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Abstract: In this paper, Lie symmetries and Noether symmetries along with the corresponding conser-
vation laws are derived for weakly nonlinear dispersive magnetohydrodynamic wave equations, also
known as the triple degenerate derivative nonlinear Schrödinger equations. The main goal of this
study is to obtain Noether symmetries of the second-order Lagrangian density for these equations
using the Noether symmetry approach with a gauge term. For this Lagrangian density, we compute
the conserved densities and fluxes corresponding to the Noether symmetries with a gauge term,
which differ from the conserved densities obtained using Lie symmetries in Webb et al. (J. Plasma
Phys. 1995, 54, 201–244; J. Phys. A Math. Gen. 1996, 29, 5209–5240). Furthermore, we find some new
Lie symmetries of the dispersive triple degenerate derivative nonlinear Schrödinger equations for
non-vanishing integration functions Ki(t) (i = 1, 2, 3).
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1. Introduction

Nonlinear finite amplitude Alfvén waves and magnetosonic waves are types of mag-
netohydrodynamic (MHD) waves that propagate in a plasma, which is a state of matter
consisting of charged particles (ions and electrons) and magnetic fields. These waves are
described by the MHD equations, a set of fluid-like equations that govern the behavior
of magnetized plasmas [1]. Both types of waves play crucial roles in the dynamics of
magnetized plasmas, which are commonly found in astrophysical environments such as
the solar wind and magnetospheres of planets, as well as in laboratory plasma experiments.
Understanding the nonlinear aspects of these waves is essential to reaching a more accurate
description of the complex interactions and behaviors that occur in such environments.

Alfvén waves are characterized by the propagation of perturbations in the magnetic
field, with the plasma particles moving in spiral or helical paths around the magnetic field
lines. If the wave’s amplitude is not infinitesimally small and the wave behavior cannot be
described by linear theory, then we refer to the “nonlinear finite amplitude” of the wave.
In the nonlinear regime, the amplitude of the wave becomes significant and interactions
between different wave components become important. Alfvén waves obey the derivative
nonlinear Schrödinger (DNLS) equation [2,3]:

∂ψ

∂t
+

V3
A

4(V2
A − a2

g)

∂

∂x

(
|ψ|2ψ

)
+

i
2

χVA
∂2ψ

∂x2 = 0 (1)

where VA and ag are respectively the Alfvén speed and the gas sound speed, χ = VA/Ωp is
the ion inertial length, Ωp is the proton gyro-frequency, and ψ = v + iw is the normalized
complex transverse-wave magnetic field perturbation.

Magnetosonic waves, also known as MHD fast waves, are another type of MHD wave
which involve both magnetic and acoustic perturbations in a plasma [4]. They consist of a
combination of the fast magnetosonic mode and the entropy mode. The fast magnetosonic
mode is characterized by compressional waves that involve variations in the magnetic field
and plasma density. Magnetosonic waves can propagate in various directions with respect
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to the magnetic field, and their behavior is influenced by plasma conditions such as density,
temperature, and magnetic field strength. Similar to nonlinear Alfvén waves, nonlinear
finite-amplitude magnetosonic waves involve situations where the amplitude of the wave
is non-negligible and nonlinear effects become important.

If a physical system exhibits continuous symmetry in its action, i.e., the action remains
unchanged under certain continuous transformations, then there exists a conserved quantity
associated with that symmetry. Symmetries of an action correspond to transformations
of the system that leave the action unchanged. Noether’s theorem establishes that these
symmetries are associated with conserved quantities, often referred to as ’Noether charges’
or ’Noether currents’ (see the recent review in [5] on the physical significance of Noether
symmetries). Furthermore, in the quantum field theory context, Noether’s theorem plays a
crucial role in connecting symmetries to the conservation of various quantities, including
energy, momentum, angular momentum, and charge.

The rest of this paper is arranged as follows: in Section 2, we introduce the triple
degenerate DNLS system; in Section 3, we derive both Noether symmetries and Lie point
symmetries of the latter system; and in final section, Section 4, the conclusions are presented.

2. The TDNLS System

In order to derive the DNLS Equation (1), it is assumed that the Alfvén and sound
speeds are well separated and distinct. Previous papers [2,3] considered the appropriate
form of the wave evolution equations for quasiparallel propagation of the Alfvén and
magneto-acoustic modes near the triple umbilic point, in which the sound speed and Alfvén
speed are almost equal, that is, a2

g/V2
A − 1 = ϵ∆, where ϵ is the perturbation parameter

representing the wave amplitude and ∆ is a constant of order unity. The coefficient of the
nonlinear term for this limit in the DNLS Equation (1) diverges, and a modified version of
the method of multiple scales must be used considering the fact that ϵ∆ is a small quantity.
If the Alfvén, fast magneto-acoustic, and slow magneto-acoustic waves have the same phase
speed, then the resulting equations at the lowest order in ϵ are appropriately described as
the triple degenerate DNLS system (the TDNLS system).

Considering waves which propagate in the x direction and assuming that all quantities
are dependent on x and t only, the dimensional and dimensionless forms of the TDNLS
equations are as presented in [2,3]. In this paper, we consider the dimensionless forms of
the TDNLS equations provided by

ut +
∂

∂x

[
1
2

(
Γu2 + v2 + w2

)]
= 0 , (2)

vt +
∂

∂x
[(u − ∆)v − χwx] = 0 , (3)

wt +
∂

∂x
[(u − ∆)w + χvx] = 0 , (4)

where u represents the density or x component of the fluid velocity perturbation and
Γ = γg + 1, with γg being the gas adiabatic index. It has been shown [2] that the TDNLS
equations admit both Lagrangian and Hamiltonian variational formulations. By taking
u = Ux, v = Vx, w = Wx and ψ = v + iw = Ψx, the TDNLS Equations (2)–(4) become

∂

∂x

[
Ut +

1
2

(
Γ U2

x + ΨxΨ∗
x

)]
= 0 , (5)

∂

∂x
[Ψt + (Ux − ∆)Ψx + iχΨxx] = 0 , (6)

∂

∂x
[Ψ∗

t + (Ux − ∆)Ψ∗
x − iχΨ∗

xx] = 0 , (7)
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where ∗ denotes complex conjugation and U, V, W, and Ψ = V + iW are potentials for
u, v, w, and ψ. An alternative form of the above equations in terms of U, V, and W is

E1 ≡ Ut +
1
2

(
Γ U2

x + V2
x + W2

x

)
− K1(t) = 0 , (8)

E2 ≡ Vt + (Ux − ∆)Vx − χWxx − K2(t) = 0 , (9)

E3 ≡ Wt + (Ux − ∆)Wx + χVxx − K3(t) = 0 , (10)

where K1(t), K2(t) and K3(t) are integration functions. The latter equations are called the
potential form of the TDNLS equations in [2].

We can obtain Equations (5)–(7) by extremizing the variational functional

A[U, Ψ, Ψ∗] =
∫∫

L dxdt , (11)

where the Lagrangian density L is provided by

L =
1
3

Γ U3
x + (Ux − ∆)ΨxΨ∗

x + UxUt +
1
2
(ΨxΨ∗

t + Ψ∗
xΨt) +

i
2

χ(Ψ∗
xΨxx − ΨxΨ∗

xx) , (12)

which can be written as

L =
1
3

Γ U3
x + (Ux − ∆)

(
V2

x + W2
x

)
+ UxUt + VxVt + WxWt + χ(WxVxx − VxWxx) . (13)

By varying the functional (11) with respect to U, Ψ∗, and Ψ, we find Equations (5), (6) and
(7), respectively. These equations can actually be written as

δA
δU

= E1 ,
δA
δΨ∗ =

1
2

E2 ,
δA
δΨ

=
1
2

E3 , (14)

where δA/δUi denotes the variational derivatives of A with respect to Ui = (U, Ψ, Ψ∗).

3. Symmetries and Conservation Laws

The purpose of this article is to study the Lie symmetries and Noether symmetries
with the gauge function and the corresponding conservation laws of the TDNLS equations,
which we deal with in the following.

3.1. Noether Symmetries

The usual Noether symmetry approach with a boundary (or gauge) term is valuable
in addressing a variety of problems in physics and applied mathematics. In order to
study the Lagrangian symmetries for the TDNLS equations, we can consider a Lagrange
function L(xα, qj, qj

,α, qj
,αβ) depending on second-order derivatives, which gives rise to the

third-order Euler–Lagrange equations

δL
δqi ≡

∂L
∂qi − Dµ

(
∂L
∂qi

,µ

)
+ DµDν

(
∂L

∂qi
,µν

)
= 0 , (15)

where Dµ = ∂xµ + qi
,µ∂qi + qi

,µν∂qi
,ν
+ qi

,µαβ∂qi
,αβ

is the total derivative operator on the 2-th

jet space, qj
,µ = ∂qj/∂xµ and qj

,µν = ∂2qj/∂xµ∂xν, and so on. Here, the indexes i, j, ... and
µ, ν, α, ... represent the dependent and independent variables, respectively.

Let us consider, in particular, an action integral S =
∫
L(xα, qj, qj

,α, qj
,αβ)dxµ which re-

mains invariant under the one-parameter infinitesimal transformation x̄µ = xµ + ϵ ξµ(xν, qi),
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q̄i = qi + ϵ ηi(xν, qj), in which ϵ is an infinitesimal parameter such that ϵ2 → 0 if and only
if S̄ = S, that is,

ξµ ∂L
∂xµ + ηi ∂L

∂qi + ηi
α

∂L
∂qi

,α
+ ηi

αβ

∂L
∂qi

,αβ

+ L(Dµξµ) = Dµ f µ , (16)

which is equivalent to X[2]L + L(Dµξµ) = Dµ f µ, where the coefficients ηi
α and ηi

αβ are

defined as ηi
α = Dαηi − qi

,βDαξβ and ηi
αβ = Dβηi

α − qi
,αµDβξµ, respectively, and f µ is a

boundary (or gauge) term which should be determined. The expression in (16) is Noether’s
first theorem, and the generator X = ξµ∂xµ + ηi ∂qi is called Noether symmetry for the
Lagrangian L. Noether’s second theorem indicates that for every Noether point symmetry
X there exists a conserved vector J = Jµ∂xµ , or a current density, where Jµ is defined as [6]

Jµ = f µ −
[

ξµL+
(

ηi − ξαqi
,α

)( ∂L
∂qi

,µ
− Dν

∂L
∂qi

,µν

)]
− Dν(η

i − qi
,αξα)

∂L
∂qi

,µν

, (17)

which satisfies the local conservation law Dµ Jµ = 0. For the TDNLS equations, the indepen-
dent variables and dependent variables (or the generalized coordinates) are respectively
denoted as xµ = {t, x} with µ = 0, 1 and qi = {U, V, W} with i = 1, 2, 3. When we
apply the conservation law, the resulting conserved flow vector components related to the
Lagrangian (13) are as follows:

J0 = −ξ0
[

1
3

Γ U3
x + (Ux − ∆)

(
V2

x + W2
x

)
+ χ(WxVxx − VxWxx)

]
+ξ1

(
U2

x + V2
x + W2

x

)
− η1Ux − η2Vx − η3Wx + f 0 , (18)

J1 = ξ0
{

U2
t + V2

t + W2
t + Ut

(
Γ U2

x + V2
x + W2

x

)
+ 2(Ux − ∆)(VtVx + WtWx) + 2 χ(WtVxx − VtWxx)

+χ(WxVtx − VxWtx)
}
+ ξ1

{2
3

Γ U3
x + (2Ux − ∆)

(
V2

x + W2
x

)
+ 2 χ(WxVxx − VxWxx)

}
+χ(WxVt − VxWt)

(
ξ0

,x + Uxξ0
,U + Vxξ0

,V + Wxξ0
,W

)
− η1

(
Ut + Γ U2

x + V2
x + W2

x

)
−η2[Vt + 2(Ux − ∆)Vx − 2 χWxx]− η3[Wt + 2(Ux − ∆)Wx + 2 χVxx]

−χ Wx

(
η2

,x + Uxη2
,U + Vxη2

,V + Wxη2
,W

)
+ χ Vx

(
η3

,x + Uxη3
,U + Vxη3

,V + Wxη3
,W

)
+ f 1 , (19)

where J0 and J1 are the conserved density and flux, respectively. For these quantities, the
conservation law of the TDNLS system is of the form

D · J = 0 ⇔ Dt J0 + Dx J1 = 0 , (20)

where D = (Dt, Dx), J = (J0, J2), and the differential operators Dt and Dx are

Dt =
∂

∂t
+ Ut

∂

∂U
+ Vt

∂

∂V
+ Wt

∂

∂W
+ Utx

∂

∂Ux
+ Utt

∂

∂Ut
+ Vtx

∂

∂Vx
+ Vtt

∂

∂Vt

+Wtx
∂

∂Wx
+ Wtt

∂

∂Wt
+ Vtxx

∂

∂Vxx
+ Wtxx

∂

∂Wxx
, (21)

Dx =
∂

∂x
+ Ux

∂

∂U
+ Vx

∂

∂V
+ Wx

∂

∂W
+ Uxx

∂

∂Ux
+ Utx

∂

∂Ut
+ Vxx

∂

∂Vx
+ Vtx

∂

∂Vt

+Wxx
∂

∂Wx
+ Wtx

∂

∂Wt
+ Vxxx

∂

∂Vxx
+ Wxxx

∂

∂Wxx
+ Vtxx

∂

∂Vtx
+ Wtxx

∂

∂Wtx
. (22)
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The energy functional associated with the Lagrangian L is defined by

EL = qj
,t

∂L
∂qj

,t

−L . (23)

This is actually the Hamiltonian of the system. Hence, the EL associated with (13) has the
following form:

EL = −
[

1
3

Γ U3
x + (Ux − ∆)

(
V2

x + W2
x

)
+ χ(WxVxx − VxWxx)

]
. (24)

For the TDNLS equations, the dependencies of the Lagrangian (13) yield

L = L(t, x, U, V, W, Ut, Vt, Wt, Ux, Vx, Wx, Vxx, Wxx).

It is explicitly observed that the Lagrangian (13) leads to third-order equations of mo-
tion, i.e., the TDNLS Equations (5)–(7). Therefore, we consider the Noether symmetry
condition (16) to search for the Noether symmetry generator such that

X = ξ0 ∂

∂t
+ ξ1 ∂

∂x
+ η1 ∂

∂U
+ η2 ∂

∂V
+ η3 ∂

∂W
, (25)

where the components ξ0, ξ2, η1, η2, and η3 are dependent on x, t, U, V, and W. Substituting
the Lagrangian (13) into the Noether symmetry condition (16) yields the following set of
partial differential equations:

ξ0
,x = 0 , ξ0

,U = 0 , ξ0
,V = 0 , ξ0

,W = 0 , ξ1
,U = 0 , ξ1

,V = 0 , χξ1
,W = 0 ,

η1
,U = 0 , η1

,V = 0 , η2
,x = 0 , η2

,U = 0 , η2
,V = 0 , χη3

,U = 0 , η3
,W = 0 ,

χη2
,WW

= 0 , χη3
,VV

= 0 , η1
,W − ∆ξ1

,W = 0 , η1
,W + η3

,U = 0 , η2
,W + η3

,V = 0 ,

Γη1
,V + 2η2

,U = 0 , Γη1
,x − ξ1

,t = 0 , Γ(3 η1
,U + ξ0

,t − 2ξ1
,x) = 0 , (26)

f 0
,t + f 1

,x = 0 , η1
,t − f 1

,U = 0 , η1
,x − f 0

,U = 0 , η2
,x − f 0

,V = 0 , η3
,x − f 0

,W = 0 ,

Γη1
,W + 2η3

,U = 0 , 2∆η3
,x − η3

,t + f 1
,W = 0 , 2∆η2

,x − η2
,t + χ η3

,xx + f 1
,V = 0 ,

ξ0
,t − 2ξ1

,x = 0 , η1
,x − ξ1

,t + ∆(ξ1
,x − ξ0

,t) = 0 , 2χ η3
,xV

− η1
,x + ξ1

,t − ∆(ξ1
,x − ξ0

,t) = 0 ,

η3
,x − ∆ η3

,U = 0 , η1
,W − ∆ ξ1

,W = 0 , χ(ξ1
,xx − ξ1

,tt)− 2 ∆(η2
,W + η3

,V) = 0 .

Now, Equation (26) can be solved to obtain the components ξ0, ξ2, η1, η2, and η3 of the
Noether symmetry generator in (25) and the gauge vector components f 0 and f 1 in cases
Γ ̸= 1 and Γ = 1. The case where Γ ̸= 1 is only of physical interest due to the relation
Γ = γg + 1. We deal with these two cases separately below.

3.1.1. Noether Symmetries for Γ ̸= 1

For Γ ̸= 1, the solution of the Noether symmetry Equation (26) yields

ξ0 = c1 + c2t , ξ1 = c2

[
Γ(x − ∆ t)− x

2(Γ − 1)

]
+ c3 , (27)

η1 = −c2
∆ x

2(Γ − 1)
+ F1(t) , η2 = c4W + F2(t) , η3 = −c4V + F3(t) , (28)

f 0 = −c2
∆ x

2(Γ − 1)
+ F4(t, x) , f 1 = F1,tU + F2,tV + F3,tW −

∫
F4,tdx + F5(t) , (29)
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where c1, ..., c4 are constant parameters and F1, ..., F5 are integration functions. Therefore,
linearly independent Noether symmetries provided by the generator in (25) are of the form

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = W

∂

∂V
− V

∂

∂W
, (30)

X4 = 2 t
∂

∂t
+

(
x − ∆ Γ t

Γ − 1

)
∂

∂x
− ∆ x

(Γ − 1)
∂

∂U
with f 0 = − ∆ U

Γ − 1
, f 1 = 0 , (31)

X5 = F1(t)
∂

∂U
with f 0 = 0 , f 1 = F1,tU , (32)

X6 = F2(t)
∂

∂V
with f 0 = 0 , f 1 = F2,tV , (33)

X7 = F3(t)
∂

∂W
with f 0 = 0 , f 1 = F3,tW . (34)

The components of the conserved vector (17), corresponding to the integration functions
F4 and F5 of the gauge functions, which possess the property Jµ = f µ, are as follows:
f 0 = F4(t, x) and f 1 = F5(t)−

∫
F4,tdx. These satisfy the conservation law Dt f 0 +Dx f 1 = 0.

It is noteworthy that these conserved quantities will arise in all possible cases; thus, further
mention is unnecessary. The vector fields X1, X2, and X3 in Equation (30) correspond to time
translation invariance, translation invariance in the x direction, and rotational invariance of
the (V, W) variables, respectively. The vector fields X5, X6, and X7 in Equations (32)–(34)
represent boost symmetries along the U, W, and W directions if F1(t), F2(t), and F3(t)
are linear polynomial functions of time. They indicate translations in the U, W, and W
directions if F1(t), F2(t), and F3(t) are nonzero constants. When ∆ = 0 in (31), then X4
represents a scaling symmetry, a property of a system that remains unchanged under
rescaling. Although characterizing the symmetry X4 might be challenging, it can be
considered a combination of scaling symmetry in the x and t directions, boost symmetry in
the x direction, and dilatation symmetry along the U direction with respect to the variable x.

After considering Equations (8) and (9), the conserved densities J0
a and fluxes J1

a
(a = 1, . . . , 7) corresponding to the Noether symmetries X1, . . . , X7 in (30)–(34) are listed as
follows:

J0
1 = −1

3
ΓU3

x − (Ux − ∆)(V2
x + W2

x )− χ(WxVxx − VxWxx) , (35)

J1
1 = 2 (Ux − ∆)(K2Vx + K3Wx)−

1
4

(
ΓU2

x + V2
x + W2

x

)2
− [(Ux − ∆)Vx − χWxx]

2

−[(Ux − ∆)Wx + χVxx]
2 + χ(WxVtx − VxWtx) , (36)

J0
2 = U2

x + V2
x + W2

x , J1
2 =

2
3

ΓU3
x + (2 Ux − ∆)(V2

x + W2
x ) + 2 χ(WxVxx − VxWxx) , (37)

J0
3 = VWx − WVx , (38)

J1
3 = V[(Ux − ∆)Wx + χVxx]− W[(Ux − ∆)Vx − χWxx]− χ

(
V2

x + W2
x

)
− K2W + K3V , (39)

J0
4 = t J0

1 +
1
2

(
x − ∆ Γ

Γ − 1
t
)

J0
2 +

∆ x Ux

2(Γ − 1)
− ∆ U

2(Γ − 1)
, (40)

J1
4 = t J1

1 +
1
2

(
x − ∆ Γ

Γ − 1
t
)

J1
2 +

∆ x
2(Γ − 1)

(
K1 +

1
2
(ΓU2

x + V2
x + W2

x )

)
, (41)
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J0
5 = −F1(t)Ux , J1

5 = F1,tU − F1

[
K1 +

1
2
(ΓU2

x + V2
x + W2

x )

]
, (42)

J0
6 = −F2(t)Vx , J1

6 = F2,tV − F2[K2 + (Ux − ∆)Vx − χWxx] , (43)

J0
7 = −F3(t)Wx , J1

7 = F3,tW − F3[K3 + (Ux − ∆)Wx + χVxx] . (44)

In [2], it was shown that the Hamiltonian density of the system is H = −J0
1 , i.e., H = −EL,

due to the relation in (24). The conserved vectors J1 = (J0
1 , J1

1 ), J2 = (J0
2 , J1

2 ), and J3 = (J0
3 , J1

3 )
respectively correspond to energy conservation, momentum conservation, and helicity
conservation, as noted by Hada [7]. The conserved vector J4 = (J0

4 , J1
4 ) for X4 can be written

in the following form:

J4 = t
(

J1 −
∆

2(Γ − 1)
J2

)
+

x
2

(
J2 +

∆
Γ − 1

J0

)
(45)

where J0 is defined as

J0 =

(
Ux −

1
x

U , K1 +
1
2
(ΓU2

x + V2
x + W2

x )

)
. (46)

Further, the conserved vector fields J5, J6 and J7 become

J5 = (−F1Ux , F1,tU + F1(Ut − 2K1)) , (47)

J6 = (−F2Vx , F2,tV + F2(Vt − 2K2)) , (48)

J7 = (−F3Wx , F3,tW + F3(Wt − 2K3)) , (49)

where K1, K2, and K3 are functions depending on the time t.

3.1.2. Noether Symmetries for Γ = 1

When Γ = 1 and ∆ ̸= 0, there are seven Noether symmetries, of which the six ones
are the same as X1, X2, X3, X5, X6, and X7 in Equations (30) and (32)–(34). However, the
Noether symmetry X4 differs as follows:

X4 = t
∂

∂x
+ x

∂

∂U
with f 0 = U , f 1 = 0 , (50)

which includes the boost symmetry along the x direction and the dilatation symmetry
along U direction, respectively. Then, the conserved vector for X4 provided in (50) becomes

J4 = t J2 − x J0 . (51)

The remaining conserved vectors for X1, X2, X3, X5, X6, and X7 are the same as in
Section 3.1.1, taking Γ = 1 in the conserved densities and fluxes.

For Γ = 1 and ∆ = 0, there are in total nine Noether symmetries, such as

X4 = t
∂

∂x
+ x

∂

∂U
with f 0 = U , f 1 = 0 , (52)

X8 = 2 t
∂

∂t
+ x

∂

∂x
, (53)

X9 = t2 ∂

∂t
+ x t

∂

∂x
+

1
2

x2 ∂

∂U
with f 0 = x U , f 1 = 0 , (54)

in addition to X1, X2, X3, X5, X6, and X7. Here, the vector field X8 is the scaling symmetry
in the t and x directions, while the vector field X9 represents a conformal symmetry. The



Math. Comput. Appl. 2024, 29, 60 8 of 10

conserved vector J4 for the above X4 is the same with the relation (51). Additionally, the
Noether symmetries X8 and X9 have respective conserved vectors

J8 = 2 t J1 + x J2 , (55)

J9 = t2J1 + x t J2 −
1
2

x2J0 . (56)

We note here that both J8 and J9 are the conserved vectors directly related to conservation
of energy and momentum, respectively.

3.2. Lie Symmetries

The vector field Y = ξµ∂xµ + ζ i ∂qi is called a Lie point symmetry of the differential
equations Ei’s (i = 1, 2, 3) provided in (8)–(10) if the following condition holds:

Y[2]Ei |Ei=0= 0 (57)

where
Y[2] = Y + ζ i

α ∂qi
,α
+ ζ i

αβ ∂qi
,αβ

is the second prolongation of the vector field Y. The coefficients ζ i
α and ζ i

αβ are provided

by the expressions ζ i
α = Dαζ i − qi

,βDαξβ and ζ i
αβ = Dβζ i

α − qi
,αµDβξµ. For the Lie point

symmetry Y of the differential equations Ei (i = 1, 2, 3), we can define the Lagrange system

dxµ

ξµ =
dqi

ζ i =
dqi

,α

ζ i
,α

=
dqi

,αβ

ζ i
,αβ

, (58)

the solution of which provides the characteristic functions that can be applied to reduce the
number of dependent variables.

In this section, we briefly consider Lie point symmetries of the dispersive TDNLS
system (8)–(10). For K1 = K2 = K3 = 0, the Lie point symmetries of the latter system
have been determined and studied extensively in [2]. It is obviously seen that if the Fi(t)s
(i = 1, 2, 3) in (32)–(34) are constants, then the Lie and Noether symmetries coincide with
each other for K1 = K2 = K3 = 0. Furthermore, it is not necessary to take the Kis to be
vanishing. In the following, we consider the vector fields X1, . . . , X7 provided in (30)–(34)
with F1 = F2 = F3 = 1. For the first example of non-vanishing Kis, taking

K1(t) =
k1

t − t0
, K2(t) =

k2

t − t0
, K3(t) =

k3

t − t0
, (59)

we find the following Lie symmetries:

Y1 = X1 +
1

t − t0

(
k1

∂

∂U
+ k2

∂

∂V
+ k3

∂

∂W

)
, Y2 = X2 , (60)

Y3 = X3 + ln(t − t0)

(
−k3

∂

∂V
+ k2

∂

∂W

)
, (61)

Y4 = X4 +
t0

t − t0

(
k1

∂

∂U
+ k2

∂

∂V
+ k3

∂

∂W

)
, (62)

Y5 = X5 , Y6 = X6 , Y7 = X7 , (63)

where k1, k2, k3 are the constant parameters. Second, for K1, K2 and K3 provided by

K1(t) =
k1

t
, K2(t) =

1
t
[k2 cos(Ω ln t) + k3 sin(Ω ln t)] , K3(t) =

1
t
[k3 cos(Ω ln t)− k2 sin(Ω ln t)] , (64)

it is found that the Lie symmetries are



Math. Comput. Appl. 2024, 29, 60 9 of 10

Y1 = X1 + K1(t)
∂

∂U
+ K2(t)

∂

∂V
+ K3(t)

∂

∂W
, Y2 = X2 , (65)

Y3 = X3 +
t
Ω

(
K2(t)

∂

∂V
+ K3(t)

∂

∂W

)
, (66)

Y4 = X4 − 4 sin(
Ω
2

ln t)
([

k2 sin(
Ω
2

ln t)− k3 cos(
Ω
2

ln t)
] ∂

∂V
+
[
k3 sin(

Ω
2

ln t) + k2 cos(
Ω
2

ln t)
] ∂

∂W

)
, (67)

Y5 = X5 , Y6 = X6 , Y7 = X7 , (68)

where k1, k2, k3 and Ω are the constant parameters. Third, if we take the functions K1, K2,
and K3 as

K1(t) = k1 , K2(t) = k2 cos(Ωt)− k3 sin(Ωt) , K3(t) = k3 cos(Ωt) + k2 sin(Ωt) , (69)

it is found that the Lie symmetries are

Y1 = X1 + K2(t)
∂

∂V
+ K3(t)

∂

∂W
, Y2 = X2 , Y3 = X3 +

1
Ω

(
K2(t)

∂

∂V
+ K3(t)

∂

∂W

)
, (70)

Y4 = X4 + 2 t
(

k1
∂

∂U
+ K2(t)

∂

∂V
+ K3(t)

∂

∂W

)
, Y5 = X5 , Y6 = X6 , Y7 = X7 . (71)

Finally, when the functions K1, K2, and K3 have the forms

K1(t) =
k1

(t − t0)n , K2(t) = k2 sinn(Ωt) , K3(t) = k3 cosn(Ωt) , (72)

we obtained the Lie point symmetries as follows:

Y1 = X1 + K1(t)
∂

∂U
+ n Ω

(∫
K2(t) cot(Ωt)dt

)
∂

∂V
−
(∫

K3(t) tan(Ωt)dt
)

∂

∂W
, (73)

Y2 = X2 , Y3 = X3 −
(∫

K3(t)dt
)

∂

∂V
+

(∫
K2(t)dt

)
∂

∂W
, (74)

Y4 = X4 + 2 t K1(t)
∂

∂U
+ 2
[∫

K2(t)(n Ω cot(Ωt) + 1)dt
]

∂

∂V
− 2
[∫

K3(t)(n Ω tan(Ωt)− 1)dt
]

∂

∂W
, (75)

Y5 = X5 , Y6 = X6 , Y7 = X7 . (76)

One can obviously find other examples of the Lie point symmetries for different non-
vanishing functions K1(t), K2(t), and K3(t) than those considered above.

4. Conclusions

This study uses the Noether symmetry approach directly with a gauge term to search
Noether symmetries for the dispersive TDNLS system provided by (8)–(10). In Section 3.1.1
of Section 3, for Γ ̸= 1 we obtain seven Noether symmetries for the latter system of
dispersive TDNLS equations, which include the arbitrary functions F1(t), F2(t), and F3(t).
Therefore, while Noether symmetries X1, X2, and X3 are respectively associated with the
energy conservation (translation in time), momentum conservation (translation in space),
and helicity conservation (rotational invariance about the magnetic field), the invariance
property of Noether symmetries X5, X6, and X7 depends on these arbitrary functions, such
as translations in the U, V, and W directions if Fi(t) (i = 1, 2, 3) are nonzero constants,
or boost symmetries along the U, V, and W directions if the Fi(t)s are linear polynomial
functions of time. Characterization of the symmetry X4 yields the finding that it is a
combination of scaling symmetry in the x and t directions, boost symmetry in the x
direction, and dilatation symmetry along the U direction with respect to the variable x.
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In Section 3.1.2 we study Noether symmetries for Γ = 1, finding that there are seven
Noether symmetries when ∆ ̸= 0, with the Noether symmetry X4 differing from those
in Section 3.1.1. For Γ = 1 and ∆ = 0, we find a total of nine Noether symmetries in
Section 3.1.2. It should be noted that we computed the conserved densities J0

a and fluxes J1
a

corresponding to the Noether symmetries using the Noether symmetry approach, unlike the
conserved quantities using Lie point symmetries in [2]. The conserved quantities obtained
in this study differ from those in [2] due to the existence of boundary (or gauge) terms f µ for
the Noether symmetries, which is the main goal of this study. Furthermore, in Section 3.2
we find some new Lie point symmetries of the dispersive TDNLS system (8)–(10) for non-
vanishing functions Ki(t)’s (i = 1, 2, 3), in which there are seven Lie point symmetries in
each case.

Considering the obtained Noether symmetries, the dispersive TDNLS system of
equations in (8)–(10) plays an important role in the derivation of similarity solutions, which
are represented in [2,3]. Therefore, we did not study these solutions in this paper.
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