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Abstract: Semantic segmentation is an essential process in computer vision that allows users to
differentiate objects of interest from the background of an image by assigning labels to the image
pixels. While Convolutional Neural Networks have been widely used to solve the image segmentation
problem, simpler approaches have recently been explored, especially in fields where explainability
is essential, such as medicine. A Convolutional Decision Tree (CDT) is a machine learning model
for image segmentation. Its graphical structure and simplicity make it easy to interpret, as it clearly
shows how pixels in an image are classified in an image segmentation task. This paper proposes
new approaches for inducing a CDT to solve the image segmentation problem using SHADE. This
adaptive differential evolution algorithm uses a historical memory of successful parameters to guide
the optimization process. Experiments were performed using the Weizmann Horse dataset and Blood
detection in dark-field microscopy images to compare the proposals in this article with previous
results obtained through the traditional differential evolution process.

Keywords: semantic segmentation; image segmentation; convolutional decision tree; differential
evolution; SHADE

1. Introduction

Semantic segmentation is a relevant process in numerous scientific fields for image
analysis. It involves assigning labels to the pixels of an image to distinguish objects of
interest from the image background; see Figure 1.

Figure 1. Semantic segmentation technique applied to horse detection.

Several methods have been used to solve the image segmentation problem [1,2], but
Convolutional Neural Networks (CNNs) are currently the most popular [3]. CNNs produce
powerful results; however, they are often called “black boxes” because the process they
follow to produce results can be difficult to understand and explain. Therefore, their use in
critical contexts, such as the medical field, needs to be thoroughly studied [4,5].
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Convolutional Decision Trees (CDTs) are an alternative to CNNs because they have
the graphical structure of a decision tree model that is easy to interpret [6]. Several methods
have been proposed to solve optimization problems in the CDT induction process. The
original one, proposed in [6], maximizes the information gain function in each tree node
through an analytical optimization process. This process is a local search that partitions the
data (pixels) to obtain a single CDT.

Since the classical method for CDT induction is a greedy search, another method uses
the differential evolution (DE) algorithm to induce a CDT with a global search to improve
performance [7]. DE is one of the most popular metaheuristic search strategies for solving
optimization problems; it incorporates stochastic elements and parameters that enhance its
ability to explore the problem domain, even when the parameters must be adapted to the
specific problem [8]. The method in [7] performs a global search to induce a CDT using
the DE algorithm to maximize the F1-score. In this proposal, each individual in the DE
algorithm represents all the kernels of the CDT, so a set of CDTs is obtained to select the
one with the best F1-score.

The latest method, called DE-CDT-BKS [9], performs a local search using the DE
algorithm to identify the optimal convolution kernel size and the convolution kernel of
each node of the CDT to split the data (pixels) into two sets, using the F1-score as the fitness
function. In this method, the user provides a list of kernel sizes. After applying the learning
process with these kernel sizes, the kernel with the best F1-score at each partition node is
selected. This results in a single CDT with convolutional kernels of different sizes.

The methods proposed in [6,7,9] produce CDTs with more explanatory structure than
a CNN and transparency in the image segmentation process. However, the first method
requires a post-training process called graph cutting to improve the results [6]. The first
method produces better results than the other two but does not allow modifications to
the objective function. In contrast, in the other two methods the objective function can be
modified due to the nature of the DE algorithm, although they produce lower results [7,9].
Furthermore, in the first two methods, the CDT structure only considers kernels of the
same size [6,7].

To overcome this, the present work proposes the use of SHADE [10] instead of the
traditional DE algorithm in the second and third methods to achieve superior segmentation
results. As an adaptive DE algorithm, SHADE uses a historical memory of successful
parameters to guide the optimization process. This article compares these techniques with
previous results obtained using the traditional differential evolution process [7,9]. The
comparison is based on the segmentation of two sets of images: the “Weizmann Horse
dataset” and the “Blood detection in dark-field microscopy images”. The selection of these
databases makes it possible to compare the results with those described in [6,7,9].

The remaining paper is structured into three sections. Section 2 describes the DE algo-
rithm and highlights the most relevant characteristics of SHADE. This section also presents
the details of the two CDT induction procedures with SHADE. Section 3 is dedicated to
the experiments and the results obtained. Finally, Section 4 offers detailed conclusions and
future work.

2. Materials and Methods

This section covers the two main subjects of the project: the differential evolution
algorithm and SHADE. A description of Convolutional Decision Trees (CDTs) and the
methodologies proposed for CDT induction using SHADE are also presented.

2.1. Differential Evolution Algorithm and SHADE
2.1.1. Differential Evolution Algorithm

The Differential Evolution (DE) algorithm is a metaheuristic search strategy for solving
optimization problems [11–13]. It works with a population that represents potential solu-
tions to the problem and develops it by recombining solutions within it to generate a new
population (offspring). The DE algorithm involves three operators: mutation, crossover,
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and selection. It also involves user-defined parameters that guide the search: the scaling
factor F, the crossover rate CR, the population size NP, and the number of generations NG.

The standard DE process, known as DE/rand/1/bin, uses the following operators to
generate a trial vector ui for each target vector xi in the population:

• Mutation operator: To generate the trial vector ui, the mutation operator computes a
noise vector νi using Equation (1). The vectors xr0 , xr1 , and xr2 are randomly selected
from the population and are different from each other and from xi. F is a factor that
scales the difference between the vectors xr1 and xr2 . This process is equivalent to
stepping towards a new point in the search space.

νi = xr0 + F(xr1 − xr2) (1)

• Crossover operator: The crossover operator merges the information of the noise
vector νi with that of the target vector xi to generate the trial vector ui, component by
component, using the function in Equation (2). This equation involves a randomly
generated number, randj, within the range [0, 1] for each vectorial component. To
ensure that the trial vector takes at least one component from the noise vector νi, a
randomly selected position j, denoted as Jrand, is used. The process is controlled by
the crossover rate CR.

uij =

{
νij, if (randj ≤ CR) or (j = Jrand); j = 1, . . . , |xi|
xij, otherwise.

(2)

• Selection operator: The selection operator adds the vector with the highest fitness
value between xi and ui to the population for the next generation. This operator
guarantees that the best solution is preserved throughout the iterations, thanks to the
property of elitism.

As mentioned before, this process is the classic version of differential evolution, called
DE/rand/1/bin [14], where “rand” means that the vectors are chosen randomly in the
mutation operator, “1” means that only one difference vector is used to form the noise
vector, and the term “bin” (binomial distribution) means that a uniform crossover is used
when creating the test vector. However, several variants of the DE algorithm consider
different ways of generating the noise vector νi in the mutation operator [15]. Some of these
variants use the individual with the best fit xbest or use more than three individuals from
the population by including more than one scaled difference. Some examples of these
variants are:

• DE/rand/2
νi = xr0 + F(xr1 − xr2) + F(xr3 − xr4), (3)

• DE/best/1
νi = xbest + F(xr0 − xr1), (4)

• DE/best/2
νi = xbest + F(xr0 − xr1) + F(xr2 − xr3). (5)

It is known that the values for the parameters CR, F, NP, and NG are problem-
dependent and impact the performance of the DE algorithm [15], so it is necessary to tune
them to obtain good results when applied to real-world problems. Several self-adaptive
mechanisms to adjust these parameters have been studied, such as JADE [16], SHADE [10],
and L-SHADE [17].

This research considers the algorithm Success-History-based Adaptive Differential
Evolution (SHADE), which uses a historical memory of successful parameters CR and F to
readjust their values in the search process. The most relevant characteristics of SHADE are
mentioned below.
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2.1.2. SHADE

SHADE is a technique that regulates the DE algorithm parameter values CR and F
through an adaptive parameter control mechanism. It is well established that the values of
these parameters depend on the specific real-world problem considered and directly affect
the model’s performance [15]. Therefore, the SHADE technique allows the initial values
of the parameters to change and adapt during the search process to achieve the desired
results [10].

This approach uses the mutation strategy called DE/current-to-pbest/1, shown in
Equation (6), where x(G)

pbest is an individual randomly selected from the top NP ∗ p indi-

viduals in the population of generation G, where p ∈ (0, 1]. x(G)
r0 and x(G)

r1 are vectors

randomly selected from the population of generation G, and F(G)
i is the F parameter used

by individual x(G)
i .

ν
(G)
i = x(G)

i + F(G)
i

(
x(G)

pbest − x(G)
i

)
+ F(G)

i

(
x(G)

r0 − x(G)
r1

)
. (6)

The SHADE algorithm employs an archive A that is initially empty. The target vectors
x(G)

i that lose against its trial vector in the selection operator are added to the archive during

the evolution process. This process results in the random selection of the vector x(G)
r1 from

the union of the individuals in the population and the vectors in A. When the size of set A
exceeds the maximum size, which is typically equal to NP, randomly selected elements are
eliminated from A to maintain the size.

To calculate the values of the parameters CR(G)
i and F(G)

i , two memories of size H are
used, denoted as MCR and MF. They store the mean values of the successful parameters
of previous generations, understanding as successful parameters those CR(G)

i and F(G)
i

values that generate a trial vector that defeats its associated target vector. Initially, all values
in the MCR and MF memories are set to 0.5. In each generation G, the parameter values
CR(G)

i and F(G)
i are calculated for each individual x(G)

i with Equations (7) and (8), where
randni(µ, σ2) and randci(µ, σ2) are values randomly obtained from a normal distribution
and a Cauchy distribution, respectively, both with mean µ and variance σ2, and ri is a
randomly selected position from the memories MCR and MF.

CR(G)
i = randni(MCR,ri , 0.1) (7)

F(G)
i = randci(MF,ri , 0.1) (8)

The successful parameters CR(G)
i and F(G)

i are stored in the variables SCR and SF. The
values at the position k in the memories are updated with Equations (9) and (10).

M(G+1)
CR,k =

{
meanWA(SCR) if SCR ̸= ∅
M(G)

CR,k otherwise
(9)

M(G+1)
F,k =

{
meanWL(SF) if SF ̸= ∅
M(G)

F,k otherwise
(10)

G is the current generation of the process. If no successful parameters are identified
during this generation, the values stored within the memories remain unchanged. k has the
value 1 at the beginning of the process and increases by one unit each time a new element
is updated in the memories. When k > H, k returns to the value 1. In these equations,
meanWA(·) is the weighted mean, calculated with Equations (11) and (13), and meanWL(·)
is the weighted Lehman mean, calculated with Equations (12) and (13). The improvement
in the fitness function between the trial vector that defeats its target vector is denoted by
∆ f j =

∣∣∣ f
(

u(G)
j

)
− f

(
x(G)

j

)∣∣∣.
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meanWA(SCR) =
|SCR |

∑
j=1

wj · SCR,j. (11)

meanWL(SF) =
∑
|SF |
j=1 wj · S2

F,j

∑
|SF |
j=1 wj · S2

F,j

. (12)

wj =
∆ f j

∑
|SCR |
i=1 ∆ fi

. (13)

The value pi to adjust the mutation strategy (current-to-pbest/1) is randomly selected
for each individual x(G)

i in the population. See Equation (14), where pmin = 2/NP. Thus,

x(G)
pbest is selected from at least 2 individuals up to 20% of the population.

pi = rand[pmin, 0.2]. (14)

The pseudocode of the SHADE procedure is shown in Algorithm A1 in Appendix A.

2.2. Convolutional Decision Trees (CDTs)

An image is an array of discrete pixels that use different levels of red, green, and
blue (RGB) to create the colors and shapes in the image. This work deals with images in
grayscale, which are 2D arrays in which each pixel has an integer value between 0 and 255
(the range of values that an 8-bit number can represent).

In computer vision and image processing, convolution kernels are essential for ex-
tracting specific features from the image [18]. A convolution kernel is a squared array
of discrete numbers, called weights, used to calculate the dot product at each position
when a convolution operation is performed. The result of these products, along with the
bias associated with the kernel, is the new value for each pixel in the output feature map.
Figure 2 illustrates an example of the convolution operation on a 6× 6 image with a 3× 3
kernel. Full convolution is achieved by repeating the process until the convolution kernel
has passed through all pixels of the input image. Therefore, the result of the convolution is
a filtered version of the image.

21

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7

𝑤8 𝑤9 𝑤10 𝑤11 𝑤12 𝑤13 𝑤14

𝑤15 𝑤16 𝑤17 𝑤18 𝑤19 𝑤20 𝑤21
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                                          9

Bias

Figure 2. Example of the convolution operation on a 6× 6 image with a 3× 3 kernel.

Since the convolution kernels extract specific image features, the Convolutional De-
cision Trees (CDTs) are defined in [6] as algorithms for adaptive feature learning and
segmentation, developing the idea of oblique (multivariate) trees [19,20]. The oblique
trees successively partition the data into subsets according to a predefined criterion called
predicated ϕ, defined in Equation (15), where xT · β represents a linear combination of the
attributes, with x ∈ Rd, and the parameter β ∈ Rd is used to determine the partition. Thus,
for points x in one half-space, ϕ(x) = 1, while ϕ(x) = 0 for x in another half-space. The
predicate is obtained by maximizing a measure of informativeness, such as the information
gain or Gini’s diversity index.

ϕ(x) =
{

1 if xT · β > 0,
0 if xT · β ≤ 0.

(15)
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The CDT is distinguished by its suitability for structural data, such as the spatial
structure of image patches in image segmentation. In this context, β represents a con-
volution kernel and x denotes the information of a pixel and its neighboring pixels. In
consequence, each split of the CDT is represented by a convolutional kernel, which is
learned in a supervised manner, maximizing the information gain of the split; see Figure 3.

22

Figure 3. Example of a Convolutional Decision Tree with kernels of size 3× 3.

The classical method for the CDT induction is a greedy search [6]. To improve per-
formance, the methods proposed in [7,9] use the differential evolution (DE) algorithm
to induce a CDT. However, these methods have parameters that must be defined by the
user and directly affect the model’s performance. Therefore, instead of the traditional DE
algorithm, the use of SHADE is proposed in this work.

The following section describes the methodologies proposed for the CDT induction
using SHADE.

2.2.1. CDT Induction with SHADE

This paper proposes two search strategies: a global strategy and a local strategy. In
the global strategy, SHADE-CDT, the DE algorithm uses the SHADE mechanism to find a
complete CDT of given depth d with kernels of fixed size s. In the local strategy, SHADE-
CDT-BKS (BKS = Best Kernel Size), the SHADE mechanism is used to find the size of each
kernel and the kernels of an optimized CDT of a given depth d.

In both strategies, the images used for the CDT induction are processed, and each
pixel (instance) is encoded as the vector with the values of the pixels in the neighborhood
of size s× s surrounding it, adding the value 1 for the bias. Figure 4 shows an example of
an instance encoding associated with a pixel, considering a neighborhood of size 3× 3.

𝑥𝑖−1,𝑗−1 𝑥𝑖−1,𝑗 𝑥𝑖−1,𝑗+1

𝑥𝑖,𝑗−1 𝑥𝑖,𝑗 𝑥𝑖,𝑗+1

𝑥𝑖+1,𝑗−1 𝑥𝑖+1,𝑗 𝑥𝑖+1,𝑗+1

1 𝑥𝑖−1,𝑗−1 𝑥𝑖−1,𝑗 𝑥𝑖−1,𝑗+1 𝑥𝑖,𝑗−1 𝑥𝑖,𝑗 𝑥𝑖,𝑗+1 𝑥𝑖+1,𝑗−1 𝑥𝑖+1,𝑗 𝑥𝑖+1,𝑗+1

Vector associated to the pixel 𝑥𝑖,𝑗 with 𝑠 = 3 

Figure 4. Example of an instance codification associated with a pixel (size s = 3).
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Algorithm 1 presents the pseudocode of the buildMatrix function implemented to
obtain a matrix M with the vector representation associated with the pixels of the images
and the vector RLV with the real labels of these pixels.

Algorithm 1: Function buildMatrix
Input: kernel size (s), set of grayscale images (I) and their corresponding

ground-truth images (G) with labels 0 and 1.
Output: matrix M with the vector representation associated with the pixels of I

and vector RLV with the real labels of the pixels
1 aux ← smaller nearest integer to s/2;
// Construction of matrix M with the information of the pixels

2 Initialize matrix M← [ ];
3 np← 1 ; //np for number of pixels
4 for image in I do
5 [row, cols]← image dimension;
6 for i← (aux + 1) to (rows− aux) do
7 for j← (aux + 1) to (cols− aux) do
8 M(np, :) := Vector of size s2 + 1 associated to the pixel in position (i, j);

// Each vector is a row of M
9 np← np + 1

10 end
11 end
12 end

// Construction of vector RLV with the real labels of the pixels
13 Initialize vector RLV ← ( );
14 np← 1 ; //np for number of pixels
15 for ground-truth image in G do
16 [row, cols]← ground-truth image dimension;
17 for i← (aux + 1) to (rows− aux) do
18 for j← (aux + 1) to (cols− aux) do
19 RLV(np)← ground-truth label in position (i, j);

// Each label is an element of RLV
20 np← np + 1
21 end
22 end
23 end
24 Return: M, RLV

To manipulate the pixel information in the CDT, a real-valued vector of size s2 + 1
is used to represent a convolutional kernel associated with an internal CDT node. These
values represent the weights of the convolutional kernel and a value for the bias. Figure 5
shows an example of a convolutional kernel coding for a kernel of size 3.

𝑤1 𝑤2 𝑤3

𝑤4 𝑤5 𝑤6

𝑤7 𝑤8 𝑤9

𝑤0

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9

Convolutional kernel representation

Figure 5. Example of a convolutional kernel codification with size s = 3.
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A perceptron-like structure is used to determine which branch of the tree to take
when classifying an instance, where the dot product of the instance and the weights of the
corresponding kernel pass through an activation function that returns a label 0 or 1; see
Figure 6. This label indicates the node where the instance goes next, the kernel on the left
branch for label 0, or the kernel on the right branch for label 1.

36

𝑤0 𝑤1 𝑤2 … 𝑤𝑠2 𝑤𝑠2+1
Kernel

𝑥0 𝑥1 𝑥2 … 𝑥𝑠2 𝑥𝑠2+1

Sigmoid

∑𝑤𝑖𝑥𝑖 Activation

Function
{0,1}
Labels

𝑤0𝑥0

𝑤1𝑥1

𝑤2𝑥2

𝑤𝑠2
𝑥𝑠2

𝑤𝑠2+1𝑥𝑠2+1

⋮

Pixel

Figure 6. Processing an instance associated with a pixel.

The strategies implemented in this paper use this process to assign a label to each
instance with a CDT, passing it through the corresponding kernels until it reaches a leaf
node. The label assigned to the instance is obtained with the corresponding kernel in the leaf
node. The pseudocode for this process is presented in Algorithm 2 with the TreePer f orm
function, where the aptitude of a CDT is calculated. Moreover, in both strategies, the
F1-score metric is used to determine the fitness value of each individual in the process. The
F1-score compares the labels assigned by a model with the actual labels of the instances
to obtain the resulting fitness value between 0 and 1. This project aims to maximize this
fitness value, either globally or locally, using the DE algorithm with SHADE.

Global Strategy (SHADE-CDT)

The SHADE-CDT method is a global search strategy based on the methodology
proposed in [7]. In this method, the SHADE algorithm is used to induce a CDT of a given
depth d with kernels of size s. The population size (NP), the number of generations (NG),
and the memory size (H) for the SHADE algorithm are user-defined parameters. The
individuals in the population are vectors representing all the convolutional kernels in the
CDT, so the encoding of the potential solutions depends on two factors: the depth d of the
tree and the size of the convolutional kernel s. If the number of weights that are needed for
each kernel is s2 + 1, and the number of kernels in the CDT is 2d − 1, then the individuals of
the population are vectors of size (s2 + 1)(2d − 1) with random values chosen from −255
to 255. This range of values was chosen because grayscale images have an integer value
between 0 and 255 in each pixel, and the same range was given on the negative side to allow
the convolution kernel to take negative values if needed. Figure 7 shows an example of
encoding for a CDT of depth 3 and kernel size of 3, and Algorithm 3 shows the pseudocode
of this process with the GlobalCDT function.
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Algorithm 2: Function TreePerform
Input: Matrix of image information (M), real label vector (RLV), vector with the

convolutional kernels of the CDT (kernels), kernel size (s), and depth of the
CDT (d)

Output: Aptitude of a CDT
// Obtain a list of kernels from the vector kernels

1 Initialize kernelsList← { };
2 for index ← 1 to (2d − 1) do

// Kernel is formed by the first s2 + 1 elements in kernels vector
3 kernelsList{index} ← kernels(1 : s2 + 1);

// Remove the first s2 + 1 elements of kernels vector
4 kernels← kernels(s2 + 2 : end)
5 end
6 m← number of rows in M ;
// Perform the classification of each pixel

7 Initialize PLV ← () ; //Predicted label vector
8 for pixel ← 1 to m do
9 u← 1 ; //Current depth value

10 index ← 1 ;
11 while u ≤ d or kernelsList{index} ̸= ∅ do
12 kernel ← kernelsList{index} ;
13 r ← dot(M(pixel, :), kernel) ; //Dot product of an instance and the

kernel
14 ϕ← sigmoid(r) ; //Activation function (sigmoid)
15 if ϕ > 0.5 then
16 index ← 2 ∗ index + 1 ; //The instance goes to the right branch
17 else
18 index ← 2 ∗ index ; //The instance goes to the left branch
19 end
20 u← u + 1 ; //Add one level to the current depth
21 end
22 if index is odd then

// If the pixel ends in a right leaf, assign it class 1
23 PLV(pixel)← 1
24 else

// If the pixel ends in a left leaf, assign it class 0
25 PLV(pixel)← 0
26 end
27 end
28 aptitude← F1score(RLV, PLV);
29 Return: aptitude
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CDT structure
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Figure 7. Codification of the convolutional kernels in a CDT for the SHADE-CDT method.
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Algorithm 3: Function GlobalCDT
Input: Set of grayscale images (I) and their corresponding ground-truth images

(G), kernel size (s), depth of the CDT (d), population size (NP), number of
generations (NG) and memory size (H)

Output: Kernels of a CDT induced with the SHADE-CDT strategy and its aptitude
1 [M, PRL]← buildMatrix(s, I, G);
2 Initialize population P = {x1, x2, . . . , xNP} of vectors of size (s2 + 1) ∗ (2d − 1)

with random values chosen from −255 to 255;
3 xbest ← SHADE(P0 = P, N = NP, H, f = TreePer f orm(M, PRL, xi, s, d));
4 aptitude(xbest)← TreePer f orm(M, PRL, xbest, s, d);
5 Return: xbest, aptitude(xbest)

Local Strategy (SHADE-CDT-BKS)

The SHADE-CDT-BKS method is a local search strategy based on the proposal in [9]. The
main difference between the SHADE-CDT approach and the SHADE-CDT-BKS method is
that the SHADE algorithm is used to find the kernel sizes and the kernels of a CDT of a given
depth d. This is achieved by a systematic approach that ensures that each kernel partitions
the instances in the most effective way. The population size (NP), the number of generations
(NG), and the memory size (H) for the SHADE algorithm are user-given parameters.

In this proposal, the user provides a list S of possible sizes for the kernels, with odd values
s, and the depth d of the tree. The SHADE algorithm is applied to each value in S, where the
individuals of the population are real-valued vectors of size s2 + 1 with random values chosen
from−255 to 255; see Figure 5. For each value s, the individual with the best fitness is found,
and among them, the one with the best F1-score is selected as the best solution. In this way,
the CDT is induced by finding each kernel until the depth specified by the user is reached.

All instances are considered in the SHADE process for the root node kernel, and for the
other kernels, only the instances tagged with the class corresponding to the branch in which
the kernel is located are considered. With the SHADE-CDT-BKS method, a new kernel is
found only if more than 20 instances are considered for the SHADE process of the kernel.
These instances must belong to different classes, at least 5% of one of them. Otherwise, the
method does not find a new kernel. The pseudocode for this process is described in the
buildLocalCDT function of Algorithm 4. In this way, the SHADE-CDT-BKS method produces
an optimized CDT with different kernel sizes without using a pruning process; see Figure 8.
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Figure 8. Kernel selection for each internal node of the CDT with the SHADE-CDT-BKS method.
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Algorithm 4: Function buildLocalCDT
Input: Matrix of image information (M) and their corresponding vector of real

labels (PLR), kernel sizes (S), depth of the CDT (d), population size (NP),
number of generations (NG), and memory size (H)

Output: Structure of a CDT induced with the SHADE-CDT-BKS strategy
1 m← number of rows in M ; //m is the number of pixels in the images
2 Indexes = {1, 2, . . . , m};
3 LocalCount← |PLR|;
4 LocalLabelPercentage← 0.95 ∗ LocalCount;
5 C0 ← |{pixel ∈ Indexes : PLR(pixel) = 0}| ; //Number of class 0 pixels
6 C1 ← |{pixel ∈ Indexes : PLR(pixel) = 1}| ; //Number of class 1 pixels
7 if (LocalCount > 20) and (C1 < LocalLabelPercentage) and

(C2 < LocalLabelPercentage) then
8 for s in S do
9 Initialize population P = {x1, x2, . . . , xNP} of vectors of size

(s2 + 1) ∗ (2d − 1) with random values chosen from −255 to 255;
10 xbest(s)← SHADE(P0 = P, N = NP, H, f =

TreePer f orm(M, PRL, xi, s, 1));

11 aptitude(x(s)best)← TreePer f orm(M, PRL, xbest(s), s, 1)
12 end

13 xbest ← maxs∈S{aptitude(x(s)best)};
14 for pixel in Indexes do
15 r ← dot(M(pixel, :), xbest);
16 ϕ(pixel)← sigmoid(r);
17 end

// Indexes of instances going to the left branch
18 Indexesle f t = {pixel ∈ Indexes : ϕ(pixel) ≤ 0};

// Indexes of instances going to the right branch
19 Indexesright = {pixel ∈ Indexes : ϕ(pixel) > 0};

// Real labels of instances going to the left branch
20 PLRle f t = {PLR(pixel) ∈ PLR : ϕ(pixel) ≤ 0};

// Real labels of instances going to the right branch
21 PLRright = {PLR(pixel) ∈ PLR : ϕ(pixel) > 0} ;
22 end
23 if (xbest = null) or (Indexesle f t = ∅) or (Indexesright = ∅) or

(|PLRle f t| = LocalCount) or (|PLRright| = LocalCount) then
24 CDTStructure.le f t← null;
25 CDTStructure.right← null;
26 else
27 Mle f t ← M(Indexesle f t, :) ; //Instances going to the left branch
28 CDTStructure.le f t = buildLocalCDT(Mle f t, PLRle f t, S, d, NP, NG, H);
29 Mright ← M(Indexesright, :) ; //Instances going to the right branch
30 CDTStructure.right = buildLocalCDT(Mright, PLRright, S, d, NP, NG, H)

31 end
32 Return: CDTStructure

3. Experiments and Results

This section presents the results obtained by inducing a CDT using the SHADE-CDT
and SHADE-CDT-BKS methods on images from the Weizmann Horse Dataset [21] and
Blood detection in dark-field microscopy images obtained from Kaggle (https://github.com/
PerceptiLabs/bacteria/tree/main?tab=readme-ov-file accessed on 28 May 2024). The se-

https://github.com/PerceptiLabs/bacteria/tree/main?tab=readme-ov-file
https://github.com/PerceptiLabs/bacteria/tree/main?tab=readme-ov-file
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lection of these databases made it possible to compare the results with those described
in [6,7,9]. Three subsections are presented for each dataset: SHADE-CDT experiments,
SHADE-CDT-BKS experiments, and a comparison between methods. The first two sub-
sections show the experiments and describe the results. The last subsection compares the
two approaches based on the differences in the segmentation task per image. A review of
the explicability of a CDT is also included at the end of this section.

The proposed strategies were implemented in Matlab R2023b software. Table 1 pro-
vides the specifications of the computer that was used to perform the experiments.

Table 1. Specifications of the computer that was used to perform the experiments.

Operating system Windows 11 Pro 23H2

RAM 64 GB

Processor AMD Ryzen 5 5600G with Radeon Graphics

Processor speed 3.90 GHz

3.1. Weizmann Horse Dataset

The Weizmann Horse Dataset [21] consists of 327 manually segmented images of horses
of different colors and in a broad spectrum of landscapes. To perform experiments with the
methods proposed in this work, an image resizing procedure was applied to reduce the
number of pixel-associated instances in the CDT induction process to 40% of their original
size. Controlled experiments were performed to calibrate the parameter values of the
SHADE algorithm (population size NP, number of generations NG, and size of memories
H), using fixed training and test sets of 33 and 295 images, respectively. These proportions
were chosen based on the best result of the study in [7]; see Table 2 for details. For the
values of NP, NG, and H for each method, the different combinations of the following
values were considered: 50, 100, and 200 for NP and NG, and 15, 30, 50, and 100 for
H. After performing several experiments with these features, the highest F1-scores were
obtained with NP = 100, NG = 200, and H = 100 for the SHADE-CDT method, and with
NP = 50, NG = 200, and H = 100 for the SHADE-CDT-BKS method, so these six values
were maintained in the following experiments.

Table 2. Best result obtained with the CDT induction method proposed in [7] with the variant
DE/best/1/bin, and the parameters CR and F set to 0.9. A training dataset with a proportion of 1/10
(33 images) was used in the learning process.

Exp. Popsize Generations Depth F1-Score Accuracy Time

8 80 200 3 0.4882 0.6798 23.17 h

3.1.1. SHADE-CDT Experiments

To induce a CDT with the SHADE-CDT method, the following parameter values for
the structure of the CDT were considered: depths from one to five and kernel sizes three,
five, seven, and nine. Table 3 shows the results of 20 experiments performed with this
method under the aforementioned conditions. The best results for kernel sizes three, five,
and seven were obtained with a CDT of depth four in experiments 4, 9, and 14, respectively.
For kernel size nine, the best result was obtained in experiment 17 with a CDT of depth two.

Based on the results of experiment 17, where the best overall result was obtained with
a kernel of the maximum size considered, nine, and the best results by depth were obtained
with kernels of size nine, it is clear that the larger kernel size leads to a higher F1-score
for the Weizmann Horse Dataset. Figure 9 shows the CDT induced in this experiment,
along with the best and worst individual results obtained for the test dataset, the original
images, the ground truth, and the predictions generated using the SHADE-CDT method.
The F1-scores and accuracies obtained for these images are also displayed.
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Table 3. Experiments with the Weizmann Horse Dataset for CDT induction using the SHADE-CDT
method with NP = 100, NG = 200, and H = 100. The best result by kernel size is shown in bold.

Experiment Kernel Size Depth Time F1-Score Accuracy

1 3 1 28.41 min 0.45442 0.76264
2 3 2 35.86 min 0.47463 0.75427
3 3 3 42.62 min 0.45648 0.7625
4 3 4 48.87 min 0.47894 0.72317
5 3 5 56.43 min 0.47538 0.70138

6 5 1 34.94 min 0.45667 0.75605
7 5 2 43.31 min 0.49249 0.72448
8 5 3 49.02 min 0.49795 0.72471
9 5 4 56.95 min 0.49805 0.73129
10 5 5 1.09 h 0.49601 0.71724

11 7 1 41.36 min 0.45423 0.74869
12 7 2 51.27 min 0.50945 0.72868
13 7 3 58.68 min 0.50874 0.72947
14 7 4 1.11 h 0.5151 0.73056
15 7 5 1.27 h 0.50853 0.72809

16 9 1 51.3 min 0.47535 0.74975
17 9 2 1.44 h 0.52204 0.74759
18 9 3 1.71 h 0.51292 0.74353
19 9 4 2.05 h 0.51652 0.73279
20 9 5 1.57 h 0.51517 0.72943

1

Image 125

F1-score: 0.7947

Accuracy: 0.87957

Image 131

F1-score: 0.78267

Accuracy: 0. 83853 

Image 41

F1-score: 0.13621

Accuracy: 0.63351

Image 233

F1-score: 0.11345

Accuracy: 0.48136

EXPERIMENTO 17 HORSES – SHADE-CDT

Ground truthImage Predictions

Figure 9. CDT induced by the SHADE-CDT method in experiment 17. The two best and two worst
segmentation results obtained, with the original images, the ground truth (real segmented masks),
and the predictions are shown along with the corresponding image number, F1-score, and accuracy.

The analysis of individual images in the test set underscored the significant influence
of color and background structure on the model’s performance. The wide range of colors
of the horses strongly influenced the negative results of the model. In addition, they were
set against a variety of background structures—fences, trees, mountains, and plants. When
the images were converted to grayscale, the tones of these structures interfered with the
tones of the pixels corresponding to the horses, resulting in classification errors.

When applied to images of white horses, the proposed method produced a reverse
labeling result, highlighting the pixels corresponding to the background structures and
leaving out the horse’s shape, as illustrated in Figure 9.

Table 3 shows that the SHADE-CDT method gives more varied and better results
compared to those in [7]. None of the experiments achieved results like the F1-score of
80.4% obtained in [6], but their method for CDT induction required 12 h for training, and
the maximum time in the experiments presented in Table 3 was 2.05 h. These results show



Math. Comput. Appl. 2024, 29, 48 14 of 24

that explainable trees with shallow depth were effective since the induction of deeper trees
did not necessarily result in a better F1-score. As shown in Table 3, the best results were
obtained with a depth not greater than four.

3.1.2. SHADE-CDT-BKS Experiments

The following parameter values were considered to induce a CDT with the SHADE-
CDT-BKS method: depths from one to five, and two sets of kernel sizes, S = {3, 5, 7} and
S = {3, 5, 7, 9}.

Table 4 shows the results of 10 experiments performed with this method under the
conditions described above. The best result for the set of kernel sizes {3, 5, 7} was obtained
in experiment 4 with a CDT of depth four. For the other set of kernel sizes, the best result
was obtained in experiment 9 with a CDT of depth four.

Table 4. Experiments with the Weizmann Horse Dataset for CDT induction using the SHADE-CDT-
BKS method with NP = 50, NG = 200, and H = 100. The best result by set of kernel sizes is shown
in bold.

Experiment Kernel Sizes Depth Time F1-Score Accuracy

1 {3, 5, 7} 1 1.4 h 0.4755 0.75228
2 {3, 5, 7} 2 2.63 h 0.51567 0.70908
3 {3, 5, 7} 3 4.09 h 0.51902 0.67215
4 {3, 5, 7} 4 5.34 h 0.52558 0.66385
5 {3, 5, 7} 5 5.50 h 0.50859 0.59686

6 {3, 5, 7, 9} 1 1.67 h 0.48134 0.74936
7 {3, 5, 7, 9} 2 3.31 h 0.51361 0.67674
8 {3, 5, 7, 9} 3 4.88 h 0.50145 0.60426
9 {3, 5, 7, 9} 4 6.48 h 0.53651 0.67394
10 {3, 5, 7, 9} 5 7.44 h 0.53062 0.62843

The best overall result was obtained using the CDT of depth four induced in experi-
ment 9, shown in Figure A1 of Appendix B. Figure 10 shows the best and worst individual
results obtained for the test dataset, the original images, the ground truth, the generated
predictions, and the F1-score and accuracy obtained for each image. Again, the negative
results of the model were influenced by the color of the horses, as the white horses had
lower F1-scores, and the dark horses had higher scores.

Tables 3 and 4 show that the SHADE-CDT-BKS method produced better results than
the SHADE-CDT method and consequently, better results than those in [7].

Image 252

F1-score: 0.80303

Accuracy: 0.80765

Image 177

F1-score: 0.76492

Accuracy: 0. 77115 

Image 233

F1-score: 0.20843

Accuracy: 0.41393

Image 134

F1-score: 0.16417

Accuracy: 0.38396

EXPERIMENTO 9 HORSES – SHADE-CDT-BKS

Ground truthImage Predictions

Figure 10. The two best and two worst segmentation results from experiment 9 using the SHADE-
CDT-BKS method, with its corresponding image number, F1-score, and accuracy.
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3.1.3. Comparison between Methods

In Figure 11, images 125, 131, 41, and 233 are shown to compare the change in the
segmentation task between experiment 1 with the SHADE-CDT method and the results
with the CDT induced in experiments 4 and 9 by the SHADE-CDT-BKS method. Experiment
4 with the SHADE-CDT-BKS method was chosen because it gave the best F1-score for the
kernel sizes set S = {3, 5, 7}.

There are some important notes to make:

• The SHADE-CDT-BKS method outperformed the SHADE-CDT method with the
highest F1-score of 0.53651. Although it required more computational time due to the
use of the DE algorithm, |S| = 4 times in each node to induce the CDT, as suggested by
corresponding Tables 3 and 4, and the array (F1-score, accuracy) in blue in Figure 11.

• Analyzing images 41 and 233, it is clear that more pixels associated with the horse were
classified as class 1, as they should be; see the rows corresponding to these images
in Figure 11. The F1-scores of these images also supported this. For example, the
F1-score of image 41 increased significantly from 0.13621 in experiment 17 using the
SHADE-CDT method to 0.48607 using the SHADE-CDT-BKS method. It is important
to note that this increase indicates a shift in the distribution of the pixels in the CDT,
resulting in a more significant number of pixels with clear tones being assigned to
class 1.

• On the other hand, in the predictions for images 125 and 131, the profile of the
horses was extended by adding to class 1 the surrounding pixels that were previously
classified as pixels of label 0. This confirms a shift in the distribution of the pixels. See
the corresponding rows for these images in Figure 11.

(0.78267, 0. 83853) 131

(0.7947, 0. 87957) 125

(0.13621, 0. 63351) 41

(0.11345, 0. 48136) 233

(0.7367, 0. 76761)

(0.75591, 0.81983)

(0.48607, 0. 69726)

(0.20843, 0. 41393)

(0.73704, 0. 77939)

(0.72951, 0.81648)

(0.43156, 0. 64716)

(0.22071, 0. 42026)

Ground truthImage

SHADE-CDT

Experiment 17

Predictions

SHADE-CDT-BKS

Experiment 4

Predictions

SHADE-CDT-BKS

Experiment 9

Predictions

Para comparar

kernel trick

(0.52204, 0. 74759) (0.53651, 0.67394)(0.52558, 0.66385)

Figure 11. Comparison of the segmentation results for images 125, 131, 41, and 233 of the Weizmann
Horse Dataset for experiment 1 with the SHADE-CDT method and for experiments 4 and 9 with
the SHADE-CDT-BKS method. The original images, the ground truth, and the predictions for these
experiments are shown, along with their corresponding image number (under the original image)
and the array (F1-score, accuracy) under the corresponding image result. The overall F1-Score and
accuracy of each experiment are shown in blue under the corresponding column.

• Figure 11 shows that the increase in the overall F1-score between these experiments
was because the images with white horses received higher F1-scores; however, the
images with dark horses decreased their F1-score by adding more class 0 pixels to the
pixels corresponding to a horse (class 1).
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• Thus, even if the F1-score increased between these experiments, the comparison with
Figure 11 suggests that the model’s behavior on images as diverse as those in this
dataset could lead to classification errors because it is difficult for the learning process
to make the appropriate divisions in the dataset.

3.2. Blood Detection in Dark-Field Microscopy Images

The Blood detection in dark-field microscopy images is a dataset containing 366 dark-field
microscopy images for observing and segmenting erythrocytes in blood tissue. Each image
in the database was resized to a uniform size of 200× 200. This was performed to streamline
the CDT induction process by reducing the number of instances associated with the pixels.
It should be noted that certain images in this dataset were excluded from the training and
test sets because their ground truth contained only labels for class 0, indicating the absence
of erythrocytes for identification. See Appendix C for more details.

The experiments used predetermined training and test sets with a split of 70% and
30%, respectively. After removing 21 images, the training set consisted of 241 images, and
the test set had 104 images. The experiments with this dataset were intentionally limited
to CDTs of depth one and two. This decision was not arbitrary but was based on careful
consideration of the amount of information in the training set, the computational time
required, and the results obtained.

3.2.1. SHADE-CDT Experiments

For the SHADE-CDT method, the values NP = 100 and NG = 200 were considered
based on the results in [9]. Also, H = 100 was considered for the size of the memories in the
SHADE algorithm since this value seemed to be the best option in previous experiments.
Table 5 shows the results obtained with these parameter values, considering kernel sizes of
three, five, and seven, and CDTs of depth one and two.

Table 5. Experiments with the Blood Detection in Dark-Field Microscopy images for CDT induction
using the SHADE-CDT method with NP = 100, NG = 200, and H = 100. The best result by kernel size
is shown in bold.

Experiment Kernel Size Depth Time F1-Score Accuracy

1 3 1 11.36 h 0.74946 0.89667
2 3 2 14.68 h 0.60856 0.79846

3 5 1 12.64 h 0.62068 0.85601
4 5 2 16.45 h 0.47262 0.82742

5 7 1 15.68 h 0.52155 0.83746
6 7 2 20.33 h 0.49722 0.82554

The experiments showed that the induction of a CDT with the SHADE-CDT method
gave better results with shallow convolutional trees. The results of experiments 1, 3, and 5
in Table 5 with trees of depth one outperformed those with depth two at each kernel size.

Experiment 1 achieved the best result for this dataset by inducing a CDT of depth one
with a kernel of size three. Figure 12 shows the CDT induced in this experiment, along with
the best and worst individual results obtained for the test dataset, the original images, the
ground truth, and the predictions generated using the SHADE-CDT method. The F1-scores
and accuracies obtained for these images are also presented. This experiment yielded F1-
scores higher than 0.9 for some images. However, it is important to note that due to several
structures with low intensity labeled as class 1 in the ground truth, image 331 received an
F1-score of less than 0.03, significantly reducing the average F1-score. The second image
with the lowest score, image 85, had an F1-score of 0.35623. While this score may not
be exceptionally high, the corresponding ground-truth image and the predicted labels
demonstrated the precision of the CDT in identifying the brighter parts of the structure in
the original image.
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With the results for experiments 1, 3, and 6 shown in Table 5 and those shown in [9],
we can conclude that this dataset had a better segmentation with shallow CDTs of depth
one, since the best results by kernel size were obtained with CDTs of this depth.EXPERIMENTO 1 Celuklas – SHADE-CDT

Image 127

F1-score: 0.9464

Accuracy: 0.94597

Image 74

F1-score: 0.93128

Accuracy: 0. 95886 

Image 85

F1-score: 0.35623

Accuracy: 0.82668

Image 331

F1-score: 0.029728

Accuracy: 0.74691

Ground truthImage Predictions

Figure 12. CDT induced by the SHADE-CDT method in experiment 1. The two best and two worst
segmentation results obtained with the original images, the ground truth, and the predictions are
shown, along with the corresponding image number, F1-score, and accuracy.

3.2.2. SHADE-CDT-BKS Experiments

After analyzing the results and the computational time used for the experiments with
the SHADE-CDT method, it was decided to reduce the population size NP to 50 for the
SHADE-CDT-BKS method, keeping the number of generations NG = 200 and the size of
the memories H = 100. Table 6 shows the results obtained under these conditions. As
expected, the computational time increased with this method since the DE algorithm was
applied |S| = 3 times to find each CDT node.

As with the SHADE-CDT method, the best result was obtained with a CDT of depth
one and kernel size three, i.e., in experiment 1; see Figure 13. In that experiment, as in the
SHADE-CDT method, image 331 had the worst F1-score. Image 303 was the second-worst
segmented image with an F1-score higher than 0.3. In that case, the original image had
several structures with brighter parts that were not considered as label 1 in the ground
truth, so the CDT had classification errors.EXPERIMENTO 1 Celuklas – SHADE-CDT-BKS

Image 127

F1-score: 0.94649

Accuracy: 0.94524

Image 74

F1-score: 0.92838

Accuracy: 0. 95571 

Image 303

F1-score: 0.33058

Accuracy: 0.79748

Image 331

F1-score: 0.066481

Accuracy: 0.75003

Ground truthImage Predictions

Figure 13. CDT induced by the SHADE-CDT-BKS method in experiment 1. The two best and two
worst segmentation results obtained with the original images, the ground truth, and the predictions
are shown on the right, along with the corresponding image number, F1-score, and accuracy.



Math. Comput. Appl. 2024, 29, 48 18 of 24

Table 6. Experiments with the Blood Detection in Dark-Field Microscopy Images for CDT induction
using the SHADE-CDT-BKS method with NP = 50, NG = 200, and H = 100. The best result by kernel
size is shown in bold.

Experiment Kernel Sizes Depth Time F1-Score Accuracy

1 {3, 5, 7} 1 1.61 days 0.72588 0.88132
2 {3, 5, 7} 2 3.15 days 0.66765 0.84057

3.2.3. Comparison between Methods

In Figure 14, images 127, 74, 85, and 331 are shown to compare the change in the
segmentation task between experiment 1 with the SHADE-CDT method and the results
with the CDT induced in experiments 1 and 2 by the SHADE-CDT-BKS method. Experiment
2 with the SHADE-CDT-BKS method was chosen because it gave the third best F1-score for
the dataset.

Para comparar

127 (0.9464, 0.94597) (0.94649, 0.94524) (0.93221, 0.92972)

74 (0.93128, 0.95886) (0.92838, 0.95571) (0.91469, 0.94689)

85 (0.35623, 0.82668) (0.4029, 0.83351) (0.47385 0.84576)

331 (0.02973, 0.74691) (0.06648, 0.75003) (0.08373, 0.7517)

Ground truthImage

SHADE-CDT

Experiment 1

Predictions

SHADE-CDT-BKS

Experiment 1

Predictions

SHADE-CDT-BKS

Experiment 2

Predictions
(0.74946, 0.89667) (0.72588, 0.88132) (0.66765, 0.84057)

Figure 14. Comparison of the segmentation results for images 127, 74, 85, and 331 of the Blood
detection in dark-field microscopy images for experiment 1 with the SHADE-CDT method and for
experiments 1 and 2 with the SHADE-CDT-BKS method. The original images, the ground truth,
and the predictions for these experiments are shown, along with their corresponding image number
(under the original image) and the array (F1-score, accuracy) under the corresponding image result.
The F1-score and accuracy of each experiment are presented in blue under their respective column.

The following observations can be made about the results of this dataset:

• The SHADE-CDT method outperformed the SHADE-CDT-BKS method with the
highest F1-score of 0.74946, using a CDT of depth one and a kernel size of three. Thus,
a normal convolution process was the best way to segment the images in this dataset.
It is also important to note that in the SHADE-CDT-BKS experiments, the population
size was decreased to reduce the computation time. For this reason, the result was
slightly worse.

• The predictions for images 85 and 331 showed that the CDT induced for any of the
methods proposed in this work failed to obtain a high F1-score in images where some
structures with low tones were labeled as class 1 in the corresponding ground truth.
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For example, image 331 consistently exhibited an F1-score below 0.1. This is because
in the ground truth, certain structures that were difficult to see in the original image,
such as those with tones similar to the background tones, were classified as class 1.
Something similar happened in image 85, where the brighter pixels were identified
with label 1, and some pixels with a tone like the background tone were also labeled
as class 1.

• The predictions for images 127 and 74 showed that the CDT induced with these
methods gave good results when the original images contained bright structures
labeled as class 1 in their corresponding ground truth.

• Figure 14 shows that the decrease in the overall F1-score between these experiments
was because the images with brighter structures received higher F1-scores when these
structures were labeled as class 1 in the ground truth, but the images with structures
labeled as class 1 with tones similar to the tones of the background pixels had lower
F1-scores.

• For these experiments, it is clear that the depth of the induced CDT affected the F1-
score, probably leading to overfitting in the training data set. However, it is important
to note a difference between experiment 2 with the SHADE-CDT method and experi-
ment 2 with the SHADE-CDT-BKS method; see Tables 5 and 6. In experiment 2 with
the SHADE-CDT method, a CDT of depth two was induced with kernels of size three,
yielding an F1-score of 0.60856 against the CDT induced in experiment 2 with the
SHADE-CDT-BKS method, with an F1-score of 0.66765, also of depth two, but with
two kernels of size three and one kernel of size seven; see Figure 15. In these experi-
ments, the same depth was considered for the CDT, but better results were obtained
with the SHADE-CDT-BKS method since, in that case, kernels of different sizes were
used. This observation leads to the question of whether considering deeper trees with
this method allows for a better partitioning of the dataset. These experiments were
not initially considered due to the high computational time required for this type of
experiment. However, they could be considered by reducing the kernel sizes, i.e., by
using S = {3, 7}.

• Thus, the comparison with Figure 14 suggests that the behavior of the model on
the images of this dataset was influenced by those images where structures with
tones similar to the tones of the pixels in the background were labeled as class 1, or
conversely, where pixels with lighter tones were labeled as class 0.EXPERIMENTO 2 Celuklas – SHADE-CDT-BKS

Image 127

F1-score: 0.93221

Accuracy: 0.92972

Image 79

F1-score: 0.92492

Accuracy: 0.97215

Image 303

F1-score: 0.17336

Accuracy: 0.51804

Image 331

F1-score: 0.083734

Accuracy: 0.7517

Ground truthImage Predictions

Figure 15. CDT induced by the SHADE-CDT-BKS method in experiment 2. The two best and two
worst segmentation results obtained with the original images, the ground truth, and the predictions
are shown on the right, along with the corresponding image number, F1-score, and accuracy.

3.3. Review of Explainability in a CDT

The structure of a CDT allows an analysis of how each internal kernel classifies the
image pixels, since the user can follow the CDT structure through convolutional operations
on an image to analyze the results for each branch and node. The kernels obtained by the
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proposed methods are expected to classify image pixels by patterns and shapes, as shown
in Figure 16a.

For example, in the Weizmann Horse dataset, the segmentation performance of each
kernel can be analyzed on a CDT of depth two in image 125; see Figure 16b. The first kernel
classified the pixels well, while the lower kernels focused exclusively on the horse’s profile.
Similarly, in the case of Blood detection in dark-field microscopy images, a CDT of depth
one, i.e., one kernel of size three, performed an exemplary classification of the pixels in
image 74; see Figure 16c. This analysis can be used to identify the reasons why the model
made mistakes in images with low F1-scores.

24

The 125th image of the Weizmann horse dataset, segmented by kernel 

of a CDT of depth 2.

Image 74 of the Blood detection in dark field microscopy images, 

segmented by a CDT of depth 1.

(a)

24

The 125th image of the Weizmann horse dataset, segmented by kernel 

of a CDT of depth 2.

Image 74 of the Blood detection in dark field microscopy images, 

segmented by a CDT of depth 1.

(b)

24

The 125th image of the Weizmann horse dataset, segmented by kernel 

of a CDT of depth 2.

Image 74 of the Blood detection in dark field microscopy images, 

segmented by a CDT of depth 1.(c)

Figure 16. (a) Example of the expected explainability in a CDT. Here, the kernels performed the
classification of image pixels by patterns. (b) Segmentation of image 125 of the Weizmann Horse
dataset by a CDT of depth 2. (c) Segmentation of image 74 of the Blood detection in dark field
microscopy images by a CDT of depth 1.

4. Conclusions and Future Work

This paper presented various experiments analyzing the performance of the globally
induced CDT and locally induced CDT using the SHADE-CDT and SHADE-CDT-BKS
methods, respectively. These methods are new variants of the proposals made in [7,9], but
they use the SHADE algorithm to guide the differential evolution process.

It is crucial to consider the time required for the computation of the fitness function
during the DE process to analyze the performance of the methods proposed in this paper.
In the global approach, the SHADE-CDT method, each pixel in the training set must pass
through the corresponding kernels of a CDT. Since each individual in the population
represents a CDT during the DE process, the F1-score and computation time for each CDT
increase with the number of training instances. In the local approach, the SHADE-CDT-
BKS method, since the training set is partitioned kernel by kernel, the F1-score of each
individual in the population is computed using a classical convolution process. However,
this approach is complex because for each kernel, multiple sizes in the set S are analyzed
to select the optimal kernel size, i.e., the kernel size with the best F1-score. Thus, the DE
process must be performed |S| times for each kernel, which increases the computation time.

The best results in this paper were obtained with the local search strategy, but the
computational time used for this method was high compared to the other one. The SHADE
algorithm outperformed the results obtained in [7] with the Weizmann Horse dataset. How-
ever, the result of the F1-score obtained in [6], equal to 0.804, was better than the results
in this work. Although it is important to mention that in [6], the proportions in the train
and test sets employed were two-thirds and one-third, respectively, and the CDT obtained
was reported with a depth of 18 with kernels of size 31, so the results presented here are
explicable models compared to the other.
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Regarding the Blood detection in dark-field microscopy images, F1-scores greater than
0.92 were reported in [9]. However, in these experiments, the training and test sets with 8
and 4 images, respectively, were generated from a pre-selection of 12 images with similar
characteristics in the dataset. This pre-selection allowed the authors to analyze the behavior
of the model, but in the experiments performed here, only some of the images were
excluded since in their ground truths, all the pixels were labeled as class 0. Thus, the
F1-scores obtained were lower than those in [9] but with more interesting features to analyze.

Thanks to the experiments carried out in this work, the following conclusions can
be highlighted:

• The DE algorithm can induce explicable CDTs in conjunction with the SHADE algo-
rithm, and both methods, SHADE-CDT and SHADE-CDT-BKS, can be trained with
small data sets.

• It is important to note that the model has certain limitations. The two datasets analyzed
revealed that the model struggled with textures and specific background components.
This is particularly relevant since the project was limited to grayscale images. The use
of such images can potentially lead to confusion regarding the tones of the different
structures within them, thereby increasing the risk of classification errors.

• After performing the multiple experiments shown in this paper, both methods, SHADE-
CDT and SHADE-CDT-BKS, seem to have a linear complexity time with respect to the
tree depth.

• Explainable CDTs with shallow depth are effective since inducing deeper trees does
not necessarily result in a better F1-score.

• This work highlights the importance of generating explainable models where the
segmentation process is clear to the user.

For future work, some techniques to reduce individuals’ evaluation time will be
implemented. Furthermore, the performance of the proposed models with other image
segmentation approaches, including Convolutional Neural Networks, will be compared.
Finally, the possibility of using alternative fitness functions will be explored.
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Appendix A. SHADE Algorithm

The pseudocode shown in Algorithm A1 corresponds to the SHADE algorithm pro-
posed in [10], where the differential evolution process is performed using a historical
memory of successful parameters for the crossing rate (CR) and scale factor (F) in the
mutation and crossover operators, respectively.

Algorithm A1: SHADE algorithm

// Initialization phase
1 G ← 0;

2 Initialize population P0 =
{

x(1)1 , . . . x(0)N

}
randomly;

3 Set all values in MCR, MF to 0.5;
4 Archive A = ∅;
5 Index Counter k← 1;
// Main loop

6 while Termination criteria are not met do
7 SCR = ∅;
8 SF = ∅;
9 for i = 1 to N do

10 ri ← Select from [1, H] randomly;

11 CR(G)
i ← randni(MCR,ri , 0.1);

12 F(G)
i ← randci(MF,ri , 0.1);

13 p(G)
i ← rand[pmin, 0.2];

14 Generate trial vector u(G)
i by current-to-pbest/1/bin;

15 for i = 1 to N do
16 if f

(
u(G)

i

)
≤ f

(
x(G)

i

)
then

17 x(G+1)
i ← u(G)

i ;
18 else
19 x(G+1)

i ← x(G)
i ;

20 end

21 if f
(

u(G)
i

)
< f

(
x(G)

i

)
then

22 x(G)
i → A;

23 CR(G)
i → SCR;

24 F(G)
i → SF;

25 end
26 end
27 Whenever the size of the archive exceeds |A|, randomly selected

individuals are deleted so that |A| ≤ |P|;
28 if SCR ̸= ∅ and SF ̸= ∅ then
29 Update MCR,k, MF,k based on SCR, SF;
30 k ++;
31 if k > H then
32 k← 1
33 end
34 end
35 end
36 end
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Appendix B. CDT for the Weizmann Horse Dataset

In Figure A1, the CDT induced for the Weizmann Horse dataset with the SHADE-
CDT-BKS method in experiment 9 is shown. This CDT consists of 15 convolution kernels
with the following dimensions: kernel 1–7, kernel 2–3, kernel 3–5, kernel 4–9, kernel 5–5,
kernel 6–9, kernel 7–3, kernel 8–9, kernel 9–7, kernel 10–9, kernel 11–3, kernel 12–7, kernel
13–7, kernel 14–7, and kernel 15–3.

EXPERIMENTO 9 HORSES – SHADE-CDT-BKS

Figure A1. CDT induced with the SHADE-CDT-BKS method in experiment 9 for the Weizmann
Horse dataset.

Appendix C. Analysis of Blood Detection in Dark-Field Microscopy Images

The images displayed in this section were not used for training or testing during the
CDT induction with the Blood Detection in Dark-Field Microscopy images dataset.

The analysis excluded the following 21 images: 13, 45, 61, 62, 63, 77, 86, 87, 88, 156,
161, 162, 163, 269, 288, 305, 308, 320, 324, 328, and 337. All their ground-truth labels were of
class 0, representing the background of the images. However, it is important to note that
some structures were visible in the original images, as shown in Figure A2.

Image 13

Image 62

Image 161

Ground truthImage

Figure A2. Examples of images excluded in the training and testing process for the CDT induction
with the Blood detection in dark-field microscopy images.

This characteristic consistently caused errors in the segmentation process of the in-
duced CDTs when using any of the methods proposed in this work with all the images in
the dataset. The structures observed in these 21 images significantly shifted the threshold
for the segmentation task, resulting in a notable decrease in F1-score values.
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