Furniture Style Compatibility Estimation by Multi-Branch Deep Siamese Network
Abstract
:1. Introduction
- (1)
- We propose a method that learns multiple furniture images in a one-to-many ratio that expands a Siamese network. Compared to the conventional Siamese network, which uses two images in a one-to-one ratio, it can better estimate the similarity of furniture.
- (2)
- We proposed as a new evaluation scale for compatibility assessment. Using the test dataset, we analyzed the Euclidean distance of each style for both the proposed and conventional methods. As a result, the different styles were successfully placed farther apart in the feature space.
- (3)
- The proposed method can recommend furniture that fits well with multiple pieces of furniture; because of its input method, it can search for furniture that fits the style of all items.
2. Related Work
3. Siamese Network
4. Proposed Model
4.1. Proposed Siamese Architecture
4.2. Style Difference Distance
5. Experiments
5.1. Furniture Image Dataset
5.2. Creation of Input Image Sets
5.3. Performance Evaluation
5.3.1. Parameter Settings
5.3.2. Evaluation by AUC
5.3.3. Evaluation by SDD
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.; Heo, W. Interior Design with Consumers’ Perception about Art, Brand Image, and Sustainability. Sustainability 2021, 13, 4557. [Google Scholar] [CrossRef]
- Shiau, R.; Wu, H.Y.; Kim, E.; Du, Y.L.; Guo, A.; Zhang, Z.; Li, E.; Gu, K.; Rosenberg, C.; Zhai, A. Shop the look: Building a large scale visual shopping system at pinterest. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 3203–3212. [Google Scholar]
- Mu, C.; Zhao, J.; Yang, G.; Zhang, J.; Yan, Z. Towards practical visual search engine within elasticsearch. arXiv 2018, arXiv:1806.08896. [Google Scholar]
- Kim, J.; Lee, J.K. Stochastic Detection of Interior Design Styles Using a Deep-Learning Model for Reference Images. Appl. Sci. 2020, 10, 7299. [Google Scholar] [CrossRef]
- Pan, T.Y.; Dai, Y.Z.; Tsai, W.L.; Hu, M.C. Deep model style: Cross-class style compatibility for 3d furniture within a scene. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 4307–4313. [Google Scholar]
- Hu, Z.; Wen, Y.; Liu, L.; Jiang, J.; Hong, R.; Wang, M.; Yan, S. Visual classification of furniture styles. ACM Trans. Intell. Syst. Technol. (TIST) 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Oh, H.; Cho, J.Y. Understanding furniture design choices using a 3D virtual showroom. J. Inter. Des. 2010, 35, 33–50. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 886–893. [Google Scholar]
- Ke, Y.; Sukthankar, R. PCA-SIFT: A more distinctive representation for local image descriptors. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, 27 June–2 July 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 2, p. II. [Google Scholar]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Hu, T.; Qi, H.; Huang, Q.; Lu, Y. See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification. arXiv 2019, arXiv:1901.09891. [Google Scholar]
- Khan, H.; Shah, P.M.; Shah, M.A.; ul Islam, S.; Rodrigues, J.J. Cascading handcrafted features and Convolutional Neural Network for IoT-enabled brain tumor segmentation. Comput. Commun. 2020, 153, 196–207. [Google Scholar] [CrossRef]
- Aggarwal, D.; Valiyev, E.; Sener, F.; Yao, A. Learning style compatibility for furniture. In Proceedings of the 40th German Conference on Pattern Recognition, Stuttgart, Germany, 9–12 October 2018; Springer: Cham, Switzerland, 2018; pp. 552–566. [Google Scholar]
- Polania, L.F.; Flores, M.; Nokleby, M.; Li, Y. Learning furniture compatibility with graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 366–367. [Google Scholar]
- Liu, B.; Zhang, J.; Zhang, X.; Zhang, W.; Yu, C.; Zhou, Y. Furnishing Your Room by What You See: An End-to-End Furniture Set Retrieval Framework with Rich Annotated Benchmark Dataset. arXiv 2019, arXiv:1911.09299. [Google Scholar]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2. [Google Scholar]
- Weiss, T.; Yildiz, I.; Agarwal, N.; Ataer-Cansizoglu, E.; Choi, J.W. Image-Driven Furniture Style for Interactive 3D Scene Modeling. Comput. Graph. Forum 2020, 39, 57–68. [Google Scholar] [CrossRef]
- Bell, S.; Bala, K. Learning visual similarity for product design with convolutional neural networks. ACM Trans. Graph. (TOG) 2015, 34, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Su, H.; Qi, C.R.; Fish, N.; Cohen-Or, D.; Guibas, L.J. Joint embeddings of shapes and images via cnn image purification. ACM Trans. Graph. (TOG) 2015, 34, 1–12. [Google Scholar] [CrossRef]
- Simo-Serra, E.; Trulls, E.; Ferraz, L.; Kokkinos, I.; Fua, P.; Moreno-Noguer, F. Discriminative learning of deep convolutional feature point descriptors. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 118–126. [Google Scholar]
- Veit, A.; Kovacs, B.; Bell, S.; McAuley, J.; Bala, K.; Belongie, S. Learning visual clothing style with heterogeneous dyadic co-occurrences. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4642–4650. [Google Scholar]
- Polanía, L.F.; Gupte, S. Learning fashion compatibility across apparel categories for outfit recommendation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4489–4493. [Google Scholar]
- Yuan, H.; Liu, G.; Li, H.; Wang, L. Matching recommendations based on siamese network and metric learning. In Proceedings of the 2018 15th International Conference on Service Systems and Service Management (ICSSSM), Hangzhou, China, 21–22 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Gao, G.; Liu, L.; Wang, L.; Zhang, Y. Fashion clothes matching scheme based on Siamese Network and AutoEncoder. Multimed. Syst. 2019, 25, 593–602. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
: Asian | : Rustic | : Traditional | : Tropical | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Convl | 1-to-2 | 1-to-3 | Convl | 1-to-2 | 1-to-3 | Convl | 1-to-2 | 1-to-3 | Convl | 1-to-2 | 1-to-3 | |
Asian | 4.72 | 5.03 | 4.68 | 5.43 | 5.74 | 5.43 | 5.48 | 6.11 | 5.37 | 4.88 | 5.37 | 5.10 |
Beach | 4.98 | 5.83 | 5.20 | 5.53 | 5.50 | 4.80 | 5.32 | 5.20 | 5.17 | 4.78 | 4.95 | 4.89 |
Contemporary | 6.00 | 6.92 | 6.84 | 6.31 | 6.30 | 6.52 | 6.01 | 6.31 | 6.24 | 5.97 | 6.48 | 6.50 |
Craftsman | 6.24 | 7.03 | 7.13 | 5.45 | 5.22 | 5.43 | 6.56 | 7.03 | 7.08 | 6.21 | 6.61 | 6.46 |
Eclectic | 4.31 | 5.94 | 5.13 | 5.94 | 6.15 | 5.65 | 5.41 | 5.49 | 5.37 | 5.03 | 5.44 | 5.33 |
Farmhouse | 5.14 | 6.02 | 5.13 | 5.61 | 5.60 | 4.90 | 5.46 | 5.22 | 5.21 | 4.92 | 5.10 | 5.04 |
Industrial | 5.60 | 6.43 | 6.27 | 6.01 | 5.74 | 6.22 | 5.77 | 6.11 | 5.81 | 5.76 | 6.20 | 6.15 |
Mediterranean | 5.15 | 5.26 | 4.80 | 6.19 | 6.20 | 6.04 | 5.67 | 5.45 | 5.66 | 5.10 | 5.11 | 5.49 |
Midcentury | 7.85 | 8.97 | 9.24 | 7.75 | 8.40 | 8.80 | 7.61 | 8.48 | 8.28 | 8.00 | 9.02 | 8.80 |
Modern | 6.43 | 7.45 | 7.48 | 6.64 | 6.76 | 7.00 | 6.34 | 6.73 | 6.66 | 6.48 | 7.09 | 7.07 |
Rustic | 5.20 | 5.49 | 5.46 | 5.28 | 4.99 | 4.83 | 5.72 | 5.69 | 5.64 | 5.13 | 5.00 | 5.17 |
Scandinavian | 8.06 | 9.02 | 9.10 | 7.87 | 8.35 | 8.63 | 7.80 | 8.56 | 8.16 | 8.16 | 9.08 | 8.64 |
Southwestern | 5.23 | 5.40 | 5.63 | 5.60 | 5.88 | 5.59 | 5.83 | 6.22 | 5.94 | 5.23 | 5.31 | 5.55 |
Traditional | 5.16 | 5.88 | 5.10 | 5.78 | 5.85 | 5.30 | 5.49 | 5.19 | 5.36 | 4.99 | 5.06 | 5.15 |
Transitional | 5.45 | 6.38 | 6.24 | 5.85 | 5.69 | 5.79 | 5.54 | 5.64 | 5.78 | 5.27 | 5.67 | 5.82 |
Tropical | 4.83 | 5.27 | 4.94 | 5.52 | 5.49 | 5.07 | 5.29 | 5.23 | 5.22 | 4.75 | 4.76 | 5.00 |
Victorian | 6.63 | 7.47 | 6.46 | 7.49 | 8.55 | 7.41 | 6.76 | 6.32 | 7.16 | 6.40 | 6.78 | 6.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taisho, A.; Ono, K.; Makihara, E.; Ikushima, N.; Yamakawa, S. Furniture Style Compatibility Estimation by Multi-Branch Deep Siamese Network. Math. Comput. Appl. 2022, 27, 76. https://doi.org/10.3390/mca27050076
Taisho A, Ono K, Makihara E, Ikushima N, Yamakawa S. Furniture Style Compatibility Estimation by Multi-Branch Deep Siamese Network. Mathematical and Computational Applications. 2022; 27(5):76. https://doi.org/10.3390/mca27050076
Chicago/Turabian StyleTaisho, Ayumu, Keiko Ono, Erina Makihara, Naoya Ikushima, and Sohei Yamakawa. 2022. "Furniture Style Compatibility Estimation by Multi-Branch Deep Siamese Network" Mathematical and Computational Applications 27, no. 5: 76. https://doi.org/10.3390/mca27050076
APA StyleTaisho, A., Ono, K., Makihara, E., Ikushima, N., & Yamakawa, S. (2022). Furniture Style Compatibility Estimation by Multi-Branch Deep Siamese Network. Mathematical and Computational Applications, 27(5), 76. https://doi.org/10.3390/mca27050076