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Abstract: Patient-specific computational fluid dynamics (CFD) studies on coarctation of the aorta
(CoA) in resource-constrained settings are limited by the available imaging modalities for geometry
and velocity data acquisition. Doppler echocardiography is considered a suitable velocity acquisition
modality due to its low cost and safety. This study aims to investigate the application of classical
machine learning (ML) methods to create an adequate and robust approach to obtain boundary
conditions (BCs) from Doppler echocardiography images for haemodynamic modelling using CFD.
Our proposed approach combines ML and CFD to model haemodynamic flow within the region of
interest. The key feature of the approach is the use of ML models to calibrate the inlet and outlet BCs
of the CFD model. In the ML model, patient heart rate served as the crucial input variable due to its
temporal variation across the measured vessels. ANSYS Fluent was used for the CFD component of
the study, whilst the Scikit-learn Python library was used for the ML component. We validated our
approach against a real clinical case of severe CoA before intervention. The maximum coarctation
velocity of our simulations was compared to the measured maximum coarctation velocity obtained
from the patient whose geometry was used within the study. Of the 5 ML models used to obtain
BCs, the top model was within 5% of the maximum measured coarctation velocity. The framework
demonstrated that it was capable of taking into account variations in the patient’s heart rate between
measurements. Therefore, it allowed for the calculation of BCs that were physiologically realistic
when the measurements across each vessel were scaled to the same heart rate while providing a
reasonably accurate solution.

Keywords: machine learning; computational fluid dynamics; coarctation of the aorta; boundary
conditions

1. Introduction

Congenital heart disease (CHD) is the most common birth defect, with a global
prevalence of approximately 9 per 1000 births. Coarctation of the aorta (CoA) is one of
the most common forms of CHD, comprising approximately 7% of all CHDs [1]. CoA is
defined as the narrowing of a point within the aorta, usually at the isthmus, which may be
discrete or elongated and occurs on a spectrum of varying severity. This narrowing leads to
increased resistance across the vessel, thus causing upper body hypertension and reduced
blood supply to downstream vessels and body parts. The resultant pressure difference
across the coarctation is used by clinicians as a means of diagnosis and is referred to as the
pressure gradient. A peak systolic pressure difference or drop of greater than 20 mmHg or
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imaging diagnosis after hypertension warrants intervention [2,3]. Common treatments for
CoA are balloon angioplasty, end-to-end anastomosis (REEA) resection, and stenting in
older patients [2]. The general objective of treatment is to alleviate the pressure difference
and restore normal flow throughout the coarctation.

Recoarctation can occur after intervention, and the haemodynamic environment after
surgery is a strong driver of this occurrence [4]. Computational fluid dynamics (CFD) has
been identified as a potential avenue for studying patient haemodynamics and identifying
key flow metrics such as pressure, velocity, and wall shear stress with high temporal (time)
and spatial resolution [5]. Another key benefit is the non-invasive nature of the technique.
Furthermore, with the design of patient-specific CFD pipelines, flow modelling can be
specific to an individual patient. However, the incorporation of CFD into clinical workflows
has been limited due to challenges in patient data acquisition for modelling and the skill
set required to perform the modelling [6]. Thus, most applications of the technique have
resided in research.

In April 2017, the Partnerships in Congenital Heart Disease (PROTEA) project was
started, which aims to establish a densely phenotyped and genotyped congenital heart
disease (CHD) cohort for southern Africa [7]. The project has four core aims, with the third
being to study repaired tetralogy of Fallot and coarctation of the aorta using computational
fluid dynamics in order to demonstrate its potential to assist in the clinical assessment of
CHD, including long-term prediction of growth and remodeling from local blood flow [7].
Swanson et al. [5] conducted a proof-of-concept study in response to the third aim. They
developed an open-source, patient-specific CFD modelling pipeline using data obtained
from a single CoA patient from the PROTEA project cohort. They used CTA for geometry
acquisition and Doppler TTE for velocity acquisition [5]. These two modalities were used,
as they were both technically feasible and easily available. CTA and other modalities
such as 4D-MRI and contrast-enhanced CT have been used for geometry acquisition in
previous studies [8–11], while boundary conditions (BCs) have been prescribed by either
direct measurement from imaging modalities such as MRI-based techniques and Doppler
echocardiography or by values obtained from the literature [9–11]. Through their study,
the authors highlighted the suitability of Doppler echocardiography-derived BCs and
presented the case for further study of its implementation. PC-MRI has been favoured
within the literature [12–17]; however, it can be costly and difficult to implement for patients
within the pediatric population.

Swanson et al. [18] highlighted the current challenges of using Doppler echocardiogra-
phy to prescribe BCs in a CFD study. One of the main concerns was variations in patient
heart rate across different measurements, which is an inherent limitation of the modality.
This discrepancy arises because measurements at each spatial point must be taken one at a
time. As a result, the velocity profiles at the inlet and outlets do not have the same heart
rate. Furthermore, mass conservation was not conserved, as the sum of flow at the outlets
was greater than at the inlet. To remedy the different heart rates across each measured
vessel, the velocity profiles were scaled in time to a common period using a heart rate of
120 BPM. It was then observed that there was a phase mismatch between peak flow at the
supra-aortic branches, since peak flow at the left common carotid artery and left subclavian
artery led when compared to the ascending aorta. This seemed unrealistic due to the
capacitive effect of artery distensibility. This was thought to be a result of the variation
in heart rate between the measured vessels [18]. Four different adjustment schemes were
tested to prescribe BCs by correcting for either mass conservation, phase mismatch at peak
flow, or both [18].

Machine learning (ML) has been used as a tool to improve BCs for CFD studies [19,20].
In their study, Lassila et al. use ML to account for the variability in flow BCs between sub-
jects to model intracranial aneurysms. They combine a log-linear mixed effects model with
a Gaussian process model. The model was trained on carotid ultrasound measurements
and demographic data from a cohort of 103 elderly volunteers [19]. In Véras et al. [20], ML
was used to define inlet BCs in order to simulate draft tube flows. In their approach, they
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used an artificial neural network (ANN) to predict the inlet BCs from downstream flow
results and trained the model using data generated by numerical simulation.

Our work develops a framework that uses an ML-based approach to improve the
fidelity of Doppler TTE-derived BCs. This is applied to a CFD model for CoA using the
data collected by the PROTEA project. By accounting for changes in the velocity profiles
due to changes in heart rate, we hypothesize that more-accurate inlet and outlet BCs can
be computed. An ML approach using nearest neighbour- and tree-based methods was
selected, as our dataset was relatively small [21]. Our approach focuses on the translation
potential of patient-specific CFD pipelines into real clinical settings by using available
imaging modalities.

Our work has two major novelties. First, we use ML to account for changes in heart
rate in Doppler TTE measurements in order to prescribe inlet and outlet BCs that result in
an accurate flow solution. Second, this is achieved using a small and incomplete dataset
with a cohort size of five patients.

The paper is organised as follows: It begins by describing the development of the
ML-CFD pipeline. The ML subsection describes model training, and the subsequent CFD
section focuses on the modelling approach and validation process. The results, discussion,
and conclusion are then presented.

2. Materials and Methods

In this section, we outline the methods used to develop our approach. Figure 1
provides an overview of the full pipeline. Beginning with data pre-processing, key features
are extracted from the Doppler TTE images to build the ML training dataset. This dataset
is split into the respective inputs and outputs, as shown in the ML Model Training box,
which then undergo a feature engineering process. This converts the data to a format that is
compatible with the ML model. Once the regression model is trained, the evaluation inputs
are specified, and BCs are obtained. These are then input into the CFD solver along with a
meshed patient geometry. The CFD solver then outputs the velocity and pressure results.

Figure 1. Flow diagram representation of the full framework used to develop the coupled ML-CFD
pipeline, for modelling patient-specific flow using Doppler TTE as the velocity data acquisition
modality. The pipeline starts with the Data Pre-processing box in yellow, is where key features are
extracted from the Doppler TTE images to build the ML training dataset. The dataset is split into
the respective inputs and outputs, shown in the ML Model Training sub-box in gold. The Machine
Learning box, in blue, then shows the process through which the ML models are trained and evaluated.
Inputs are converted to a format that can be input to the models via a feature engineering process, and
the predicted output velocity is then processed to obtain the boundary conditions for CFD modelling.
The CFD box, in green, shows the process used to obtain the the CFD result, which, in this study, is
the patient-specific velocity field.



Math. Comput. Appl. 2024, 29, 71 4 of 17

2.1. Data Pipeline and Clinical Data

In this study, Doppler TTE measurements were obtained from 5 unique patients.
However, the data for all patients were incomplete to varying degrees, which posed a
significant challenge. A total of 4 out of the 5 patients only had Doppler TTE measurements
across the coarctation. Additionally, information on when the scans were taken with respect
to one another and the severity of the stenosis was not available. Only 1 out of the 5 had
a more complete dataset: Doppler TTE measurements across the ascending aorta, supra
aortic branches (innominate artery, left common carotid artery, and left subclavian artery),
coarctation and descending aorta, and a 3D patient-specific geometry prior to intervention.
Although, for post-intervention only Doppler TTE measurements were available after the
intervention across the ascending aorta, the innominate artery, and the coarctation; these
data were previously used in Swanson et al. [5]. Therefore, the pre-intervention geometry
and Doppler TTE measurements for this patient were used for subsequent CFD modelling
for the study, as the dataset was more complete. All clinical data used in the study were
provided by Red Cross War Memorial Hospital (RXH).

A data pre-processing pipeline was developed to process the Doppler TTE images and
build a dataset that could be used to train the ML models. The velocities were extracted
from the Doppler TTE images using a free online plot digitiser [22]. This was a manual
process carried out by the researcher. Points were first set along the axes of the velocity
graph in order to convert the image to a plot. The values at the designated points were then
entered manually, which scaled the plot accordingly. Points were then traced along the
velocity profile within the graph so as to obtain the velocity readings. The tracings were
taken for velocity profiles that were adequately developed; that is, the distinct shape of the
profile was visible and there was minimal noise across the profile. Tracings during diastole
were set to zero. The coordinates of the tracings were then saved in a csv file. This process
was repeated for all Doppler TTE images in the dataset from [5] and for the 4 additional
coarctation images from RXH.

The same plot digitiser was used to determine the number of beats per second, allow-
ing the heart rate of each profile to be determined. The clinicians noted that measuring
heart rate directly from the image by measuring the peak-to-peak difference of the cardiac
waveforms was a more reliable approach compared to using the value provided in the
bottom right-hand corner of the image, as shown in Figure 2. Thus, in images in which
the electrocardiogram (ECG) was present—for example, Figure 2a–c—the heart rate was
calculated by measuring the time interval between successive peaks of the QRS complex.
However, in images such as Figure 2d, in which the ECG was not present, the time interval
between the successive peaks of the velocity profiles was used to calculate the heart rate.
In both cases, the time intervals between 4–5 successive peaks were measured, and the
average was calculated, which was then used as the associated heart rate. We note that this
approach introduces human error at the plot digitization stage; however, calculation of the
heart rates was then conducted via an in-house Python script. The sampling rate at which
the velocity profiles were measured was not available, as this metric did not fall within the
clinical protocol when the data were collected. As a result, methods such as using a Fourier
transform were not an option. As such, it would not have been possible to find the right
scaling for the y-axis.

The csv files from the plot digitiser were processed using an in-house Python script
to build the dataset for ML model training. First, the script zeroed the velocity profiles so
that they started from 0 and inverted the coarctation velocity values to the positive y-axis.
Second, any non-zero values during diastole were set to 0, and the velocity profile was
interpolated for 200 or 350 steps within the time interval, depending on the length of the
time interval and number of cycles. Last, the associated vessel name (ascending aorta,
innominate artery, left common carotid artery, left subclavian artery, or coarctation and
descending aorta), case (pre- or post-intervention), and heart rate were captured. A training
dataset was then generated from this information in the form of a table.
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(a) (b)

(c) (d)
Figure 2. Sample Doppler TTE images that were used within the study. The images in (a–d) show a
coarctation measurement post intervention, coarctation measurement pre-intervention, innominate
artery measurement post intervention, and descending aorta measurement pre-intervention.

2.2. Machine Learning Pipeline

Our training dataset consisted of 3 numerical values: time in seconds, area-averaged
velocity across the vessel cross section in metres per second, and heart rate in beats per
second. The case and vessel features/columns are comprised of categorical or non-numeric
entries. Additional pre-processing steps were employed before training the ML model.
First, the categorical entries case and Vessel were converted to numerical entries using
the Scikit-learn label encoding function [23], as the models within the Scikit-learns library
require numerical inputs. For the numeric entries (particularly the velocity values), it
was found that the distribution of the data was skewed to the right and contained several
outliers. Data points that were set to 0 during diastole were partially responsible for the
skewness of the distribution, resulting in several outliers in a box-and-whisker plot. High
velocity values at the tail end were due to the coarctation. This would contribute to poor
performance for models that are sensitive to outliers, which could lead to higher errors
in ML model predictions. However, the non-zero outliers were biologically plausible
and not the result of noise or measurement errors. Numpy’s log1p function [24], a Log
transform, was applied to the velocity entries in order to reduce the effect of the outliers
during training and improve ML model performance while preserving the outlier values
within training.

The class of ML problem posed is a regression problem, as the objective of the ML
model is to predict a continuous value given a set of discrete inputs. Recalling that the
main challenge faced was the discontinuity in the time measured between vessels, the heart
rate at the current measured vessel varied from the previous vessel. As noted earlier,
changes in heart rate affect the velocity profile across the measured vessel, which indicates
a present relationship between heart rate and velocity. For the CFD model, a mass flow
rate is prescribed at the inlets and outlets of the region of interest and is a function of
velocity. Therefore, the patient’s heart rate was considered the key input that could relate
the time-dependent in vivo flow conditions with the velocity, which was then used to
calculate the BCs. Thus, time (time interval over which the velocity was measured), velocity
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(area-averaged velocity across the measured vessel site), and heart rate (average heart rate
across 3–4 cardiac cycles) were the identified key numerical inputs. However, these values
changed depending on the vessel and the case (whether an intervention had occurred or
not). Therefore, these two parameters were included as categorical variables. It is noted that
although the name of the vessel, which represents the anatomical position, can be better
represented by geometric parameters that could convey more insightful information, in our
case, this was not possible. Geometric information such as the vessel diameter or length
were inconsistent within the given data, whilst the vessel name was consistently given.

For this study, the inputs to the ML models were time in seconds, the name of the
vessel (ascending aorta, innominate artery, left common carotid artery, left subclavian
artery, or coarctation and descending aorta), case (pre- or post-intervention), and heart
rate in beats per second. Each of these inputs was scaled using the Scikit-learn standard
scaler function [23]. This was to limit error in models sensitive to scaling, such as linear,
K-nearest neighbour, and support vector machine regressors. The evaluation metric used to
assess model performance was the root mean square error (RMSE), shown in Equation (1),
a common metric for regression problems that calculates the Euclidian norm between the
predicted and actual value [21].

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (1)

where n is the number of data points and yi is the actual (true) output value of the ith data
point, and ŷi is the predicted value for the ith data point.

In addition, the coefficient of determination (R2), shown in Equation (2), was used
as the second evaluation metric due to its use in other similar studies [25,26]. R2 is the
proportion of the variation in the output that is explained by the input of the predictive
model. A score of 1.0 indicates a perfect prediction, and it may be negative because a model
can be arbitrarily worse, according to Scikit-learn’s r2_score documentation [23].

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (2)

where ȳ = 1
n ∑n

i=1 yi is the mean of the actual output value across all data points.
The models trained in this study were, namely, the linear regression model, which

provided the baseline, support vector machine regressor, random forest regressor, gradient
boosted regressor, K-nearest neighbour regressor (k-NN), and a voting ensemble method.
The training dataset was divided into train, validation, and test with a 60% (2190 × 5), 20%
(730 × 5), and 20% (730 × 5) split, respectively. The parameters for the K-nearest neighbour
regressor, random forest regressor, gradient-boosted regressor, LightGBM regressor [27],
and support vector machine regressor were optimised in the train set and validated against
the validation set [23]. Finally, all models were fit to the combined training and validation
set and were evaluated on the test set.

2.3. CFD Pipeline

ANSYS Fluent (ANSYS Academic Research [Fluent], release 2020R2) was the commer-
cial software package used for the CFD study. The mesh for the unrepaired geometry from
Swanson et al. [5] was used for this portion of the study. Figure 3 shows the unrepaired
geometry. The mesh constituted 2 million tetrahedral elements and five prism boundary
layers meshed using ANSYS ICEM-CFD. The number of elements used was greater than the
minimum number of elements required for grid independence. For further details on the
grid independence study, please see [5]. The incompressible Navier-Stokes equations were
solved using the finite volume method. While pressure was calculated using the PRESTO
discretization scheme, momentum was determined using a second-order upwind scheme.
Pressure and velocity were coupled using the PISO scheme. For temporal discretization,
a bounded second-order implicit scheme with a time step of 0.05 ms was used. Flow was



Math. Comput. Appl. 2024, 29, 71 7 of 17

modelled as laminar, and the blood was assumed to be Newtonian, with a density of 1060
kg/m3 and viscosity of 0.004 kg/(m s). The vessel wall was modelled as rigid, and a
no-slip boundary condition was applied. Convergence criteria of 10−3 were used (ANSYS
Academic Research [Fluent], release 2020R2, 37.21.1, Judging Convergence, ANSYS, Inc.,
Canonsburg, PA, USA). Simulations were run as time-dependent with constant boundary
conditions for 1 s since flow after the coarctation was unsteady, as was previously done
in [5]. This allowed start-up pressure wave reflection and propagation effects to dampen
out [18]. All simulations were run on a single cluster node with 40 Intel CPU cores and
386 GB of RAM, on the University of Cape Town’s High Performance Computing Cluster
(HPC). Only peak systole was simulated and not the full cardiac cycle, as each simulation,
on average, took approximately 50 h to complete and simulating the entire cardiac cycle for
24 simulations was deemed too computationally expensive.

Figure 3. The image shows the CoA geometry for patient 1, and the labels a to f are the ascend-
ing aorta, innominate artery, left common carotid artery, left subclavian artery, coarctation, and
descending aorta, respectively. The inlet was prescribed at a, and the outlets at b, c, d, and f, in
that order.

Five ML models with the least RMSE and highest R2 values were selected to generate
BCs for the CFD modelling process. A time interval of 0.442 s was used, which corresponds to
135.6 BPM. This was the calculated heart rate at which the measurement across the coarctation
was taken. The vessel names and case (pre-intervention) were also input to each ML model.
The CFD mass flow rate input profiles were calculated from the velocity profiles output by
each ML model using the stated density of blood and the vessel area. The set of BCs was
adapted from [5,28,29] in order to assess BCs that were commonly used in the literature whilst
also taking into account the limited data constraint due to the use of Doppler TTE and the
absence of pressure data. Each set of BCs had to be simulated for the not-adjusted case (max
velocity values obtained from Doppler TTE measurements with no additional processing) and
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for the outputs of the five selected ML models. Therefore, the computational cost of running
the simulations was an important factor.

Table 1 shows the set of BCs specified at the inlet and outlets of the patient geometry
for each ML model and the not-adjusted case. The outlets consisted of the arch branches
(AoB) (innominate artery (outlet 1); left common carotid artery, (LCCA, outlet 2); left
subclavian artery, (LSA, outlet 3)), and descending aorta (DAo, outlet 4). The inlet was
defined at the ascending aorta. Four different combinations of BCs were explored. For these
combinations, the inlet BC was kept constant, while the outlet BCs varied, as these BCs had
a greater impact on the flow within the coarctation [29]. BC 1, which specified zero pressure
at all outlets, has been shown to result in the least-accurate flow solution compared to other
types of outlet BCs [28]. Thus, BC 1 was primarily included as a benchmark case to provide
the baseline performance of the ML-CFD pipeline. The zero-pressure BC with target mass
flow adds a specified mass flow rate as a constraint that must be met when calculating
pressure at the outlet. This provided an alternate way for the pressure to be prescribed at
the outlet, as the mass flow rate can be seen as an alternate form of prescribing velocity at
the outlets. This can be seen in BC 3 and BC 4.

Given that Madhavan et al. showed that the effects of the inlet boundary condition
are only significant up to 2 inlet diameters distal to the inlet patch [29], a plug flow velocity
profile was assumed for the inlet. The inlet is sufficiently far from the coarctation, which is
the main region of interest. BCs at the outlets are registered to affect up to 5 diameters distal
to the outlet [29]. Due to the limited data availability imposed by using Doppler TTE and
the absence of pressure data, pressure-based BCs using the three-element Windkessel model
(3-EWM) proved difficult to implement. Instead, outlet BCs, namely zero pressure and mass
flow rate, were used, as this was more suitable to implement. BCs derived from the ML model
were compared with not-adjusted BCs, which were BCs obtained from Doppler TTE in [5].

Table 1. Boundary conditions: This table contains the 4 sets of boundary conditions (BCs) that
were used within the study, namely BC 1–4. Outlets are located at the arch branches (AoB) and the
descending aorta (DAo), with the inlet at the ascending aorta. Note that the AoB are considered
separate from the DAo. The types of BCs used comprised of mass flow rate [kg/s], zero pressure
(static pressure [Pa] set to zero), and zero pressure target mass flow rate (static pressure [Pa] set to 0
initially but constrained to meet a specified mass flow [kg/s] value in subsequent iterations).

BC Inlet BC AoB BC DAo

BC 1 mass flow rate zero pressure zero pressure
BC 2 mass flow rate mass flow rate zero pressure
BC 3 mass flow rate zero pressure, target mass flow rate zero pressure, target mass flow rate
BC 4 mass flow rate mass flow rate zero pressure, target mass flow rate

The maximum coarctation velocity obtained from the numerical simulation was com-
pared with the measured value from Doppler TTE. This was achieved by calculating the
relative error between the two values, as shown in Equation (3).

Relative Error =
|vs − vm|

|vm|
× 100% (3)

where vs is the simulated maximum coarctation velocity from CFD, and vm is the measured
maximum coarctation velocity from Doppler TTE.

As noted in [5], Doppler TTE is capable of reliably measuring blood velocity within
the body, and the measurement was taken by an experienced sonographer. Therefore,
this measurement was used to validate the numerical solution. Although pressure is the
clinically relevant flow parameter, the simplified Bernoulli method used by the device has
been shown to be inaccurate. Therefore, velocity was a more reliable flow parameter to
validate the framework.
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3. Results

This section begins with a brief description of the data processing results followed by
the results of the ML model and, finally, the CFD results.

3.1. Data Pipeline and Clinical Data Results

The output of the data processing pipeline is the dataset used to train the ML models
of size (3650 × 5). The five columns are titled time in seconds, velocity in metres per second,
case (pre- or post intervention), vessel, and heart rate in beats per second. The 3650 data
points were obtained from plot digitisation and post-processing of the 11 Doppler TTE
images using the in-house Python script. The data points were concatenated into a single
tabular dataset. This was then divided into three consisting of sizes (2190 × 5), (730 × 5),
and (730 × 5) for training, validation, and testing, respectively.

Table 2 contains the heart rate values in BPM across the indicated vessels for each
patient both pre- and post intervention. It can be seen that the heart rate varies both
between patients and within patients across each measured vessel. For patient 1, who was
unique in having measurements taken across multiple vessels, the heart rate had a standard
deviation of 5.38 BPM and 6.68 BPM pre- and post intervention, respectively. The standard
deviation of the heart rates across the coarctation between the recorded patients both pre-
and post intervention was 12.73 BPM and 44.92 BPM, respectively.

Table 2. The table shows the heart rate values in beats per minute [BPM] across the measured vessels
for each patient both pre- and post intervention.

Patient No Case Vessel Heart Rate [BPM]

Patient 1 Pre-intervention

Ascending aorta 131.4
Innominate Artery 123.6

Left common carotid artery 138.6
Left subclavian artery 127.8

Coarctation 135.6
Descending Aorta 130.2

Patient 1 Post intervention
Ascending aorta 114.6

Innominate artery 127.8
Coarctation 123.0

Patient 2 Pre-intervention Coarctation 117.6

Patient 3 Post intervention Coarctation 85.8

Patient 4 Post intervention Coarctation 85.2

Patient 5 Post intervention Coarctation 180.6

3.2. ML Model Training Results

Among the models, the k-NN regressor was found to have fitted the data the best, as it
had the lowest RMSE and highest R2. The voting regressor, which is an ensemble of k-NN
and random forest regressors, performed second best. Table 3 shows the RMSE and R2

values for the ML models that were trained and evaluated on the test set. The RMSE was
calculated by comparing the ML model-predicted velocity to the measured velocity from the
Doppler TTE images for the inputs within the test set. The k-NN, random forest, support
vector machine, and LightGBM regressors are the models that underwent hyperparameter
tuning. However, it was only the k-NN and random forest regressor that demonstrated
some improvement in performance. Minimal improvement in the other models resulted in
the use of default settings. The number of nearest neighbours for the k-NN was set to 2.
This was determined by determining the RMSE and R2 values on the validation set for a
range of nearest neighbours between 1 and 40. The remaining parameters were set to their
default values. For the random forest regressor, an exhaustive search was conducted over
a set parameter space using the Scikit-learn GridSearchCV function [23]. The number of
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estimators, maximum tree depth, minimum sample split per internal node, and minimum
sample split per leaf node were tuned, and cross-validation was set to 5. It should be noted
that the RMSE and R2 were not the final metrics with which the ML model performance was
evaluated. Instead, the comparison of maximum velocity across the coarctation, obtained
from ANSYS Fluent, compared to the ground truth value obtained by Doppler TTE was also
used. The support vector machine regressor and linear regression had the poorest results,
as they had the highest RMSE and lowest R2 values.

Table 3. ML Model results: This table presents the root mean square error (RSME) and coefficient of
determination (R2) values for each machine learning model when evaluated against the test or hold
out set. The test set constituted 20% of the original dataset built for the study.

Model RMSE [m/s] R2

Linear Regression 0.44076 0.08963
Support Vector Machine Regressor 0.39030 0.28614
Gradient Boosted Regressor 0.28556 0.61789
LightGBM Regressor 0.12076 0.93167
Random Forest Regressor 0.05499 0.98579
Random Forest Regressor Optimized 0.05497 0.98594
Voting Regressor 0.04261 0.99181
K-Nearest Neighbours Regressor 0.03671 0.99369

3.3. CFD Boundary Condition Results

From Figure 4 in the outlet mass flow rate distribution graph, on the left-hand side, we
observe that the ML models underestimate the total mass flow at the outlets in comparison
to the not-adjusted case. The differences in flow are mainly seen at the innominate artery
and the descending aorta, whilst there is agreement at the left common carotid artery and
left subclavian artery. The graph on the right-hand side of Figure 4 displays the mass flow
rate splits across each outlet. From this graph, we observe that the k-NN regressor distributes
more flow to the aortic branches in comparison to the other ML models and the not-adjusted
case. Meanwhile, the voting ensemble, random forest, and LightGBM regressors distribute
less flow to the aortic branches and more to the descending aorta when compared to the
not-adjusted case.

Figure 4. Comparison of the magnitude of flow distributed for the not-adjusted and machine learning
(ML) model cases (left) and comparison of the mass flow rate splits (right). From the graph on the left
we observe that the ML models underestimate the total amount of flow at the outlets in comparison
to the not-adjusted case, with the exception of the LightGBM regressor. The differences in flow are
mainly seen at the innominate artery and the descending aorta, whilst there is agreement at the left
common carotid artery and left subclavian artery. This distinction is better seen in the graph on the
right, where the flow splits for each case are shown and in which the K-nearest neighbours regressor
distributes more flow the innominate artery and less to the descending aorta, which is in contrast to
the other ML models.
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3.4. Coarctation Velocity Results

Figure 5 presents the CFD model results for each BC type and model used, with Figure 5a
illustrating the maximum coarctation velocities and Figure 5b showing the relative error (the
relative error between the ground truth maximum coarctation velocity 3.49 [m/s] and the
output of the simulation). At first glance, the performance of the ML models varied among BCs
1–4, which are defined in Table 1. Of the ML-derived BCs, we observe that the k-NN model
BCs were found to have the least relative error, with BC 2 having the lowest value of 4.88%.
Similarly, the k-NN regressor using BC 4 produced the second most accurate result, with a
relative error of 7.12%. The remaining ML models generally performed poorly in comparison
across all BCs. BC 1 (zero pressure outlet BCs) resulted in the least accurate results, and only
the LightGBM showed marginal improvement as compared to the not-adjusted case. From BC
2–4 the voting ensemble, random forest (hyperparameter tuned and default), and LightGBM
regressor’s as well as the not-adjusted case’s performance did not vary significantly. However,
the k-NN regressor’s performance varied more significantly in comparison.

(a) CFD Maximum Coarctation Velocity Results

(b) CFD Maximum Coarctation Compared to Measured Result

Figure 5. The graph in (a) shows the maximum simulated coarctation velocity from the CFD model, ar-
ranged according the type of BC and ML model used; (b) shows the relative error when the simulated
maximum coarctation velocity is compared to the measured result from Doppler echocardiography.

Table 4 presents the CFD pressure drop results for the ML models and not-adjusted
case for BC2. BC2 was used, as it resulted in the best results for the maximum coarctation
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velocity. The different approaches were evaluated against the measured value from Doppler
TTE. We observed that the voting regressor had the best agreement with the baseline, with a
relative error of 5.7%. The k-NN was the only model that underestimated the pressure
drop; the others overestimated it. However, since the pressure drop from the Doppler
TTE was not reliable, these results were not used to quantitatively evaluate the pipeline’s
performance but provided a clinical indication of the CFD results. When compared with
the established standard of a pressure drop greater than 20 mmHg warranting intervention,
each model and the not-adjusted case indicated that intervention was required, which was
the clinical decision that was determined for patient 1.

Table 4. ∆P Results: This table presents the pressure drop values for each model and the not-adjusted
case for BC2. BC2 was used, as it returned in the best results for the maximum coarctation velocity.
The different approaches were evaluated against the measured value from Doppler TTE. Equation (3)
was used to calculate the error.

CFD Coarctation ∆P (mmHg) ∆P Error (%)

Doppler TTE Baseline 48.65 -

LightGBM Regressor 128.19 163.5

Not Adjusted 64.36 32.3

Random Forest Regressor Optimized 58.62 20.5

Random Forest Regressor 56.90 17.0

Voting Regressor 51.42 5.7

k-Nearest Neighbours Regressor 35.31 −27.4

Figure 6 shows the pressure and velocity distributions of the flow for the k-NN
BC2 case. From the pressure distribution (on the left), we see that the region before the
coarctation is at a higher pressure, while the region after the coarctation is at a lower
pressure, illustrating a drop in pressure across the coarctation. This result is similar to those
found in [5,11]. In addition, the pressure distribution qualitatively shows hypertension in
the upper extremity vessels by the high pressure flow through the supra-aortic branches,
which is a common symptom of CoA. With regards to the velocity distribution (on the
right), we observe that the peak occurs at the coarctation region. Furthermore, within the
region after the coarctation, we can observe the helical nature of the flow marked by the
areas with higher velocity values. It is also worth noting that recirculation zones are present
as well, mainly in the low-velocity areas of the distribution. The velocity flow field also has
good agreement with the results found in [5].

Figure 6. The figure shows the pressure distribution on the (left) and velocity distribution on the
(right) along a plane across the fluid domain for the k-NN BC2 boundary conditions case.
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4. Discussion

Numerical modelling offers a means of improving the analysis and understanding
of the cardiovascular haemodynamics of CoA through the simulation of flow in complex
geometries. However, the inputs required for these methods can prove challenging to
obtain. This study aimed to add to the body of work at the intersection of empirically
derived patient-specific BCs in CoA, Doppler echocardiography, CFD, and ML [5,19,30].

Our framework is capable of producing velocity results that are accurate while ac-
counting for variations in the patient’s heart rate. This is evidenced by the relative errors
within 5% for BC 2 and 7% for BC 4 using the k-NN regressor. Furthermore, for BCs 2–4,
the ML model-derived BCs have better agreement with the measured maximum coarctation
velocity in comparison to the not-adjusted case, except for the LightGBM regressor. This
indicates that there is a potential benefit to accounting for the effect of heart rate on the
velocity profile; however, further work will be required to conclusively determine this.
The CFD simulations were limited to a single case, and only flow at peak systole was
simulated. Therefore, it will be key to see if this increased accuracy is consistent across a
full cardiac cycle.

The heart rates for each vessel were shown in Table 2. These varied both within and
between patients as well as between pre- and post-intervention cases. For patient 1, the
standard deviation was 12.73 BPM and 44.92 BPM pre- and post-intervention, respectively.
Patient restlessness contributed to a higher BPM during post-intervention echocardio-
graphic imaging and prevented measurement of the three remaining vessels. Regardless,
this instance demonstrates that variability in patient flow conditions can be experienced
during the measuring process. Lassila et al. also noted this in their study and highlighted
the inadequacy of using population-averaged or one-shot measurements as a true indica-
tion of a specific patient’s flow regime [19]. To account for intra-patient flow variability,
they used a lumped parameter model, with changes in heart rate and blood pressure being
the key inputs [19]. Their work also demonstrated that the patient’s heart rate can be used
to account for flow variability. In addition, carotid ultrasound was used for patient velocity
data acquisition. Similar to Lassila et al, our work demonstrates the applicability of heart
rate and ultrasound to account for flow variability, the difference being that in our case, we
make use of ML models for within-patient variability as opposed to a physics-based model.
Moreover, our approach makes use of a smaller dataset with a cohort size of 5 as opposed
to 103.

Of the ML models used within this study, the k-NN regressor fit the data the best, as
it had the lowest RMSE and highest R2 value of 0.03671 m/s and 0.99369, respectively,
when evaluated on the test set as shown in Table 3. In addition, the BCs derived using this
model produced the most-accurate CFD result when compared to the measured value of
3.49 m/s from Doppler TTE. However, of the models used, the k-NN model is the simplest,
with the exception of the linear regression model, which was used as a base line. This
was a surprise, for one would have expected a more complex model such as the support
vector machine, random forest, or LightGBM regressor to provide better results. However,
it is the case that ML models will perform differently due to factors such as the size of
the data, the data’s structure, and the tuning of model hyper-parameters. For example,
Cai et al. [25] in their study compared k-NN, XGBoost, and multi-layer perceptron (MLP)
regressors as finite element method (FEM) surrogate models to estimate material properties
from clinical data. They found the k-NN model to have the worst performance, which is
in contrast to our case. Note that their dataset was larger compared to this study, with
10,000 samples, and that their data were generated from FEM simulations rather than
measurement instruments. Similarly, Cilla et al. [31] and Mehdi et al. [26] used ML models
as surrogates for FEM simulations to predict plaque rupture and estimate myocardial
stiffness, respectively. Although the ML models were applied to FEM-based biomechanics
studies, their performance varied between studies. For example, Mehdi et al. [26] found
that the MLP provided the best results followed by the support vector machine and
random forest, while Cilla et al. [31] found that the support vector machine, the simpler
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model, outperformed the MLP (only these two models were evaluated in Cilla et al. [31]).
Meanwhile, in Cai et al. [25], the XGBoost performed best. Although we cannot compare
like for like as the nature of the problems between these studies are not equivalent, we
still observe that model performance differs across different applications even in the same
domain, building FEM surrogates. Therefore, the need to select the model on a case-by-case
basis and evaluate a sizable set is supported. As per the law of parsimony, there are cases
where the simpler model or approach tends to yield better results.

From Figure 5, we observe that the choice of BCs strongly influences the accuracy
of the CFD result, highlighted by the varied performance of the CFD-simulated results
for different ML model-derived BC values. This observation is in agreement with similar
studies [28,32,33]. Additionally, Figure 4 shows that the ML models have similar flow splits
but differ mainly on the volume of flow that exits the descending aorta and the innominate
artery. The bulk of the flow runs through the supra-aortic branches, which is realistic due
to the presence of the coarctation, as it restricts flow from exiting the descending aorta.
This is in contrast to a healthy case, in which the bulk of flow leaves the descending aorta,
with an 80% to 30% split between it and the supra-aortic branches [28].

The results suggest that BC2 and BC4 are potential alternatives to pressure-based
3-EWM, which is traditionally preferred in the literature [3,30,32]. This could be beneficial
in cases where reliable pressure data are absent. The 3-EWM has been proven capable
of prescribing physiologically accurate BCs that result in highly accurate flow solutions.
However, acquiring accurate patient pressure data and calibrating model parameters such
as resistance and capacitance can pose a challenge to its implementation. Although there are
approaches such as the ones presented in Pant et al. and Romarowaski et al. [30,34] which
are capable of calibrating 3-EWM parameters in cases where limited data are available,
pressure data are still required. Therefore, such an approach would have been difficult
to implement in this study. It would be possible to obtain parameters from the literature
with similar studies; however, this would still introduce errors due to variability between
patients, as highlighted by Lassila et al. [19]. Therefore, our approach opens the door for
haemodynamic modelling not only in cases where Doppler TTE is used as the velocity
data acquisition modality, but also in those where pressure data may not be available.
This allows the approach to be used with data collected from current clinical protocols
for CoA where only Doppler TTE measurements are taken without the need for brachial
cuff pressure measurements. Although a similar approach can be extended to other large
arteries, additional considerations specific to those cases will be required. Noting the
limitation of pressure data, future work would be to extend the framework to include
3-EWM, given the strong motivation within the literature for the approach.

Limitations

The dataset built for this study was limited, as it was restricted to one patient with
a more complete dataset and the four additional patients with only Doppler TTE images
across the coarctation. Therefore, the extension of the ML models to cases beyond those
used within the study without retraining may result in a performance drop of the ML-CFD
pipeline. Furthermore, the study was limited in the type of cases modelled. Modelling
for intra-patient variability, for example, when the patient is in a stressed state, was not
possible. Therefore, modelling was limited to a range of heart rates that captured a relaxed
state. Both Lassila et al. [19] and Pant et al. [30] note that there is a significant difference
between flow parameters for the two different states, with Pant et al. [30] further noting
increased difficulty in accurately modelling flow in stressed states. Similarly, the effects
of different patient geometries on the performance of the framework were not evaluated.
Among the inputs used to train the ML models, the relative importance between vessel
names was not taken into account when label encoding was used. Lastly, the maximum
coarctation velocities results show that the choice of ML model used (and the type of
BC prescribed at the outlet) had an impact on the outcomes. This motivates the need to
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evaluate the performance of other models, such as artificial neural networks (ANNs), that
may be able to determine more complex relationships within the data [35–37].

Assumptions made in the CFD modelling also contributed to the limitations of the
study. These include the use of fixed BCs and the rigid wall assumption. However, account-
ing for these considerations comes at increased computational cost; hence, their inclusion
should be balanced against improvements in accuracy [30]. A suitable compromise could
be including these factors in the ML model component. In their paper, Raissi et al. [37,38]
demonstrated the applicability of physics-informed neural networks, which can be seen as
a hybrid approach that combines physics-based and ML models. Thus, future work could
include the development of a hybrid ML and physics-based model that accounts for the
noted limitations.

The evaluation of the framework was limited to comparing the simulated maximum
coarctation velocity with the measured value from Doppler TTE at peak systole. However,
it is necessary to simulate a full cardiac cycle in order to verify whether the improved
accuracy in the velocity field is maintained. Additionally, the absence of reliable pressure
data from the patient prevented the pressure field from being evaluated. This would ideally
need to be evaluated, as velocity-based BCs have a strong influence on the pressure field,
as highlighted by [34], and can result in non-physiological pressure ranges (see [28]) even
though the velocity field is accurate. However, lack of access to a catheterisation lab and
the additional risk to the patient of conducting an unnecessary catheterisation procedure to
obtain pressure measurements make this unfeasible. Therefore, this is an open challenge
within our framework.

5. Conclusions

Our novel contribution in this paper is the use of ML models in combination with
echocardiography for application in a physics-based CFD model. Echocardiography, which
is widely available across different resource contexts, is used to derive patient-specific
BCs based on heart rate rather than pressure. The ML model then bridges the heart rate
variability arising from the echo measurements being taken at different time points, which
is inevitable given the measurement process. This process reduces the influence of the time
difference, thereby improving the BCs and resulting in a more accurate CFD solution which
better matches the measured data.
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