e ^  z    be the constant angular velocity of the layer. To make the Boussinesq approximation valid, the physical properties of the fluid are assumed to be constant, except for density in the buoyancy term. The porous medium is considered homogeneous and isotropic. Based on [15,19,39,40], with the physical configuration recalled in Figure 1, the governing equations are


        ∇ · u = 0 ,     



(1)






         ρ 0  C a   ∂ u   ∂ t   +  μ K  u = − ∇ p +  ρ 0  g  β c   C −  C 0     e ^  z  +  σ 1   ( u ×  B 0    e ^  z  )  ×  B 0    e ^  z  −   2  ρ 0  Ω  δ    e ^  z  × u ,     



(2)






        ϵ   ∂ C   ∂ t   +  u · ∇  C = ϵ  D v    ∇  2  C − β C ,     



(3)




subject to the following boundary conditions


        u = 0 ,  C = C + Δ C   on   z = 0 ,            u = 0 ,  C =  C 0  ,   on   z = d .     



(4)







Here,   C a  ,  μ , K, p,  ρ ,   β c  , g, t,  ϵ ,   D v  , and  β  are the acceleration coefficient, dynamic viscosity, permeability, dynamic pressure, reference density, solute expansion coefficient, gravity acceleration, time, porosity, solute diffusion coefficient, and reaction rate of the solute, respectively. The dimensionless quantities are given as follows:


        x =  x *  d ,    y    =  y *  d ,    z    =  z *  d ,          u =   ϕ  D v   d   u *  ,    v    =   ϕ  D v   d   v *  ,    w    =   ϕ  D v   d   w *  ,          t =   d 2   D v    t *  ,    C    =  C 0   C *  ,     



(5)




as well as the non-dimensional quantities


        R a =   g  ρ 0   β c  Δ C K  d n     ϕ n  μ  D v n    ,     D m     =   β  d 2    ϕ  D v    ,     H a     =    σ 1   B 0 2  K  μ  ,          T a =   2  ρ 0  Ω  κ f    μ ϕ   ,     V a     =   μ  d 2     ρ F   C a  K  D v    ,     



(6)




where   R a  ,   T a  ,   H a  ,   D m  , and   V a   are the Rayleigh number, Taylor number, Hartmann number, Damkohler number, and Vadasz number, respectively. The non-dimensional form of the governing Equations (1)–(3) and the corresponding boundary conditions (4) are given by


        ∇ . u = 0 ,     



(7)






         1  V a     ∂ u   ∂ t   + u = − ∇ p + R a C   e ^  z  + H  a 2   [  ( u ×   e ^  z  )  ×   e ^  z  ]  − T a   e ^  z  × u ,     



(8)






          ∂ C   ∂ t   +  u . ∇  C =  ∇ 2  C − D m C ,     



(9)




subject to the boundary conditions


        u = 0 ,  C = 1   on   z = 0 ,              u = 0 ,  C = 0   on   z = 1 .     



(10)








2.2. Basic Flow


The basic stationary flow of Equations (7)–(10) is as follows:


     u b     = 0 ,     



(11)






       C b      = 1 − z .     



(12)








2.3. Linear Stability Analysis


The perturbation of the basic state for the Equations (7)–(10) is


     u =  u b  +  U ′  ,  C =  C b  +  C ′  ,  p =  P b  +  P ′  .     



(13)







By substituting Equation (13) into Equations (7)–(10), one obtains


        ∇  U ′  = 0     



(14)






         1  V a     ∂  U ′    ∂ t   +  U ′  = − ∇  P ′  + R a  C ′    e ^  z  + H  a 2   [  (  U ′  ×   e ^  z  )  ×   e ^  z  ]  − T a   e ^  z  ×  U ′  ,     



(15)






          ∂  C ′    ∂ t   =  w ′  +  ∇ 2   C ′  − D m  C ′  ,     



(16)




subject to the boundary conditions


         U ′  = 0 ,   C ′  = 0   on   z = 0 ,               U ′  = 0 ,   C ′  = 0   on   z = 1 .     



(17)







By taking the third component of the curl of Equation (15) and curl of curl of Equation (15), one obtains


         1 +  1  V a    ∂  ∂ t   − H  a 2    w z  − T  a  1 / 2     ∂  w ′    ∂ z   = 0 ,     



(18)






          1  V a    ∇ 2   ∂  ∂ t   +  ∇ 2  + H  a 2    ∂ 2   ∂  z 2     − R a  ∇ h 2   C ′  + T  a  1 / 2     ∂  w Z    ∂ z   = 0 .     



(19)







From Equations (16), (18) and (19), we obtain


    D 2    D 1   D 3  + T a   ∂ 2   ∂  z 2     − R a  ∇ h 2   D 1    w ′  = 0 ,  



(20)




where


     D 1     = 1 +  1  V a    ∂  ∂ t   − H  a 2  ,     



(21)






     D 2     =  ∂  ∂ t   −  ∇ 2  + D m ,     



(22)






     D 3     =  1  V a    ∇ 2   ∂  ∂ t   +  ∇ 2  + H  a 2    ∂ 2   ∂  z 2    .     



(23)







Let us introduce the normal mode by writing that the perturbation is in the form of


   w ′  =  e  i ( l x + m y ) + σ t   sin  ( π z )  ,  



(24)




where l and m are the wave numbers along x and y directions and  σ  is a complex parameter. Substituting Equation (24) into Equation (20), one obtains


  R a =   σ +  δ 2  + D m   q 2     1  V a   σ  δ 2  +  δ 2  + H  a 2   π 2   +   T a  π 2   σ +  δ 2  + D m     q 2   1 +  σ  V a   − H  a 2     ,  



(25)




where    q 2  =  l 2  +  m 2    and    δ 2  =  π 2  +  q 2   .




2.4. Stationary Mode


To study the stationary stability, take   σ = 0   in the Rayleigh number for the exchange of the stabilities at the onset of stationary convection, say   R  a  s c    . It is given as


  R  a  s c   =    δ 2  + D m   q 2     δ 2  + H  a 2   π 2   +   T a  π 2    δ 2  + D m     q 2   1 − H  a 2     .  



(26)







The critical Rayleigh number at the onset of stationary convection   R  a c  s c     is


  R  a c  s c   = D m + 2 π     ( D m +  π 2  )   ( − 1 + H  a 4  − T a )    H  a 2  − 1    +   π ( − 2 + H  a 2  + H  a 4  − T a )   H  a 2  − 1   .  



(27)







The above stationary Rayleigh number reduces to   R  a  s c   =   δ 4   q 2     with the critical values   R  a c  s c   = 4  π 2  ,   q c  s c   = π   in the absence of a magnetic field, Coriolis effect, and chemical reaction effect, which agrees with the results of Horton and Rogers [41] and Lapwood [42] for the onset of convection in a porous layer.




2.5. Oscillatory Mode


To study the oscillatory stability, take   σ = i ω  . The Rayleigh number at the onset of oscillatory convection is


  R  a  o c   =    δ 4   ω 4  +  α 1   ω 2  +  α 2     q 2  V a    ( − 1 + H  a 2  )  2  V  a 2  +  ω 2     ,  



(28)




where


      α 1  =     V a  π 2   ( D m H  a 2  + T a V a )  +  ( D m + H  a 2   π 2  )   δ 2  −   ( − 1 + H  a 2  )  2  V a  δ 4  ,        α 2  =     − D  a 4  +  ( − 1 + H  a 2  )   ( D m + H  a 2   π 2  )  −  π 2   T a )   δ 2  +     



(29)






       ( − 1 + H  a 2  )  V  a 3   D m  π 2   ( − H  a 2  + H  a 4  − T a )    δ 4  + −  δ 6  ,     



(30)






      ω 2  =     −   ( − 1 + H  a 2  )  2  V  a 2  +    π 2  T a  D m +  ( − 1 + H  a 2  )  V a +  δ 2     H  a 2   π 2  V a +  δ 2   ( D m + V a +  δ 2  )    .     



(31)









3. Artificial Neural Network Modeling


Let us now present some basis for the ANN modeling. An ANN is a computing system based on biological neural networks (which are interconnected) that resemble a brain. In general, ANN can be used to predict data. In this study, we used a network with three layers: input, hidden, and output, as well as other components, such as feed-forward propagation, an optimal number of neurons, and backpropagation (update weights and biases) (see Figure 2 and Figure 3). To train the suggested network, we use the Levenberg–Marquardt backpropagation algorithm, as proposed by Yu and Wilamowski [46]. To prepare the organization, data are first divided into three groups. A total of 650 datasets were utilized to train, test, and validate the ANN model, with 70%, 15%, and 15% of the data being randomly allocated for preparing and assessing. The optimal number of neurons (  N n  ) for the best performing artificial neural network architecture is determined by examining three different statistical values: coefficient of determination (  R 2  ), root mean square error (  R M S E  ), and root mean relative error (  R M R E  ), which are defined by


         R 2  = 1 −    ∑ i N    R  a  c , s   − R  a  c , a    2     ∑ i N    R  a  c , s   −    R a  ¯   c , a    2    ,          R M S E =     ∑ i N    R  a  c , s   − R  a  c , a    2   N            R M R E =    1 N   ∑ i N     R  a  c , s   − R  a  c , a     R  a  c , s        .     



(32)







Here,   R  a  c , s     is the simulated critical Rayleigh number,   R  a  c , a     is the ANN critical Rayleigh number, the index i refers to the i-th experiment, bar denotes average value, and N is data size or number. See Seo et al. [45] for further details on these measures. The regression plots of training, testing, and validation for these three different sets are illustrated in Figure 4. The values of   R 2  ,   R M S E  , and   R M R E   for different values of   V a  ,   H a  ,   T a  , and   D m   are illustrated in Table 1 and Table 2. From these tables, it is clear that the present ANN model can predict the critical   R a   for linear stability analysis for different   V a  ,   H a  ,   T a  , and   D m  .




4. Discussion


The numerical results and discussion are presented in this section. In this results part, we evaluated a numerical study of the effect of the magnetic field and rotation on the onset of dissolution-driven convection saturated porous layer with ANN prediction. The critical Rayleigh number at the onset of stationary (  R  a c  s c    ) and oscillatory (  R  a c  o c    ) convection is obtained for the prescribed values of the other parameters. The investigations are performed for various values of the Hartmann number, Taylor number, Vadasz number, and Damkohler number. In Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10, solid and dotted lines represent the stationary and oscillatory convection, respectively. The following physically realistic range of these parameters is considered:   0 ≤ V a ≤ 20   [37],   0 ≤ T a ≤ 50   [22],   0 ≤ H a ≤ 0.9   [40], and   0 ≤ D m ≤ 20   [23].



First, we shall discuss the theory of bifurcation points in Figure 5, Figure 6 and Figure 7, the results obtained numerically by linear and weakly nonlinear stability analysis. Takens–Bogdanov and codimension two bifurcation points are identified in these figures. Takens–Bogdanov bifurcation point is the point at which the oscillatory neutral curve intersects the stationary neutral curve and approaches zero as the intersection point is approached. At the Takens–Bogdanov bifurcation point, we have


      R s   (  q s  )  =  R o   (  q o  )    and    q s  =  q o  .     



(33)







The codimension two bifurcation point is the intersection between a Hopf and Pitchfork bifurcation with distinct wave numbers. At the codimension two bifurcation point, we have


      R s   (  q s  )  =  R o   (  q o  )    and    q s  ≠  q o  .     



(34)







The effect of the Vadasz number   V a   on the neutral curves is presented in Figure 8. We find that the   R  a c  s c     is independent of the Vadasz number   V a  , whereas the   R  a c  o c     decreases with a decrease in the value of the Vadasz number   V a  . This reports the porosity effects on driven convection in a Newtonian-fluid-saturated porous layer. Furthermore, from this figure, one can notice that for   V a = 1  , there exists a threshold   T  a *  ∈  ( 1.9 , 2 )    such that for   T a < T  a *   , stationary convection sets in, while for   T  a *  ∈  ( 1.9 , 2 )   , there is a switch from stationary to oscillatory convection. Similar behavior can be observed for the other values of   V a  .



Figure 9 illustrates the effect of the magnetic field on the onset of convection. From this figure, one can observe that the Hartmann number has a stabilizing effect on stationary convection. On the contrary, the Hartmann number has a stabilizing effect on oscillatory convection. We find that the minimum value of the stationary Rayleigh number for stationary mode increases with increasing Hartmann number   H a  . On the other hand, the minimum value of the oscillatory Rayleigh number decreases with an increase in the value of the Hartmann number   H a  . Thus,   H a   has a contrasting effect on the stability of the system in the case of stationary and oscillatory modes. From this figure, we notice that for   H a = 0.2  , there exists a threshold   T  a *  ∈  ( 1.9 , 2 )    such that for   T a < T  a *   , oscillatory convection sets in, while for   T  a *  ∈  ( 1.9 , 2 )   , there is a switch from oscillatory to stationary convection. Similar behavior can be observed for the other values of   V a  .



Similarly, Figure 10 depicts the effect of   D m   on the system. From this figure, we see that the effect of increasing   D m   is to increase the   R  a c  s c     and   R  a c  o c    , implying that   D m   has a stabilizing effect on the onset of dissolution-driven convection in a porous medium. This can be explained as follows. An increase in the value of   D m   promotes the dissolution reaction to absorb some of the heat energy, causing the surrounding environment to feel cold. Hence, a larger solute gradient is required for the onset of convection so that the system is stabilized. We find that for fixed values of other physical parameters, there exists a critical Taylor number   T  a c    such that when   T a < T  a c   , convection begins as an oscillatory type, and when   T a > T  a c   , the convection switches to stationary. Further, when   T a = T  a c   , the stationary and oscillatory modes occur simultaneously.



Furthermore, Figure 8, Figure 9 and Figure 10 demonstrate the Coriolis effect on the onset of convection. All of these figures show that the   R  a c  s c     and   R  a c  o c     increase as the Taylor number increases. Hence, the Taylor number has a stabilizing effect on the system. This can be explained as follows: in the fluid, the rotation creates vorticity. As a result, the fluid has a faster velocity in horizontal planes. Hence, the perpendicular velocity of the fluid decreases. Therefore, the convection does not start right away.



The comparison of numerical and predicted ANN data of the critical   R a   with different values of   V a  ,   H a  ,   T a  , and   D m   is shown in Figure 11 and Figure 12. From all these figures, it is obvious to see that the trained predictive ANN model holds well with the numerical results.




5. Conclusions


In the present analysis, the onset of dissolution-driven convection in a porous layer with the effect of the magnetic field and rotation is studied. The behavior of various physical parameters is investigated. The results can be summarized as follows: Takens–Bogdanov and codimension two bifurcation points are identified. The Vadasz number does not show any effect on stationary convection, whereas it has a destabilizing effect on oscillatory convection. The Hartmann number has destabilizing and stabilizing effects on stationary and oscillatory convection, respectively. The Damkohler number has a stabilizing effect on the system. Furthermore, an artificial neural network (ANN) is used to model and predict the critical Rayleigh numbers. The simulated and predicted values of the proposed ANN model were found to be highly close, indicating that the expected critical Rayleigh number and the observed critical Rayleigh number are quite similar.



In future work, we plan to study linear instability and nonlinear stability. Another interesting problem is to investigate the stationary or oscillatory convection at the onset of instability using Brinkmann’s law.
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Figure 1. Physical configuration. 






Figure 1. Physical configuration.
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Figure 2. Schematic representation of a multilayer feed-forward network consisting of two inputs, one hidden layer, and two outputs. 
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Figure 3. Flow chart of the artificial neural network. 
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Figure 4. Regression plots for training, validation, and testing; the targets are simulated data and the outputs are ANN-predicted data. 
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Figure 5. Neutral curves (solid lines represent the stationary convection and dotted lines represent the oscillatory convection) for   D m = 20  ,   T a = 3.1  ,   V a = 20  : (a)   H a = 0.5  , (b)   H a = 0.6  , (c)   H a = 0.7  . 
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Figure 6. Neutral curves (solid lines represent the stationary convection and dotted lines represent the oscillatory convection) for   D m = 20  ,   H a = 0.6  ,   V a = 20  : (a)   T a = 2.5  , (b)   T a = 3.1  , (c)   T a = 5  . 
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Figure 7. Neutral curves (solid lines represent the stationary convection and dotted lines represent the oscillatory convection) for   D m = 20  ,   H a = 0.5  ,   T a = 10  . 
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Figure 8. Plots of the critical   R a   as the function of   T a   for   V a = 1 ,  5 ,  10 ,  15  . 
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Figure 9. Plots of critical   R a   as the function of   T a   for   D m = 5 ,  V a = 5  ,   H a = 0.2 ,  0.3 ,  0.4 ,  0.5  . 
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Figure 10. Plots of critical   R a   as the function of   T a   for   V a = 15 ,  H a = 0.5  ,   D m = 1 ,  5 ,  10 ,  15  . 
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[image: Mca 27 00053 g010]







[image: Mca 27 00053 g011 550] 





Figure 11. Comparison of the simulated and ANN-predicted critical Rayleigh number values for (a)   D m  , (b)   H a  , and (c)   T a  . 
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Figure 12. Comparison of the simulated and ANN-predicted critical Rayleigh number values for (a)   D m  , (b)   H a  , and (c)   T a  . 
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Table 1. Calculated stationary values of   R 2  ,   R M S E  , and   R M R E   at various values of   T a  ,   D m  , and   H a  .
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Values

	
Stationary




	
    R 2    

	
   RMSE   

	
   RMRE   






	
   T a = 0 , 5 , 10 , … , 50   

	
   V a = 0.5 , H a = 0.5 , D m = 2   

	
0.999992

	
0.301510

	
0.549099




	
   D m = 0.5 , 1 , 1.5 , … , 5   

	
   V a = 0.5 , H a = 0.5 , T a = 20   

	
0.999991

	
0.316226

	
0.562340




	
   H a = 0.1 , 0.2 , 0.3 , … , 0.9   

	
   V a = 0.5 , D m = 2 , T a = 20   

	
0.999996

	
0.333332

	
0.5773497
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Table 2. Calculated oscillatory values of   R 2  ,   R M S E  , and   R M R E   at various values of   T a  ,   D m  , and   H a  .
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Values

	
Oscillatory




	
    R 2    

	
   RMSE   

	
   RMRE   






	
   T a = 0 , 5 , 10 , … , 50   

	
   V a = 0.5 , H a = 0.5 , D m = 2   

	
0.999999

	
0.447213

	
0.668740




	
   D m = 0.5 , 1 , 1.5 , … , 5   

	
   V a = 0.5 , H a = 0.5 , T a = 20   

	
0.999994

	
0.316226

	
0.562340




	
   H a = 0.1 , 0.2 , 0.3 , … , 0.9   

	
   V a = 0.5 , D m = 2 , T a = 20   

	
0.999966

	
0.333327

	
0.577345
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