Mathematical
and Computational
Applications

Article

Impact of Cooperation and Intra-Specific Competition of Prey
on the Stability of Prey—Predator Models with Refuge

Soumyadip Pal 17, Fahad Al Basir >*© and Santanu Ray 3

check for
updates

Citation: Pal, S.; Al Basir, F; Ray, S.
Impact of Cooperation and
Intra-Specific Competition of Prey on
the Stability of Prey—Predator Models
with Refuge. Math. Comput. Appl.
2023, 28, 88. https://doi.org/
10.3390/mca28040088

Academic Editors: Jaouad Danane

and Alexandre Souto Martinez

Received: 29 May 2023
Revised: 20 July 2023

Accepted: 26 July 2023
Published: 28 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Zoology, Visva-Bharati University, Santiniketan 731235, West Bengal, India;
palsoumya476@gmail.com

2 Department of Mathematics, Asansol Girls’ College, Asansol 713304, West Bengal, India

School of Ecological Informatics, Kerala University of Digital Sciences, Innovation and Technology,
Thiruvananthapuram 695317, Kerala, India; sray@visva-bharati.ac.in

*  Correspondence: fahadbasir@gmail.com

Abstract: The main objective of this study is to find out the influences of cooperation and intra-
specific competition in the prey population on escaping predation through refuge and the effect of
the two intra-specific interactions on the dynamics of prey—predator systems. For this purpose, two
mathematical models with Holling type II functional response functions were proposed and analyzed.
The first model includes cooperation among prey populations, whereas the second one incorporates
intra-specific competition. The existence conditions and stability of different equilibrium points for
both models were analyzed to determine the qualitative behaviors of the systems. Refuge through
intra-specific competition has a stabilizing role, whereas cooperation has a destabilizing role on the
system dynamics. Periodic oscillations were observed in both systems through Hopf bifurcation.
From the analytical and numerical findings, we conclude that intra-specific competition affects the
prey population and continuously controls the refuge class under a critical value, and thus, it never
becomes too large to cause predator extinction due to food scarcity. Conversely, cooperation leads the
maximal number of individuals to escape predation through the refuge so that predators suffer from
low predation success.

Keywords: mathematical modeling; bifurcation analysis; global stability; direction of Hopf bifurcation;

numerical simulations

1. Introduction

Prey—predator interaction has immense importance in the existence of life. In predator—
prey systems, the prey population uses different defense mechanisms to escape from
predators [1,2]. Among them, refuge is the most common in the literature [3,4], and it
has become a significant issue in theoretical ecology [5-7]. One famous proverb about the
Fox—Rabbit chase says, “The fox is only running for his dinner, but the rabbit is running
for his life [8]”. If the rabbit can successfully save its life, it is called the rabbit escaping
predation from the fox through refuge. Thus, the refuge can be defined as any strategy that
decreases the rate of predation [9,10].

Refuge can be attained in two ways—(i) constant numerical refuge, where a definite
number of individuals in the population escape from predation, and (ii) proportional refuge,
where a fixed proportion of individuals in the population escape from predation. In both
cases, the whole prey population cannot attain the facility of refuge, and thus, a particular
number or fraction of the population is always exposed to the predator. If not, the predator
population will no longer be able to persist, and the system will be destabilized.

If we consider a situation where a constant number of individuals in the population
can enjoy the facility of refuge due to the availability of a fixed number of safe refuge
places, two habitats are available for the prey population—either they live in the refuge
habitat or they roam around in the open habitat where they are available to predators [11].
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In [12], the authors considered a prey—predator model with a constant numerical prey
refuge and showed that there are two major factors that control this type of refuge in the
population: the population density of the prey (x) and the available refuge (M) (which is
the maximum number of prey individuals that can be supported in the refuge habitat).
When x < M, competition among prey for refuge is negligible, since prey fitness depends
only on predation [11]. Under such conditions, cooperation among individuals in the prey
population must be seen. But, this is not the case at all times, because this type of refuge
can include a definite number of individuals, and thus, they cannot move freely between
habitats when the population size exceeds the refuge number (x > M), and obviously, intra-
specific competition to take refuge will increase proportionally as the density increases. The
conclusions regarding this type of refuge are that it has a strong stabilizing effect [13] and it
can prevent the extinction of prey, but when the population is too large for all members to
stay all in the refuge, coexistence with predators is expected, as the predators will obtain
continuous resources [11]. So, in that case, the mortality rate of the prey increases when the
population density goes beyond the refuge capacity, and this will cause a negative feedback
stabilizing effect on the system [14].

In case of a proportional refuge, there are also two habitats available for the prey
population-— either they live in the refuge habitat or they roam around in the open habitat,
where they are available to predators [11]. But, under such conditions, movement of prey
individuals always occurs between the open and refuge habitats [15]. In [16], Kar proposed
the Lotka—Volterra type prey—predator system, including proportional prey refuges, where
m is denoted as the fractional refuge of prey from predators (which is different from the
previously discussed refuge, M), and it ranges from 0 < m < 1. Now, if we consider the
whole prey population as x, then the mx portion of the prey is in the refuge habitat, and
the (1 — m)x portion of the prey is in open habitats and is thus available to the predators.
For the proportional refuge, the whole population never has the opportunity to attain
refuge, and thus, the process of finding a refuge place is either cooperation- or competition-
based. This type of refuge can reduce the mortality rate of prey by reducing the predation
pressure and can affect positively affect the growth of prey and negatively affect that
of predators. Thus, in this way, refuge can act as a stabilizing effect in prey—predator
dynamics [17]. Extreme refuge may destabilize prey—predator dynamics, as the predator
population becomes extinct by suffering from lower predation success due to the large
refuge size [18].

Mathematically, prey—predator interaction was first described by Alfred James Lotka in
1925 [19] and Vito Volterra in 1927 [20]. In 1934, Georgy Frantsevich Gause [21] first found
refuge in his experiment with the protozoan predator Didinium feeding on Paramecium.
One major drawback of the Lotka—Volterra model is that the predator population never
becomes saturated. Crawford Stanley Holling solved this problem [22-24] by suggesting
three kinds of functional responses (Holling types I, II, and III) for different species of
predators. In 1963, Rosenzweig and MacArthur [25] first replaced the linear functional
response of the Lotka—Volterra model with the Holling type II response function and first
documented that prey—predator coexistence is not limited to a stable equilibrium; a limit
cycle appears when the stable equilibrium undergoes Hopf bifurcation [26]. Since then,
various modeling approaches for the prey—predator system, including refuge, have been
conducted by researchers [16,27-29].

The stabilizing role of refuge in prey—predator systems was shown many years ago,
and since then, various aspects of prey—predator systems with refuge have been analyzed
using Holling type II nonlinearities [30,31]. Mapunda et al. [32] and Kumar et al. [30]
showed the effect of intra-specific competition among predators on the prey—predator
system in their respective studies. The effect of cooperation among predators on the prey—
predator system through cooperative hunting strategies was shown by Saha and Samanta
in their study [33]. The effect of inter-specific competition among predator populations
in a three-species system was analyzed by Sarwadi et al. [29,34]. The impact of cooper-
ation among two prey species in a three-species prey predator system was analyzed by
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Rihan et al. [35]. The present study fills the research gap by dealing with the impacts of
cooperation and intra-specific competition among the prey population when escaping
from predators through refuge on the prey—predator system, and it is found that when
the prey individuals become competitive with each other for shelter in the refuge habi-
tat, the system dynamics achieve stability faster. On the other hand, any cooperation
among prey populations regarding refuge turns the stable equilibrium condition into a
limit cycle condition.

In previous articles ([29,30,32,34] and the references therein), authors have considered
competition among predator populations. To our knowledge, this is the first article to
consider the impacts of cooperation and intra-specific competition within the prey pop-
ulation on attaining refuge. The key question of this study is “how are the dynamics
of the prey—predator system impacted when the decision about refuge is made through
cooperation and the same for intra-specific competition?” To obtain an answer to this
problem, we developed two mathematical models. The first model includes cooperation
among prey populations, whereas the second model contains intra-specific competition.
The dynamics of the models were analyzed with qualitative theories.

This study is presented sequentially in the latter sections as follows: Section 2 deals
with the mathematical model formation, including both the prey refuge and the cooperation
among prey. The local stability and bifurcation analysis of the equilibrium points is
provided. The global stability of the co-existing equilibrium is analyzed in Section 2.4.
Another mathematical model considering the prey refuge and the intra-specific competition
among prey is formed. The existence of Hopf bifurcation and a stability analysis are
conducted in Section 3. The direction of Hopf bifurcation is analyzed in Section 3.4. Detail
numerical simulations using Matlab are delineated in Section 4. The final discussion and
biological interpretation of the results are included in the conclusions in Section 5.

2. Mathematical Model for Prey Refuge and Cooperation

Here, we propose the Lotka—Volterra type prey—predator system, including propor-
tional prey refuge and cooperation, which makes the following assumptions:

There are two populations in the model. x(t) is the prey population size and y(t) is
the population size of the predator at any time t. r is the intrinsic growth rate, and k is the
carrying capacity of the prey. v is the death rate of the predator in the absence of prey, j is
the predation rate, and c is the conversion factor that denotes the efficiency of predators for

each captured prey.

Also, g is the maximum number of prey that the predator can eat per unit time; % is
the half-saturation constant.

The term % denotes the predator’s response to prey. This type of predator response
function is known as a Holling type II functional response.

Let m be the fractional refuge of prey from the predators, where 0 < m < 1 and is
constant. So, the mx(t) portion of the prey is in the refuge habitat, and the (1 — m)x(t)
portion of the prey is in open habitats and is thus available to the predator, and 6 is the

cooperation coefficient among the prey population trying to escape predation pressure

through refuge.
Using the assumptions discussed above, we obtain the following mathematical model:
dx x B(1—m)xy ’
dt rx[l_%}_l+a(1—m)x+9x’ )
dy cB(1—m)xy
at /Yy—'—l—i—a(l—m)x'

with the initial biological condition

x(0) >0, y(0) >0 )
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It is assumed that all system parameters are positive constants. A schematic diagram
of the model (1) is shown in Figure 1.

In the next subsection, we determine all the possible equilibrium points and existence
conditions for the biological feasibility of the model (1).

predator funcnoml response (a)

prey reﬁlge (m) pxedmon rate (f)

cooperation
for getting pl edahon
refuge
prey
popnlahou

cooperation co-efficient (6) “
predator
populahon
)
mortality rate (y)

intrinsic grow‘l}(ﬂte_(\
pl edator growth
mortality

logistic
growth

Figure 1. Schematic diagram of the proposed model (1) for the Lotka—Volterra type prey—predator

system, including the proportional prey refuge and cooperation among the prey population trying to

escape predation pressure through refuge.

predator efficiency (c)

2.1. Boundedness of Solutions

Biologically, all populations in the model should be finite. For this, a boundedness
analysis is significant. We derived the following theorem for the boundedness of the
solutions to the model (1).

Theorem 1. All solutions to the model (1) with the given initial conditions (2) are non-negative
and bounded for all time periods t > 0.

Proof. We rewrite the first equation of (1),

B(1 —m)xy

dx X 2
il rx{l ﬂ 1+a(1—m)x+9x = xh(x,y), ©)]
where hi(x,y) =r[1—§] — % + 0x. Therefore,
dx
-~ = h(x,y)dt

t
x(t) = x(0) exp{/ h(x,y)dt}
0
Since x(0) > 0, we can conclude that x(t) is always positive. Similarly, the non-
negativity of y(t) can be established.
For the boundedness analysis, we define W = x 4 y. Now, adding the two equations
of (1), we can obtain

dw x B(1—m)xy ’ cB(1—m)xy
a7 {1 E] 1+a(1—m)x+6x 7y+1+a(1—m)x’
By definition, ¢ < 1. Using this fact, we can write
aw X 2
T < _Z _
i = rX {1 k} +60x° —yy 4)
= rx[l—%}+9x2—'y(x+y)+'yx.
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Now, g(x) = rx[1— %] + 0x2 + yx is a function of x only. It has a maximum value at

= f((:f]z;) , and the maximum value is My = Z((:fzgj Thus, from (4), we obtain
dW
aw AW
i = My —

Using the theory of functional differential equation, we have

limsup W = %. (5)
t—c0 v
O
The set D is defined by
D={(x,y) €ERZL:0<x+y <My, r>k0} (6)
where My = %, is positively invariant and each solution that starts in D remains in D.

2.2. Existence of Equilibria

In this subsection, we analyze the existence and stability of the positive solution to the
system (1).
Model (1) has three equilibrium points, viz., (i) the trivial equilibrium E((0,0), (ii)

the predator-free equilibrium E; (ﬁ, 0) , and (iii) the coexisting equilibrium E*(x*, 7*),

where
= v
(1—=m)(cp—ay)
_ 1 _ . r(k=x%)
=1 1- * . 7
7 = g (e -my e + )
Now y* is positive if 05" + @ > 0 which, after simple calculations, gives ¥* >
rk
r—0k

Using the fact that 0 < m < 1 and from the above discussion, we have the following
result for the existence of the equilibria of the system (1).

Proposition 1.

(i) The predator-free equilibrium of the system (1) is feasible if 0 < ¢, and

(ii)  the coexisting equilibrium E* is feasible if % > yand x* > rﬁ’;k.

Remark 1. When the cooperation for attaining refuge () is less than the overall intra-specific
competition in the logistic growth of prey (1), the predator-free equilibrium Ey of the system (1) is
feasible; otherwise, it will not exist. On the other hand, when the utilization efficiency of predators
after successful predation ( % ) is greater than the mortality rate of predators in the absence of prey
(y), then the coexisting equilibrium E* will exist.

2.3. Stability Analysis and Hopf Bifurcation

Here, we examine the stability of each biologically feasible equilibrium. We perturb
the ODE system near to any equilibrium point E(x,y) and obtain the system

dx
E - ]X/

where X = [x,y]” and ] is the Jacobian matrix.
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The Jacobian | for the system (1) is
rx(1— 2y — LU=y 5py _ Bl-—m)x_
k (14a(1—m)x)? 1+a(1—m)x
J=1) =
cB(1—m)y . cB(1—m)x
Tra(l—m)x)? Y+ Traomo
A characteristic equation of the Jacobian matrix is given by
f@)=+hi+hL=0. ®)

An equilibrium point E(x,y) is stable if both the roots of (8) are negative or have
negative real parts. The conditions for this are

I{y >0 and I; >0, )

where
h=—(1+T2), b=Til2 - -

The equilibrium E(x,y) is unstable if any of the above conditions are violated.

Hopf bifurcation will occur if both the roots of (8) are purely imaginary for a particular
value of the model parameter (called the bifurcation parameter). Suppose # is a bifurcation
parameter. Then, for bifurcation to occur, the following condition must be satisfied:

(i) h=0 L>0, (10)

NG
(ii) an # 0.
Condition (i) will give the critical value of the bifurcation parameter, and condition (ii)
is the transversality condition.
The Jacobian matrix | at the trivial equilibrium E((0,0) has a positive eigenvalue r;
thus, it is always unstable.
At the predator-free equilibrium E; (i, 0), the Jacobian matrix is

} : ; 1—m)
(1 — ZT]) + 203, - 152(1;%%1
cB(1—m)x; ’
0 —= Yt Wraiomya)

J(E1) =

where X7 = ﬁ
E; is always feasible as % > 0 is true for the model (1). The Jacobian matrix has
eigenvalues ¢; = r¥(1 — %) +20% and is negative for ; > 6, directly following on from

the feasibility of E;. Another eigenvalue is {, = —v + %,
ry—rk[cp(1—m)—a(1—m)7]

0 > 7 . _
The characteristic equation at the coexisting equilibrium E* is

which is negative if

E4LE+E =0, (11)
where 5 51 )
TH o k(1 x —m g* _ %
L i g e R

I C‘BZ(l — m)zf*y*

2= Ara(-me)p O

The eigenvalues are negative or have negative real parts if ; > 0 as I; > 0 al-
ways holds.
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From the above discussion, we have the following theorem for the stability of the three
equilibriums of system (1).

Theorem 2.

(i) The trivial equilibrium Eo(0,0) is always unstable.

ry=rk(1=m)[e—ay],
vk

(ii) Epis always feasible and is stable if 6 < ; consequently, transcritical

bifurcation occurs if § = %@W
(iii) E* is stable if I} > 0 and unstable for I} < 0. Hopf bifurcation occurs if I{ = 0 and

% lo—g+ # O, where 0* is the critical value of the bifurcation parameter 6.

2.4. Global Stability of E*
The following theorem establishes the global stability of the interior equilibrium E*.

Theorem 3. The interior equilibrium E* is globally asymptotically stable if the conditions men-
tioned below are satisfied:

(i) ko <r, (12)

Tk P
(ii) =y <* <B.

Proof. We construct the suitable Lyapunov function V as

V:(x—x*—x*ln%)—l—(y—y*—y*ln%). (13)
It is easy to verify that V is positive definite for all (x,y) € R3 \ (x*,y*). Now, we
take the derivative of V along the solutions of the system (1) and obtain the following:

v
dt

(x> + -y

= (x—x*)[r[l—ﬂ —m+9x] +(y—y")[—7+%}

7

<=

By rearranging equation (14) we obtain the following:

v _ a7 I gy By By By
il x°( E+9)+x(r+7 Ox*) —rx +(1+ax T+ax + Trax VY

Byt pxt
w55 )

Thus, if the conditions given in (12) hold, then the right-hand side of (14) is negative
definite. Thus, ”fi—‘t/ < 0 along all trajectories in the first quadrant except (x*,y*). Also,
we have %/ |p+ = 0. The proof follows on from the suitable Lyapunov function V and
Lyapunov-LaSalle’s invariant principle (cf. Hale [36]). Hence, the interior equilibrium
point E* is globally asymptotically stable if condition (12) is satisfied. [

3. The Mathematical Model for Prey Refuge and Intra-Specific Competition

The flow chart of this situation is given in Figure 2. From this, we propose the
Lotka—Volterra type prey—predator system, including the proportional prey refuge and
competition, as follows:
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dx X pA-mxy o

at rx[l k} 1+a(l —m)x s (14)
dy cB(1 —m)xy

dat 7y+1+a(1—m)x'

where « is the competition coefficient among the prey population trying to escape predation
pressure through refuge, and all other parameters were already defined in the previous
model (1).

predator functional
1esponse ()

prey lefuge (m) pmdanon rate ()

competition
for getting Pl edatlou
refuge

competition co-efficient (a0)

prey predator
e nlati
intrinsic growth rate () P"P“l’;h"“ pop\ a ion

logistic
growth

mortality rate (y)

pl edator growth

mortality.
predator efficiency (c)

Figure 2. Schematic diagram of the proposed model (14) for the Lotka—Volterra type prey—predator
system including the proportional prey refuge and intra-specific competition among the prey popula-
tion trying to escape predation pressure through refuge.

Remark 2. From a mathematical point of view, model (1) and model (14) differ only in one term:
—ax? in place of 0x?. Thus, the analytical results (dynamics) of model (14) can be derived from the
analysis of model (1).

From the analysis presented in the previous section (using Theorem 1) we derived the
following theorem.

3.1. Boundedness of Solutions

Theorem 4. Each solution to model (14) with positive initial conditions remains non-negative and
bounded in S for all time points t > 0, where

S={(xy) eRE:0<x+y<M,} (15)

k(r+)?
4(r+ka)"

where M, =

3.2. Existence of Equilibria
Model (14) has three equlhbrlum points, viz., (i) the trivial equ111br1um Ey(0,0), (ii) the

predator-free equilibrium Ej (- - ak, 0), and (iii) the coexisting equilibrium E*(%*,7*), where
~% r)/
¥ o= , 16
(= m)(cp—an) e
~x 1 <% <% V(k — f*)
7= ﬁ(l—m){l+a(l m)x*} | —aX* + . . (17)

In model (14), E; always exists, and E* exists for % > v and —aX* + @ > 0. The
we have the following result.

Proposition 2.
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(i)  The predator-free equilibrium of the system (14) always exists.

rk
r+ak”

(ii)  The coexisting equilibrium E* is feasible y‘% > yand % <

Remark 3. In model (1), the existence of the predator-free equilibrium Ey depends on 6, but in
model (14), the equilibrium always exists. One major explanation for the cooperation for attaining
refuge (6) may cause behavioral contradictions among the prey population as they compete in almost
all aspects, except finding refuge, and for that reason, 6 becomes a critical factor for the existence of
the equilibrium.

3.3. Stability and Hopf Bifurcation
The Jacobian at any steady point E(x, y) of system (14) is given below:

rx(l—z%)—(lf%)z—mx —%
J(E) = [Jyj] = ; ;
(1+ayx)2 -7+ (1+ax)

Using the stability analysis of the previous section (using Theorem 2, we can establish
the following theorem for the stability of the equilibrium points in the system (14).

Theorem 5.
(i)  The trivial equilibrium Eo(0,0) is always unstable.

(i) Eyisstableifa < Ww and unstable for a > TA=MIBNrY - Copseqyently,

vk
transcritical bifurcation occurs at o = rk(l*m)[;—k*”ﬂ*m

(iii) E* is stable if I; > 0 and unstable for I} < 0. Hopf bifurcation occurs if I} = 0 and
a

o la=a+ # 0, where a* denotes the critical value of the bifurcation parameter . In this case,
. . 2%* B(1—m)iy* .
* — * 1 _ 2 *’
1= (=) g Ao meye T2

and

3.4. Direction of Hopf Bifurcation

In this section, we analyze the stability nature and direction of the Hopf bifurcating
periodic solutions. For this, we consider the transformation, u#; = x — xy, up = y — ys«,
which transform the system (1) into the following system,

i = muy+aup+ Y apuiuy+ Y agulul + - (18)
i+j=2 i+j=2
i,j>0 i,j>0

ty = biug +boup + Z bi]-u’lujz + Z bi]'ullué +---, (19)
i+j=2 i+j=2
>0 i,j>0

where 4;; and b;; are determined by using the following relations:

1 9H(R) 1 3Y(R)
N0 axday © 0T it ayiayl

(20)

where a7 = %%1, ap = %iyz, etc., and
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x p(1 —m)xy 2
F=rmll-|—-+7—————
1 ’x[ k} Tra(l—mpx 7
_ cp(1 —m)xy
==+ 1+a(l—m)x’
We obtain the following relations from Hassard et al. [37],
il R W, Y 1)
| = qgT2zq ’
where
z(t) = (q",ur), W(t,0) =u(6) —2Re{z(t)q(0)}. (22)
Thus,
s Sl = 2 = (3
Z = dwoz+01fy +02fy + 031

= iwz—i—1 22 + zZ—b—1 224_1 23—i-1 ZB’—i-1 z22+1 272
= 0 2:_i{zo 811 2802 6830 6803 2821 2812
+ O(lz%), (23)

We calculate the values of g0, $02, 11 and g1 by comparing the coefficients of z2, 22,

zz and z2z. Hence,

; 2
CG(0) = 2%}0 (gngzo —2lgn|* - @) + %, (24a)
Re(Cl( ))
= T Re(n(0)) 24b
"2 7 TRe(0)) 240)
Ba = 2Re(Ci(0 ), (24¢)
where
/ ~ d(Im(y(a))) [ o1 03— (0102 + 0102) (01 + 02)0n
Iy O) = =g e =[G st 2y re)] e

The stability and direction can be determined from the following theorem [29,38].

Theorem 6. The nature of the bifurcating periodic solutions can be determined from the values of
B2, y2, and Ty in the center manifold at the threshold value o*.

(i) If pp is positive (negative), then the system (1) emits a stable (unstable) limit cycle for & > a*
(v < a*);

(i) By determines the stability of the bifurcating periodic solutions, where the bifurcating periodic
solutions are stable (unstable) if By < 0 (B2 > 0); and

(iii) T determines the period of periodic solutions:, where the period increases (decreases) if 7o > 0
(Tz < 0).

Remark 4. A similar theorem can be obtained for the parameter 0 from Theorem 6.
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4. Numerical Simulations

In this section, we provide numerical examples for visualizing the dynamical regimes
that can be seen in our model systems analyzed in the previous sections. Parameter values
with detailed descriptions and the units used for the simulation are given in Table 1. The
value of the carrying capacity is taken as k = 4, assuming that the maximum number of
four prey can be supported within a 3 m x 3 m square area. Although the conversion
efficiency (c) varies within a range of 0-1, we considered ¢ = 0.75 for the simulations. The
results obtained from simulations, using the ode45 solver in Matlab are discussed in the
following subsections.

4.1. Numerical Simulation of System (1)

In this subsection, a simulation of the system (1) is presented in Figures 3-8 based on
the calculations made in Section 2. In Figure 3, we plot the transcritical forward bifurcation
between E; and E* by varying the parameter 6. For some large values of 6, E* becomes
feasible (according to Theorem 2).

Table 1. List of parameters used in numerical simulations and their references.

Parameter Definition Value (Units) References
r intrinsic growth rate 0.1 prey ! day! [34]
k carrying capacity of the prey 4 individuals [34]
B predation rate 0.3 predator—! day~! [29]
c conversion efficiency 0 < ¢ < 1, predator prey ! [29]
a half-saturation constant 0.5, prey ! [34]
m prey refuge 0 <m <1, [no unit] standard range
% death rate of predators 0.1 predator—! day—! [34]
0 cooperation coefficient among prey 0<6<1 prey !day! standard range
« competition coefficient among prey 0<a<1 prey !day! standard range
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> | | W
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S
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© 41 2 | | .
%) & I I
E 2 | |
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L | 4
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Figure 3. Transcritical bifurcation (forward?is plotted with variations in the parameter 6 € (0,0.04).
The existence and stability of the coexisting equilibrium are also shown. The set of parameter values
is ¢ = 0.75, m = 0.3, and the rest of the parameters are taken from Table 1.
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population, and (c¢) phase-portrait in x—y plane. The dashed line represents m = 0 (i.e., without
refuge), and a solid line is used for m = 0.3. Other parameters are the same as those in Figure 3.
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Figure 5. The effect of cooperation on the system’s populations: (a) prey population, (b) predator
population, and (c) phase-portrait in x-y plane. The solid line represents § = 0, and the dashed line
is used for 6 = 0.005 and m = 0.5. Other parameters are taken from Table 1.

2 T T T T T T

3.5

Figure 6. Phase trajectories are plotted in the x—y plane taking three different initial conditions. The

parameter values are the same as those presented in Figure 5.



Math. Comput. Appl. 2023, 28, 88 13 of 19

(@) | (0)

35 12

I

|

30t :
|

25t |
|

20 1
|

15+ |
|
|

- Limit cycle
Limit cycle |

5 E

|

|

|

[

[

|

|

|

[

|

|

[ [

10t Stable focus | 1 Stable focus

\

I .,

.....

.
...
.....

‘ J 0 ' ¢
0.012 0.017 0.022 0.012 0.017 0.022

Figure 7. (a,b): Bifurcation diagram is plotted taking the rate of cooperation (i.e., 6) as the bifurcation
parameter. The set of parameters is p = 0.18, m = 0.3. The dotted curve represents the maximum
and minimum values of the periodic solutions, and the solid black line is the stable coexisting
equilibrium E*.
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Figure 8. Stability region of the equilibrium points of system (14) in (a) 6-8, (b) 6—m parameter planes.
In region A, E* is not feasible, but E; is stable there; in region B, E* is stable; in Region C, E* is
unstable. In (a), m = 0.3 and in (b), B = 0.18, the other parameters are as given in Table 1.

In Figure 4, we can see the limit cycle for m = 0 (other parameters are given in Table 1),
i.e., the limit cycle can occur if refuge is neglected. But, if we take m = 0.3 (i.e., 30% of the
total prey population is in the refuge habitat and the other 70% is vulnerable to predation),
the limit cycle disappears, and the coexisting equilibrium E* becomes a stable focus.

In Figure 5, we use m = 0.3 and 8 = 0 (i.e., there is no cooperation among the prey
population for finding a refuge habitat), and the system is stable. Then, we increase the
value of 6 (i.e., increase cooperation among the prey individuals for finding a safe refuge
place) and set the limit cycle to & = 0.005 (other parameters are given in Table 1). From this,
we can conclude that the impact of 8 is destabilization of the stable, steady state.

Figure 6 plots three different initial values of the model variables. This shows the
nonlinear stability of the coexisting equilibrium E*. In Figure 7, we plot the Hopf bifurcation
diagram, taking 0 as the main parameter. A stable limit cycle appears, as the parameter 6
crosses the critical value (Theorem 2).

In Figure 8, we plot the stable regions of the coexisting equilibrium in the 6 and 6-m
parameter planes. Figure 8a shows how parameters 6 and § critically affect the stability
of the system. We can observe that for the very low value of 6, E* is not feasible but E; is
stable, and as 6 crosses its critical value, E* becomes stable and the stability of E* depends
on the combined value of § and §, as higher values can make the stable system unstable via
Hopf bifurcation. In Figure 8b, a direct relationship between the parameters 6 and m and
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the stability of the system is shown, where with an increased value of 6, only a very high
value of m can make the system stable.

From the simulations, we observe that 0 is one of the critical parameters for the model’s
system (1), and the stability of different equilibria depends on it. For very low values of 6,
E* is not feasible, but E; is stable, and as 6 crosses its critical value, £* becomes stable via
transcritical bifurcation, and finally, further higher values can make E* unstable via Hopf
bifurcation (Theorem 2).

4.2. Numerical Simulation of System (14)

Simulations are presented for the dynamics of the system (14) in Figures 9-13 based
on the analytical analysis presented in Section 3.

In Figure 9, we plot the transcritical forward bifurcation of E; and the existence of
E* with variations in the parameter a (Theorem 5, (ii)). A Hopf bifurcation diagram is
plotted in Figure 10 ,taking & as the main parameter (using (Theorem 5 (iii)). The limit cycle
disappears as the parameter a crosses the critical value a*.
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=1 | |
© [ |
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«

Figure 9. Transcritical bifurcation (forward) is plotted with variations in the parameter . The set of
parameter values is taken as B = 0.3, m = 0.1, and the other parameters are taken from Table 1.
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Figure 10. (a,b): Bifurcation diagram is plotted taking the rate of competition (i.e., &) as the bifurcation
parameter. The set of parameters is § = 0.3, m = 0.001, and the other parameters are taken from
Table 1. The dotted curve represents the maximum and minimum values of the periodic solutions
and the solid blue line is the stable coexisting equilibrium L*.
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In Figure 12, we show m = 0.3, a = 0.001 (i.e., there is very little competition among
the prey individuals for finding a refuge habitat), and the system is stable. Now, if we
increase the value of « to 0.01 (i.e., the prey individuals become ten times more competitive
in the process of finding a safe refuge place), the system stabilizes faster (other parameters
are given in Table 1). From this, we can conclude that « has a stabilizing effect on the system.

1.2 . . .

Limit cycle |

0.8

0.6

Figure 11. Phase trajectories are plotted in the x—y plane by taking three different initial conditions.
The parameter values are same as those presented in Figure 5.

(b)

(a)
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©
o
o
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Figure 12. (a,b): The effect of intra-specific competition on the system’s populations is shown. The
blue line represents « = 0.001, and the red line is used for & = 0.01. The other parameter values are

taken from Table 1 and § = 0.3, m = 0.3.

In Figure 13, we plot the stable regions of the coexisting equilibrium in the - and
a—m parameter planes. The area of the stable region increases as both m and « are increased.
But, B can make the stable system unstable via Hopf bifurcation (Theorem 5 (iii)). The
critical value of Bi.e., B* depends on the other model parameters, such as «. Here, we show
that the critical value of B significantly depends on «. In (b), we use a higher value of §,
and then we vary a and m. We observe that E* changes its stability level to become stable,
except for at higher values of m and «. The stable condition is only shown in E; for higher

values of m and «.
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Figure 13. The region of stability of the equilibrium points of system (14) is shown in (a) a—§, (b) a—m
parameter planes. In region A, E* is unstable; in region B, E* is stable; and in region C, E* is not
feasible, but E; is stable. In (a), m = 0.1 and in (b), 8 = 0.3, the other parameters are as given in
Table 1 and Figure 4.

Figure 11 also plots two different initial values of the model variables. This figure
shows that the bifurcating periodic solutions are stable and the Hopf bifurcation is of the
supercritical type (Theorem 6).

From the numerical simulations, we observe that for model system (14), the stability
of different equilibria depends on the parameter a. Here, for very low values of a, £* is
unstable, and it becomes stable as « crosses the critical value via Hopf bifurcation, but
for very high values of a, £* is not feasible, whereas E; becomes stable via transcritical
bifurcation (Theorem 5, (ii)).

5. Discussion and Conclusions

A prey—predator system including prey refuge has been a sought-after topic among
ecological and mathematical modelers for almost the last five decades. Previous studies
have assured that refuge has a stabilizing effect on prey—predator dynamics. Several models
have already been established to represent various conditions and situations. Still, another
finding is that if the refuge class or fraction becomes too large, the predator faces food
scarcity. The system becomes destabilized due to the extinction of the predator. But, in any
natural system, all members of a prey population cannot avoid predation at any given time;
thus, continuous decision pressure works among them. The refuge among the prey popu-
lation can happen in two ways, cooperatively or competitively, and these two inevitable
intra-specific interactions must affect prey—predator dynamics. This study identified the
impacts of cooperation and intra-specific competition among prey populations trying to
escape predation through refuge on the stability of prey—predator dynamics.

The ecological motivation behind the formation of the mathematical models comes
from the Hoogly-Matla estuarine mangrove ecosystem, where several islands are situ-
ated and are crisscrossed by numerous creeks that originate from the main rivers. These
creeks have rich detritus loads which come from the adjacent mangrove litter. There-
fore, these creeks support many detritivorous fishes, and one such fish was described
by Sarwardi et al. [34]. In their study, Sarwardi et al. [34] described one important de-
tritivorous fish from these creeks, namely Liza parsia, which lives in the creeks, and its
predator Otolithoides pama visits the creeks during high tide only to capture food. The
mangrove plants in this region extend from the supra-littoral zone to the lower-littoral
zone up to the creek bed. During high tide, as the water level comes up, the lower parts
of the plants submerge under the water and the bushy part of the submerged mangrove
plants creates shelter for Liza parsia to avoid its predator. So, this spatial refuge is possible
due to enhanced environmental heterogeneity in this ecosystem. In many cases, due to an
inadequate refuge habitat, all individuals of the prey population can not escape predation.
In this situation, the prey population finds refuge either through cooperation or competi-
tion and avoids predation pressure. The present study focuses on the effects of these two
important intra-specific interactions on the dynamics of prey—predator interaction with the
prey refuge.



Math. Comput. Appl. 2023, 28, 88

17 of 19

In a basic predator—prey model, the population dynamics of the predators and prey
are influenced by factors such as predation, reproduction, and competition for resources.
However, if we introduce cooperation and competition among the prey species themselves,
the model becomes more complex. For the two situations mentioned above, in this paper,
we considered a prey—predator system incorporating a prey refuge and assumed that the
predator response function ia Holling type II. Cooperation (model (1)) and intra-specific
competition (model (14)) among the prey population for escaping predation pressure
through refuge are incorporated into the system to find out the process (either cooperation
or intra-specific competition) that leads the population towards better stabilization.

Firstly, the stabilizing effect of refuge on the system dynamics was shown (Figure 4).
After the addition of refuge, the system dynamics settle from limit cycle behavior to a
stable equilibrium. The refuge protects the prey population from predators, and it reduces
predation pressure. Over-exploitation of the prey population by predators moves the prey
population into a divergent oscillation state. But, this vulnerable state is transformed into a
stable state with the help of the prey population’s refuge strategies. The stable state of the
prey population also makes a stable predator population.

When the decision about refuge is made cooperatively among the prey population,
the stable equilibrium again goes back to a limit cycle condition which clearly denotes that
cooperation has a destabilizing effect on the system dynamics during refuge (Figure 5).
From the prey’s point of view, if the refuge is attained cooperatively, then the maximum
number of individuals can escape predator easily, which is favorable for them but on
the other hand, predators will suffer from low predation success, and in an extreme
situation, they will be eliminated from the system if the system is linear as a predator has
no alternative option to predate.

Our study shows that the system reaches the equilibrium state faster when the
refuge facility is achieved through intra-specific competition among the prey popula-
tion (Figure 12). Refuge during intra-specific competition has a stabilizing effect on the
system dynamics. As intra-specific competition has a negative impact on individuals in the
prey population, the refuge class is constantly controlled and never becomes too large to
cause prey scarcity for a predator. A controlled amount of the prey population will always
escape predators through refuge, which improves the survival of the prey population, and
the predator population will not become extinct in any situation, as it never faces a food
crisis. Due to this balanced interaction, the system dynamics reach an equilibrium faster.

In reality, the decision-making process to escape predation pressure by refuge either
through competition or cooperation within a prey population is complex and does not
follow any hard and fast rules. Cooperation or competition in various prey organisms
depends on the spatial heterogeneity of the habitat, as when the shelter place (refuge size) is
large enough to protect all prey individuals, only cooperation acts as the deciding factor, but
any scarcity in the protected habitat turns the cooperative behavior into a competitive one.

It is more difficult for a prey population to escape predation through refuge individ-
ually than by living in a group and cooperating conspecifically. Group living in a prey
population has many facilities from the perspective of refuge, as it reduces the chance of
detection by the predator due to the presence of many eyes and ears that are attuned to
predation threats [39,40]. So, cooperation plays a major role in attaining refuge within a
living prey population group, but this is not necessarily always the case. Underlying intra-
specific competition may be found among the group members, which can be explained
by the selfish-herd effect [41,42]. Though each member enjoys the benefit of decreasing
the domain of danger when living in a group than as a solitary forager, those individuals
who are present outside the group still have a larger domain of danger compared to those
at the core, and thus, they may compete with each other to take shelter at the core of the
group [39,43]. This study fills the research gap by dealing with the impacts of cooperation
and intra-specific competition among the prey population for escaping from predators
through refuge on the prey—predator system, and it was found that when the prey indi-
viduals become competitive with each other for shelter in the refuge habitat, the system
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dynamics achieve stability faster. On the other hand, any cooperation among the prey
population regarding refuge turns the stable equilibrium into a limit cycle condition.

Interactions in the living world are very complex, and it is difficult to conclude whether
competition or cooperation is helpful for refuges. A high rate of parental care has been
observed in many bird species, including the protection of offspring from predators by
forming nests. In such cases, the parents cooperate with their offspring for successful refuge,
but at the same time, the offspring may compete to achieve successful refuge. In reality,
when prey populations are small, they need cooperation rather than competition, but the
reverse situation is noticed in case of large prey populations. Therefore, both cooperation
and competition are inevitable processes during the refuge of the prey population, and
the selection of either cooperation or competition depends on the conditions within the
prey population.
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