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Abstract: In this paper, a new discrete distribution called Binomial–Natural Discrete Lindley distri-
bution is proposed by compounding the binomial and natural discrete Lindley distributions. Some
properties of the distribution are discussed including the moment-generating function, moments and
hazard rate function. Estimation of the distribution’s parameter is studied by methods of moments,
proportions and maximum likelihood. A simulation study is performed to compare the performance
of the different estimates in terms of bias and mean square error. SO2 data applications are also
presented to see that the new distribution is useful in modeling data.

Keywords: discretizing; natural discrete Lindley distribution; over dispersion; maximum likelihood
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1. Introduction

Count data modeling is a challenging task in many areas, including, but not limited
to, public health, medicine, epidemiology, applied science, sociology, and agriculture. In
many situations, the life length of a device cannot be measured on a continuous scale and
the survival function is assumed to be a function of a count random variable instead of
being a function of a continuous-time random variable. Therefore, discrete distributions
are somewhat meaningful to model lifetime data in situations where output may be of a
discrete nature. The traditional discrete distributions have limited applicability as models
for reliability, failure times, aggregate loss, etc., especially with the count data with over-
dispersion in which the variance is greater than the mean. This has led to the development
of some discrete distributions based on popular continuous models in reliability analysis,
actuarial sciences survival analysis, etc. The discretization of continuous distributions has
produced many discrete distributions in the last few decades in the statistical literature.
However, the quest for a quintessential model remains the crux of the matter in the diverse
scientific paradigm.

One of the many approaches to define new models is the discretization of distribu-
tions. Until recently, the majority of discrete lifetime distributions have been proposed in
the statistical literature by discretizing the survival function S(x) of continuous lifetime
distributions (see the work of authors, for example, in references [1–12]).

The probability mass function (pmf) P(X = x) is defined as follows

P(X = x) = S(x)− S(x + 1) x = 0, 1, 2, . . .

Away from this method, Afify [12] have introduced and studied a new discrete Lindley
distribution by constructing a mixture of discrete analogs to the continuous components
used in creating the continuous Lindley distribution.
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In this paper, we propose and study a new probability mass function (pmf), denoted
by px, by compounding the binomial and the NDL distributions. The basic principle of this
method is stated as if N(input) and X(output) are two random variables denoting the num-
ber of particles entering and leaving an attenuator, then the probability functions p(n) and
f (x) of these two random variables are connected by the binomial decay transformation

P(X = x) =
∞

∑
n=x

(
n
x

)
px(1− p)n−x p(n); x = 0, 1, . . . , ∞ (1)

where 0 ≤ p ≤ 1 is the attenuating coefficient which is discussed by Hu et al. [7]. They
considered p(n) as a Poisson distribution with the parameter λ > 0, and then they showed
that Pr(X = x) is the Poisson distribution with the parameter λp. For clarity, attenuators
are electrical devices built to lower the amount of voltage flowing through them without
severely compromising the signal’s integrity. They serve as a safeguard against systems
being exposed to signals with power levels that are too high to be decoded. Déniz [13]
introduced uniform Poisson distribution using the idea of Hu et al. [7] by interchanging in
Equation (1) the binomial distribution and the discrete uniform distribution and maintain-
ing P(n) as the Poisson distribution. Some new discrete distributions also are proposed in
the literature using the methodology of [7]. Akdoğan et al. [14] proposed uniform-geometric
distribution and Coşkun et al. [15] constructed binomial–discrete Lindley distribution.

The rest of the paper is arranged as follows: Section 2 defines the natural discrete
Lindley distribution and proposes the new binomial–natural discrete Lindley distribution
with important properties, subsequently. In Section 3, various parameter estimation and
simulation studies are given. Section 4 concerns the real data illustration of the findings. In
Section 5, some conclusions are provided.

2. Natural Discrete Lindley Distribution

Recently, Al-Babtain et al. [16] proposed and studied a new natural discrete analog
of the continuous Lindley distribution as a mixture of geometric and negative binomial
distributions. The new distribution is called natural discrete Lindley (NDL) distribution and
it has many interesting properties that make it superior to many other discrete distributions,
particularly in analyzing over-dispersed count data. The NDL can be applied in the
collective risk models and is competitive with the Poisson distribution to fit automobile-
claim-frequency data. Let N be a non-negative random variable obtained as a finite mixture
of geometric (p) and negative binomial (2, p) with mixing probabilities p

p+1 and 1
p+1 ,

respectively, then the probability mass function of the NDL distribution is defined as

P(N = n) =
p2

p + 1
(2 + n)(1− p)n ; n = 0, 1, 2, . . . and p ∈ (0, 1) (2)

One of the most important features of this distribution is that it has a single param-
eter and it has attractive properties, which makes it suitable for applications not only in
insurance settings but also in other fields where over-dispersions are observed. For more
details about this distribution, see Al-Babtain et al. [16]. Given the usefulness of NDL, the
discrete analogue due to NDL known as the binomial NDL (BNDL) seems to be naturally
interesting to explore.

2.1. The Proposed Discrete Analog

The probability mass function (1) can be expressed as

P(X = x) =
∞

∑
n=x

P(X = x|N = n)P(N = n),
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where P(X|N = n) has the binomial b(n, p) distribution. Suppose that N is the random
variable from NDL with parameter p given in (2); then, the probability mass function of the
discrete random variable X is obtained as

px(x; p) = P(X = x) =
∞
∑

n=x
P(X = x|N = n)P(N = n) =

∞
∑

n=x

(
n
x

)
px(1− p)n−x p2

p+1 (2 + n)(1− p)n

=
∞
∑

n−x=0

(
n
x

)
px(1− p)n−x p2

p+1 (2 + n)(1− p)n =
∞
∑

k=0

(
x + k

x

)
px(1− p)k p2

p+1 (2 + x + k)(1− p)x+k

= p2

p+1

∞
∑

k=0

(
x + k

x

)
px(2 + x + k)(1− p)x+2k =

(1−p)x(1+x+2p−p2)
(p+1)(2−p)x+2 ; x

= 0, 1, 2 . . . and p ∈ (0, 1)

(3)

If X has the pmf (3), then it is called a binomial natural discrete Lindley (BNDL)
random variable and it is denoted by X ∼ BNDL(p). For n = 0, this means that no
particles enter into the attenuator and it will be termed as failure. Consequently, the
corresponding cumulative distribution function (cdf) of BNDL distribution is given by

F(x; p) = P(X ≤ x) =
x

∑
t=0

px(t) =
x

∑
t=0

(1− p)t(1 + t + 2p− p2)
(p + 1)(2− p)t+2 = 1−

(1− p)x+1(3 + x + p− p2)
(p + 1)(2− p)x+2 . (4)

Figure 1 shows the probability mass function (pmf) plots of the proposed distribution
for various values of parameter p. Thus, the pmf is always a decreasing function, and the
new discrete random variable tends to take small values when p increases. The stochastic
process tends to happen very quickly once the parameter value grows, which is implied
quite strongly by the model’s behavior. Therefore, the BNDL model is a logical substitute
for the traditional exponential distribution to characterize such phenomena. Additionally,
the flexibility of the proposed BNDL can be tested for varied count data sources. For
example, this model may be helpful for simulating aggregate losses that are typically
limited to actuarial data by maximizing the overall garment fit for a particular number
of sizes and accommodation rate, crucial to assessing the goodness of the scaling system.
Furthermore, it may be helpful to overcome the problem of over-dispersed data in social
sciences, as in anthropology where civilizations grew near the existence of a consistent
water source, which is necessary for human survival. Figure 2 complements the results of
Figure 1.

2.2. Statistical Properties of the BNDL Distribution

Primarily in this section, we provide some explicit results based on the mathematical
properties of the BNDL distribution.

2.2.1. Moment-Generating Function

If X ∼ BNDL(p) distribution, then the moment-generating function of X is given as

MX(t) = E
(

etX
)
=

∞

∑
x=0

etx (1− p)x(1 + x + 2p− p2)
(p + 1)(2− p)x+2 =

1− p
(
et − 2

)
+ p2(et − 1

)
(2− et + pet − p)2(p + 1)

.

For more on generating functions, see Yalcin and Simsek [17], Yalcin and Simsek [18]
and Simsek [19].



Math. Comput. Appl. 2022, 27, 62 4 of 17Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 4 of 17 
 

 

  

  
Figure 1. Pmf of BNDL distribution for some choices of p. 

  

Figure 1. Pmf of BNDL distribution for some choices of p.

2.2.2. Probability-Generating Function

The probability-generating function of the random variable X ∼ BNDL(p) can be
obtained using its moment-generating function which is equivalent to calculating E

(
tX);

therefore, the probability-generating function of the random variable X is

GX(t) = E
(

tX
)
= MX(log(t)) =

1− p(t− 2) + p2(t− 1)

(2− t + p(t− 1))2(p + 1)
.

Since,

G(k)
X (t) =

dkGX(t)
dtk = E

{
X(X− 1)(X− 2) . . . (X− k + 1)tX−k

}
.

Therefore, at t = 1, we can obatin

G(k)
X (1) =

dkGX(t)
dtk

∣∣∣∣∣
t=1

= E{X(X− 1)(X− 2) . . . (X− k + 1)},

where µ(k) = E{X(X− 1)(X− 2) . . . (X− k + 1)} is the kth factorial moment of X.
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2.2.3. Non-Central Moments and Variance

If X ∼ BNDL(p) distribution, then the kth moment about zero of X is given by

µ′k = E(Xr) =
∞

∑
x=0

xk px =
∞

∑
x=0

xk (1− p)x(1 + x + 2p− p2)
(p + 1)(2− p)x+2 .

The first four raw moments can be obtained as follows

µ′1 = E(X) =
(p + 2)(1− p)

p + 1
,

µ′2 = E
(

X2
)
=

(1− p)
(
8− 3p− 2p2)
p + 1

,

µ′3 = E
(

X3
)
=

(1− p)
(
44− 53p + 6p2 + 6p3)

p + 1
,

and

µ′4 = E
(

X4
)
=

(1− p)
(
308− 516p + 346p2 − 12p3 − 24p4)

p + 1
.

The variance in the random variable X is

Var(X) = E
(

X2
)
− [E(X)]2 =

(1− p)
(
4 + 5p− 2p2 − p3)
(p + 1)2 .
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2.2.4. Central Moments

The kth moment about the mean of X is

µr = E
[(

X− µ′1
)k
]
=

∞

∑
x=0

(
x− µ′1

)k px(x) =
∞

∑
x=0

(
x− µ′1

)k (1− p)x(1 + x + 2p− p2)
(p + 1)(2− p)x+2 .

Therefore, the second, third and fourth central moments of the random variable X are

µ2 =
(1− p)

(
4 + 5p− 2p2 − p3)
(p + 1)2 ,

µ3 =
(1− p)

(
12 + 21p− 7p2 − 21p3 + 5p4 + 2p5)

(p + 1)3 ,

and

µ4 =
(1− p)

(
100 + 181p− 132p2 − 285p3 + 50p4 + 137p5 − 27p6 − 9p7)

(p + 1)4

2.2.5. Skewness and Kurtosis

The coefficient of skewness and the coefficient of kurtosis of the of BNDL distribution
are, respectively,

β1 =
µ3√
µ23

=
(1− p)

(
12 + 21p− 7p2 − 21p3 + 5p4 + 2p5)
(4 + p− 7p2 + p3 + p4)

3/2 .

β2 =
µ4

µ22 =
100 + 181p− 132p2 − 285p3 + 50p4 + 137p5 − 27p6 − 9p7

(1− p)(4 + 5p− 2p2 − p3)
2 .

2.2.6. Index of Dispersion

The index of dispersion (ID) indicates whether a certain distribution is suitable for
under- or over-dispersed datasets. For example, ID = 1 for the Poisson distribution where
the variance is equal to the mean, for the geometric distribution and the negative binomial
distribution ID > 1, while the binomial distribution has ID < 1.

Theorem 1. If X ∼ BNDL(p), then Var(X) > E(X) for all p ∈ (0, 1).

Proof. We have

ID(X) =
Var(X)

E(X)
=

4 + 5p− 2p2 − p3

p2 + 3p + 2
.

This function is a monotonic decreasing function as p ∈ (0, 1) increases. It converges
to 2 when p→ 0 , while it tends to 1 as p→ 1 ; therefore, ID(X) ∈ (1, 2), which means that
ID(X) > 1, and hence, Var(X) > E(X). �

From Theorem 1, BNDL distribution should only be used in the count data analysis
with over-dispersion. In Table 1, some of the empirical findings of these measured are due
for considerations.
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Table 1. Mean, Variance, Skewness, kurtosis and ID of the BNDL distribution for different values of
the parameter p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean 1.71818 1.4666 1.2384 1.0285 0.8333 0.6500 0.4764 0.3111 0.1526

Variance 3.3314 2.7288 2.1923 1.7191 1.3055 0.9475 0.6412 0.3832 0.1703

Skewness 1.5578 1.6186 1.6831 1.7542 1.8372 1.9427 2.0935 2.3522 2.9813

Kurtosis 7.7069 9.4991 11.8378 15.0902 19.9488 27.8656 42.3746 74.4447 180.1786

ID 1.9389 1.8606 1.770268 1.6714 1.5666 1.4576 1.3459 1.2317 1.1159

2.2.7. Log-Concavity

A necessary and sufficient condition that px be strongly unimodal is that it has to be
log-concave, i.e., p2

x+1 ≥ px px+2 for all x (see Keilson and Gerber [20])).

Theorem 2. The pmf of the BNDL distribution in (3) is log-concave.

Proof. From (3), we can directly reach

p2
x+1 =

(1− p)2x+2(2 + x + 2p− p2)2

(p + 1)2(2− p)2x+6 ,

and

px px+2 =
(1− p)2x+2(1 + x + 2p− p2)(3 + x + 2p− p2)

(p + 1)2(2− p)2x+6 .

After some algebraic operations, we find that

p2
x+1 − px px+2 =

(1− p)2x+2

(p + 1)2(2− p)2x+6 > 0,

for all x and for all choices p ∈ (0, 1).
Theorem 2 confirms that the BNDL distribution is strongly unimodal. �

2.3. Reliability Properties of the BNDL Distribution
2.3.1. Survival Function

If X ∼ BNDL(p) distribution, then from (4), the survival function of X is

S(x; p) = P(X ≥ x) =
(1− p)x+1(3 + x + p− p2)

(p + 1)(2− p)x+2 .

2.3.2. Hazard Rate and Mean Residual Life Functions

The hazard (failure) rate function is the probability that an item has survived time x,
given that it has survived to at least time x. If X ∼ BNDL(p) distribution, then its hazard
rate (failure rate) function is given as

r(x; p) = P(X = x|X > x) =
px(x; p)
S(x; p)

=
1 + x + 2p− p2

(1− p)(3 + x + p− p2)
.

Obviously, the upper limit of the failure rate function is 1
1−p , i.e., lim

x→∞
r(x; p) = 1

1−p .

Graphical illustrations of hazard rate function are presented in Figure 3 while descriptive
measures are presented in Figure 4.
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The mean residual life function of X is given by

m(x; p) = P(X− x|X > x) =
∑∞

t=x+1 S(t; p)
S(x; p)

=
(p− 1)

(
p2 − x− 5

)
3 + p− p2 + x

.

Corollary 1. If X ∼ BNDL(p) distribution, then it has an increasing failure rate and decreasing
mean residual life.

As we explained through Theorem 2, the BNDL distribution has a property of log-
concavity; therefore, according to Gupta et al. [21], the BNDL distribution has an IFR
property. According to Kemp [22], the next chain is verified

IFR⇒ IFRA⇒ NBU⇒ NBUE⇒ DMRL.

So, the BNDL distribution is

1. IFR (increasing failure rate).
2. IFRA(increasing failure rate average).
3. NBU (new better than used).
4. NBUE(new better than used in expectation).
5. DMRL (decreasing mean residual lifetime).
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2.4. Stochastic Orderings

Stochastic orders are important measures to judge comparative behaviors of random
variables. Shaked and Shanthikumar [8] showed that many stochastic orders exist and
have various applications. Given two random variables X and Y, we say that X is smaller
than Y in the
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1. Usual stochastic order, denoted by X ≤st Y, if FX(x) ≥ FY(x), for all x.
2. Hazard rate order, denoted by X ≤hr Y, if hX(x) ≥ hY(x), for all x.
3. Reversed hazard rate order, denoted by X ≤rh Y, if FX(x)/FY(x) decreases in x.
4. Mean residual life order, denoted by X ≤mrl Y, if mX(x) ≤ mY(x), for all x.
5. Likelihood ratio order, denoted by X ≤lr Y, if fX(x)/ fY(x) decreases in x.

For all the previous orders, we have the following chains of implications:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y,

and
X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤st Y

also,
X ≤hr Y ⇒ X ≤mrl Y.

Theorem 3. Let X ∼ BNDL(p1) and Y ∼ BNDL(p2); then, X ≤lr Y for all p1 > p2.

Proof. Let

L(x; p1, p2) =
pX(x; p1)

pY(x; p2)
.

Now,

L(x; p1, p2) =
(p2 + 1)(2− p2)

x+2(1− p1)
x(1 + x + 2p1 − p2

1
)

(p1 + 1)(2− p1)
x+2(1− p2)

x(1 + x + 2p2 − p2
2
) ,

and

L(x + 1; p1, p2) =
(p2 + 1)(2− p2)

x+3(1− p1)
x+1(2 + x + 2p1 − p2

1
)

(p1 + 1)(2− p1)
x+3(1− p2)

x+1(2 + x + 2p2 − p2
2
) .

Therefore,

L(x + 1; p1, p2)

L(x; p1, p2)
=

(2− p2)(1− p1)
(
2 + x + 2p1 − p2

1
)(

1 + x + 2p2 − p2
2
)

(2− p1)(1− p2)
(
2 + x + 2p2 − p2

2
)(

1 + x + 2p1 − p2
1
) (5)

Let p1 = 1− δ and p2 = 1− δ− ε, where 0 < δ < 1 and 0 < ε < 1− δ.
After substitution of the values p1 and p2 in (5), we obtain

L(x + 1; p1, p2)

L(x; p1, p2)
=

η1
(
δ + δ2 + δε

)
η2(δ + δε + δ2 + ε)

,

where
η1 =

(
3 + x− δ2

)(
2 + x− (δ + ε)2

)
,

and
η2 =

(
3 + x− (δ + ε)2

)(
2 + x− (δ)2

)
.

After some algebraic operations, we find that

η1 − η2 = −ε(2δ + ε) < 0⇒ η1 < η2.

Therefore,
η1

(
δ + δ2 + δε

)
< η2

(
δ + δε + δ2 + ε

)
.

This implies that
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L(x + 1; p1, p2)

L(x; p1, p2)
< 1⇒ L(x + 1; p1, p2) < L(x; p1, p2).

�

2.5. Entropy

Entropy is a measure of uncertainty of a random variable. The entropy of a discrete
random variable X with pmf p(x) and alphabet X is given by

H(X) = −E(logp(X)) = − ∑
x∈X

p(x)log(p(x)).

Entropy can be interpreted as the measure of average uncertainty in X or the average
number of bits needed to describe X. For more details on entropy and information theory,
we refer the reader to Gray [23].

Now, if X ∼ BNDL(p), then the entropy of the random variable X can be calculated
by the following formula

H(X) = 1
(2−p)2(1+p)

{
(2− p)2[(−2 + p + p2)log(1− p) +

(
4 + p− p2)log(2− p) + (1 + p)log(1 + p)

]
+LerchPhi (0,1,0)

[
1−p
2−p ,−1, 1 + 2p− p2

]}
,

where LerchPhi(0,1,0)[z, s, a] gives the Lerch transcendent Φ(z, s, a) = ∑∞
k=0

zk

(a+k)s . Table 2

presents some numerical values of the entropy of X ∼ BNDL(p) for different choices of p.
From Table 2, one can observe that H(X) is monotonically decreasing in p ∈ (0, 1) with its
limits tending to be 1.88 as p tends to 0 as p→ 1.

Table 2. Numerical results of H(X) for different values of the parameter p.

p H(X) p H(X)

0.0001 1.87934 0.5 1.25943

0.01 1.86852 0.55 1.18391

0.03 1.84654 0.6 1.10402

0.05 1.82437 0.65 1.01888

0.07 1.80201 0.7 0.927315

0.09 1.77948 0.75 0.827736

0.11 1.75675 0.8 0.717861

0.14 1.72231 0.85 0.594157

0.17 1.6874 0.9 0.450497

0.2 1.652 0.95 0.273684

0.25 1.59181 0.96 0.231718

0.3 1.52994 0.97 0.186252

0.35 1.46611 0.98 0.135994

0.4 1.40002 0.99 0.078212

0.45 1.33128 0.999 0.0112562

Figure 5 relates the H(X) to the values of parameter p. One may note that (X) is
monotonically decreasing in p ∈ (0, 1) with its limit inclining to zero as p tends to 1.
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3. Estimation and Simulation

In this section, we determine the estimation of unknown parameter p by the maximum
likelihood, moment and proportion methods.

3.1. Method of Maximum Likelihood Estimation

Let x1, x2, . . . , xn be the observed values from the BNDL distribution with parameter
p. The likelihood and log-likelihood function are given, respectively, as

L(p) =
n

∏
i=1

f (xi) =
n

∏
i=1

(1− p)xi
(
1 + xi + 2p− p2)

(p + 1)(2− p)xi+2 ,

and

l(p) = log(1− p)
n

∑
i=1

xi +
n

∑
i=1

log
(

1 + xi + 2p− p2
)
− nlog(p + 1)− 2nlog(2− p)− log(2− p)

n

∑
i=1

xi.

The maximum likelihood estimate (MLE) of the parameter p can be obtained by
solving the following equation using some numerical procedures.

∂l(p)
∂p

=
3pn

2 + p− p2 −
∑n

i=1 xi

2− 3p + p2 + 2
n

∑
i=1

1− p
1 + 2p− p2 + xi

= 0

3.2. Method of Moments Estimation

Let X1, X2, . . . , Xn be a random sample from the BNDL distribution with parameter p.
The moment estimate (ME) of the parameter p can be obtained by solving the following
equation.

(p + 2)(1− p)
p + 1

=
1
n

n

∑
i=1

Xi.

3.3. Method of Proportions Estimation

Let X1, X2, . . . , Xn be a random sample from the BNDL distribution with parameter p.
For i = 1, 2, . . . , n, we define the indicator functions

I(Xi) =

{
1 i f Xi = 0
0 i f Xi > 0

.
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Therefore, the proportion of 0s in the sample Π = 1
n ∑n

i=1 I(Xi). The proportion
estimate (PE) of the parameter p can be obtained by solving the following equation with
respect to p

Π =
1 + 2p− p2

(p + 1)(2− p)2 .

3.4. Simulation Study

In this section, we assess the behavior of the maximum likelihood estimators for a
finite sample of size n. Based on BNDL distribution, a simulation study is carried out. The
simulation study is based on the following steps: firstly, generate N = 1000 samples of sizes
n = 25, 50, . . . , 500 from the BNDL distribution. Then, compute the maximum likelihood
estimators for the model parameters. Lastly, compute the MSEs given by

MSE(p) =
1

1000

1000

∑
i=1

( p̂− p)2

For various parameters’ values, the simulation’s results provided in Figure 6 indicate
that the estimated MSEs fall off toward zero when the sample size n increases. Hence, we
have conclusive evidence to claim that the maximum likelihood estimation of p satisfies
the asymptotic convergence of normality. The asymptotic normality of the MLE is a very
well-known classic property given as follows. In a parametric model, we say that an
estimator p̂ based on X1, X2, X3, . . . , Xn is consistent if p̂→ p in probability as n → ∞ .
We say that it is asymptotically normal if

√
n( p̂− p) converges in distribution to a normal

distribution. So p̂ above is consistent and asymptotically normal.
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4. Applications to Count Data

In this section, to show the application, we used a real-life data set to examine the
efficiency and superiority of the BNDL distribution in modeling real data practice, recently
studied by Balakarishnan et al. [24], consisting of 744 discrete observations. Santiago, Chile
is recognized as one of the most environmentally contaminated cities in the world. In order
to obtain the level of air pollution and its associated adverse effects on humans in Santiago,
the National Commission of Environment (CONAMA) of the government of Chile collects
data on sulfur dioxide (SO2) concentrations in the air. The data corresponding to the hourly
SO2 concentrations (in ppm) observed at a monitoring station located in Santiago city are:

x 1 2 3 4 5 6 7 8 9 10 and above

f 86 235 120 119 35 15 11 9 4 10

The descriptive statistics of the data sets are, Mean = 2.93, Median = 2, Mode = 3,
SD = 2.02, Coefficient of Variation = 0.69, Skewness = 4.32, Kurtosis = 34.57, Range = 24,
Min value = 1 and Max value = 25.

We compare BNDL to Binomial–Discrete Lindley Distribution (BDLD) by Kuş et al. [15]
and Negative Binomial distribution. The pmf of BDLD is given as

px(x; p) =
p2x[{p3 − (1− p)(1− p− x)

}
log(p) + (1− p){1− p(1− p)}

]
{1− log(p)}{1− p(1− p)}x+2

We considered the AIC (Akaike Information Criterion), CAIC (Consistent Akaike
Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan–Quinn
Information Criterion). The model with minimum values for these statistics could be
chosen as the best model to fit the data. All results in Table 3 were obtained using the
R PROGRAM.

Table 3. MLEs and their standard errors (in parentheses) with statistics AIC, BIC, HQIC and CAIC
values for given data.

Distribution MLE (SE)
MEASURES

AIC CAIC BIC HQIC

BNDL (p) 0.6283
(0.0129) 2681.839 2681.844 2686.451 2683.616

BDLD (p) 0.6922
(0.0055) 3092.3700 3092.3760 3096.9820 3094.1480

Negative
Binomial (n, k)

17.2957,
2.9262
(4.7378,
0.0678)

2824.156 2849.44 2833.38 2818.69

Figure 7 gives the quantile–quantile plot (Q-Q plot) and box plot and Figure 8
gives TTT plot versus the EHRF for the given data set. Total Time on Test (TTT plots)
showed that the data set has an increasing hazard rate shape which is confirmed by EHRF.
Figures 9 and 10 show the fitted model against its comparative distributions. These plots
clearly show that the BNDL model is superior to well-known BDLD and Negative Bino-
mial models.
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