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Abstract: This paper analyzes the first-order delay equation y′(t) = αy(t) + βy(t − τ) subject to a
history function in addition to an initial condition that assumes discontinuity at t = 0. The method of
steps is successfully applied to derive the exact solution in an explicit form. In addition, a unified
formula is provided to describe the solution in any finite sub-interval of the problem’s domain.
The characteristics and properties of the solution are theoretically investigated and then confirmed
through several plots. The behavior of the solution and its derivative are examined and interpreted.
The results show that the method of steps is an effective method of solution to treat the current
delay model. The present successful analysis can be used to investigate other delay models with
complex initial conditions. Furthermore, the present approach can be generalized to include the
inhomogeneous version of the current model without using numerical methods.
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1. Introduction

The field of delay differential equations (DDEs) is fundamental for describing many
real world problems in several areas of applied and life sciences [1,2]. There are two types
of delay parameters in a given DDE, namely, pure delay parameters and proportional
delay parameters. Usually, we refer to τ in the DDE y′(t) = αy(t) + βy(t − τ) as a pure
delay parameter, while γ arises in the pantograph equation (PE) y′(t) = αy(t) + βy(γt),
0 < γ < 1 and is often called a proportional delay parameter [3–5]. PE is used in practical
applications, including railway electrification [6–8], the dynamic behaviour of contact
systems in electric railways [9], and current collection in electric locomotive [10] (see also
Refs. [11–13] for some studies on PE). Another proportional delay parameter 1/q arises in
the Ambartsumian equation (AE) y′(t) = −y(t) + 1

q y
(

t
q

)
, (q > 1), which has been used to

describe the surface brightness in the Milky Way [14–18].
There are many essential differences between DDEs and ordinary differential equations

(ODEs). The main difference between the initial value problems (IVPs) described by DDEs
and ODEs lies in the type of initial conditions (ICs) provided along with the method of
solution.The ICs for IVPs with ODEs are usually provided at initial points, while the ICs
for IVPs with DDEs are defined in certain intervals in terms of the delay parameter. Also,
there are many well-known standard methods of solution to solve linear IVPs governed
by ODEs of first order or higher orders. For such types of IVPs, the exact solutions can
be determined using various standard methods. In addition, such standard methods are
capable of obtaining the exact solutions that are valid in the entire domains of the given
IVPs. However, the situation is different when analyzing IVPs described by DDEs, where
the solution of a given problem is to be determined in a finite number of sub-intervals, as
will be demonstrated later. The method of steps (MOS) and the method of characterization
(MOC) are two familiar standard methods to solve IVPs governed by DDEs. In order to
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apply the MOS on a DDE, the domain of the problem must be divided into sub-intervals so
that the solution in a certain interval facilitates the solution in the subsequent interval. Thus,
MOS must be applied to solve the given DDE in a finite number of sub-intervals. In some
limited cases, the solution can be described by a unified formula in these sub-intervals.

It is important to refer to a solution where a DDE is very sensitive to the given
ICs. This means that the solution of the DDE y′(t) = αy(t) + βy(t − τ) under the IC
y(t) = ϕ(t), −τ ≤ t ≤ 0 is completely different than the solution of the same DDE under
the ICs y(t) = ϕ(t), −τ ≤ t < 0 and y(0) = λ, where ϕ(t) is a given function.

The former problem has been well studied in many text books and several papers for
different choices of the function ϕ(t). However, the second problem defined above still
needs some efforts to treat it analytically or numerically, even for the simplest case ϕ(t) = 0.
So, the main motivation and objective of this paper is to provide the exact solution of the
delay model:

y′(t) = αy(t) + βy(t − τ), y(t) = 0 ∀ − τ ≤ t < 0, y(0) = λ, τ ≥ 0, (1)

where α, β, and λ are real constants. The Adomian decomposition method (ADM) [19–23],
the homotopy perturbation method [24,25], and the Laplace transform (LT) [26–29] may
perhaps encounter some difficulties when solving the current model.

Although ADM has been effectively applied in Ref. [30] to solve several delay prob-
lems, the structure of these models differs compared with the present one. From Ref. [30],
one can see that the considered examples ignored the history functions as initial data,
in contrast with the current paper. Also, it can be noticed from the above published
work that ADM is an efficient method for solving DDEs when only the initial condi-
tions are considered. For declaration, the examples from [30] have been taken in the
forms y′(t) = 1

2 et/2y(t/2) + 1
2 y(t), y(0) = 1, y′′(t) = 3

4 y(t) + y(t/2)− t2 + 2, y(0) = 0,
y′(0) = 0, y′′′(t) = −y(t)− y(t − 0.3) + e−t+0.3, y(0) = 1, y′(0) = −1, y′′(0) = 1, and
y′(t) = 1 − 2y2(t/2), y(0) = 0. As can be seen from these examples, only initial conditions
have been taken into account, while the history functions were ignored. This simply ex-
plains the main differences in both the structure and the initial data between the present
delay model and those examples in Ref. [30]. In this context, the effectiveness and appli-
cability of ADM to handle DDEs, subjected to history functions, were not really checked
in this reference. On the other hand, MOS is a well-known standard method for solving
DDEs governed by initial conditions including history functions.

Recently, Lessard et al. [31] developed a rigorous implicit Chebyshev integrator to
analyze the first-order nonlinear systems of DDEs y′(t) = f (y(t), y(t − τ)) with the aide
of MOS, where f is continuous in both variables. Their approach was based on Cheby-
shev series expansions under a past history in the interval [−τ, 0]. They implemented
Chebyshev series to discretize the problem and approximately solve it using a standard
numerical scheme corrected via Newton’s method. The numerical method applied by
Lessard et al. [31] was found to be effective and efficient, especially for solving the
Mackey–Glass equation. In addition, Mayorga et al. [32] introduced an exact numeri-
cal scheme to solve the first-order linear neutral DDE y′(t)− γy′(t − τ) = αy(t) + βy(t −
τ), t > 0, subject to a general initial function ϕ(t) in the interval [−τ, 0]. They expressed the
numerical value of y(t + h) as a function of y(t) and previous values. The resulting expres-
sion included all previous τ-lagged values, i.e., y(t − kτ), k ≥ 1, and an integral term with
the initial function ϕ(t), (see Equstion (18) in Ref. [32]). Despite the distinct efforts made by
the above authors to numerically solve DDE (1), no available explicit analytical solutions
have been presented. In view of the above discussion, the difference between the current
work and Refs. [31,32] is obvious regarding the provided initial condition. This difference
includes the discontinuity at t = 0 for λ ̸= 0. However, it will be declared later that only
the trivial solution is continuous at t = 0 if and only if λ = 0. Further, a collocation ap-
proach to solve a neutral fractional delay stochastic differential equation was presented by
Banihashemi et al. [33], while the numerical treatment of a fractional order system of non-
linear stochastic delay differential equations was analyzed by He et al. [34].
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Obtaining an exact solution for a delay equation is not an easy task. Also, the exact
solution for any mathematical model is optimal when available. So, the solution for
problem (1) will be directly obtained in this paper by applying MOS through a clear/simple
analysis. Moreover, a unified explicit formula is to be constructed for the exact/analytic
solution in any sub interval of the domain of the problem. Also, the properties of the
solution are to be discussed theoretically and graphically.

2. Analysis

The method of steps (MOS) is used in this section to derive the solution of the present
delay model. Normally, MOS is based on dividing the domain of the problem into a finite
number of intervals where the solution in any interval depends mainly on the solution in
the previous interval. Accordingly, the solution is to be obtained sequentially through a
unified formula. The following theorem determines the explicit form of the solution in any
sub-interval. Then, some properties about the behavior of the solution and its derivative
will be theoretically proven and discussed in a subsequent section.

Theorem 1. The solution yn(t) in the interval In = [(n − 1)τ, nτ) of problem (1) is provided by

yn(t) = λ
n−1

∑
k=0

βk

k!
(t − kτ)keα(t−kτ), n ≥ 1, (2)

or

yn(t) = λeαt
n−1

∑
k=0

(βe−ατ)
k

k!
(t − kτ)k, t ∈ In, n ≥ 1. (3)

Proof. Assume that y0(t) is the solution in the interval I0 = [−τ, 0). Let us define
I1 = [0, τ), then −τ ≤ t − τ < 0, i.e., t − τ ∈ I0. This yields y(t − τ) = y0(t − τ) = 0
∀ t ∈ I1 = [0, τ). Accordingly, the solution y1(t) in the interval I1 is governed by the IVP:

y′1(t) = αy1(t), y1(0) = λ, t ∈ I1 = [0, τ), (4)

which has the solution:
y1(t) = λeαt, t ∈ I1 = [0, τ). (5)

In the interval I2 = [τ, 2τ), we have 0 ≤ t − τ < τ, which implies t − τ ∈ I1.
Therefore, y(t − τ) = y1(t − τ) = λeα(t−τ) ∀ t ∈ I2. Thus, the solution y2(t) in the interval
I2 is subjected to the IVP:

y′2(t) = αy2(t) + βλeα(t−τ), y2(τ) = y1(τ) = λeατ , t ∈ I2 = [τ, 2τ). (6)

One can easily solve problem (6) to find that

y2(t) = λeαt + βλ(t − τ)eα(t−τ), t ∈ I2 = [τ, 2τ). (7)

Let I3 = [2τ, 3τ), then τ ≤ t − τ < 2τ, i.e., t − τ ∈ I2. Hence, y(t − τ) = y2(t − τ) =
λeα(t−τ) + βλ(t − 2τ)eα(t−2τ) ∀ t ∈ I3. So, the solution y3(t) in the interval I3 is governed
by the IVP:

y′3(t) = αy3(t) + βy2(t − τ), y3(2τ) = y2(2τ) = λe2ατ + βλτeατ , t ∈ I3 = [2τ, 3τ), (8)

or

y′3(t) = αy3(t) + βλeα(t−τ) + β2λ(t − 2τ)eα(t−2τ), y3(2τ) = λe2ατ + βλτeατ , t ∈ I3 = [2τ, 3τ). (9)
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Problem (9) has the solution:

y3(t) = λeαt + βλ(t − τ)eα(t−τ) +
1
2

β2λ(t − 2τ)2eα(t−2τ), t ∈ I3 = [2τ, 3τ). (10)

Through induction, one can obtain the n-component of the solution in the interval
In = [(n − 1)τ, nτ), i.e., yn(t), as

yn(t) = λ
n−1

∑
k=0

βk

k!
(t − kτ)keα(t−kτ), n ≥ 1, (11)

which can be placed in form (3) and, hence, the proof is completed.

Lemma 1. At α = 0, the solution reduces to a polynomial of degree n − 1, provided as

yn(t) = λ
n−1

∑
k=0

1
k!
(β(t − kτ))k, t ∈ In = [(n − 1)τ, nτ), n ≥ 1, (12)

for the reduced DDE:

y′(t) = βy(t − τ), y(t) = 0 ∀ − τ ≤ t < 0, y(0) = λ, τ ≥ 0. (13)

Proof. The proof follows immediately by setting α = 0 in the result of Theorem 1.

3. Properties of the Solution

This section is devoted to introducing some properties for the solution and its deriva-
tives. Before launching to the main purpose of this section, it may be reasonable to rewrite
the solution yn(t) in interval In in the following form:

yn(t) = λ
n−1

∑
k=0

βk

k!
(t − tk)

keα(t−tk), n ≥ 1, (14)

where tk = kτ.

Theorem 2. Assuming that λ ̸= 0, the derivative of the solution for problem (1) is discontinuous
at t = tn = nτ for n = 0, 1 and continuous ∀ n ≥ 2.

Proof. At t = 0, the left derivative is determined from (1) as y′−(0) = 0, while the right
derivative can be evaluated from the solution in the interval I1 = [0, τ), i.e., Equation (5),
as y′+(0) = αλ. Hence, y′−(0) ̸= y′+(0) and, thus. the derivative is discontinuous at
t = t0 = 0 if either α ̸= 0 or λ ̸= 0. Similarly at t = τ, one can find that y′−(τ) = αλeατ

and y′+(τ) = αλeατ + βλ. Accordingly, y′−(τ) ̸= y′+(τ) and, consequently, the derivative is
discontinuous at t = t1 = τ if either β ̸= 0 or λ ̸= 0. The above analysis reveals that the
derivative is discontinuous at t = tn for n = 0, 1.

From (14), we have

y′n(t) = λ
n−1

∑
k=0

βk

k!

(
α(t − tk)

keα(t−tk) + k(t − tk)
k−1eα(t−tk)

)
, n ≥ 1, (15)

or

y′n(t) = λ
n−1

∑
k=0

βk

k!
α(t − tk)

keα(t−tk) + λ
n−1

∑
k=1

βk

(k − 1)!
(t − tk)

k−1eα(t−tk), (16)
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which is equivalent to

y′n(t) =
λαβn−1

(n − 1)!
(t − tn−1)

n−1eα(t−tn−1) +

λ
n−2

∑
k=0

βk

k!

[
α(t − tk)

keα(t−tk) + β(t − tk+1)
keα(t−tk+1)

]
. (17)

Also, we have

y′n+1(t) =
λαβn

n!
(t − tn)

neα(t−tn) +

λ
n−1

∑
k=0

βk

k!

[
α(t − tk)

keα(t−tk) + β(t − tk+1)
keα(t−tk+1)

]
. (18)

From (17) and (18), one can obtain the left and right derivative at t = tn as

y′−(tn) = y′n(tn) =
λαβn−1

(n − 1)!
(tn − tn−1)

n−1eα(tn−tn−1) +

λ
n−2

∑
k=0

βk

k!

[
α(tn − tk)

keα(tn−tk) + β(tn − tk+1)
keα(tn−tk+1)

]
, (19)

and

y′+(tn) = y′n+1(tn) = λ
n−1

∑
k=0

βk

k!

[
α(tn − tk)

keα(tn−tk) + β(tn − tk+1)
keα(tn−tk+1)

]
, (20)

respectively. The last two equations lead to

y′−(tn) = y′+(tn), ∀ n ≥ 2, (21)

which indicates that the derivative is continuous at every point t = tn = nτ ∀ n ≥ 2, this
completes the proof.

4. Behavior of the Solution

This section aims to explore the behavior of the solution and its derivative through
graphical representation. It will be shown that the preceding theoretical results for the
properties of the solution and its derivative can be validated/confirmed via several plots in
the domain of a finite number of intervals. To achieve this target, the first five intervals for
the domain of the problem will be considered as an example. However, the plots of the
solution and its derivative can be represented in any finite number of intervals, as desired
through the obtained analytical solution in the previous sections.

At α = 0, Figures 1 and 2 display the representation of the solution y(t) in the first five
intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1, β = 1, τ = 1 and at λ = 1, β = −1, τ = 1,
respectively. In these figures, the dots in black connect the considered five intervals. The
continuity of the solution y(t) at t = τ, 2τ, 3τ, 4τ is obvious in Figures 1 and 2. However, it
should be noted that y(t) is discontinuous at t = 0 due to the initial conditions provided.

At α ̸= 0 (α = 2, positive value), Figures 3 and 4 show the curves of y(t) at λ = 1,
β = 1, τ = 1 and at λ = 1, β = −1, τ = 1, respectively. These figures indicate that the
behavior of the solution is of exponential growth. For α ̸= 0 (α = −2, negative value),
Figures 5 and 6 represent the curves of y(t) at λ = 1, β = 1, τ = 1 and at λ = 1, β = −1,
τ = 1, respectively. These figures reveal that the behavior of the solution follows oscillation
with an observable decay.

Regarding the continuity of the derivative y′(t), Figures 7–10 depict the behavior of
the derivative at different sets of parameters values. Moreover, these figures confirm our
theoretical results, where y′(t) is discontinuous at t = τ = 1, while y′(t) is continuous at
t = nτ = n ∀ n ≥ 2.
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yHtL

Figure 1. Representation of y(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1, α = 0,
β = 1, and τ = 1.

1 2 3 4 5
t

-0.4
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1.0

yHtL

Figure 2. Representation of y(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1, α = 0,
β = −1, and τ = 1.
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Figure 3. Representation of y(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1, α = 2,
β = 1, and τ = 1.
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Figure 4. Representation of y(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1, α = 2,
β = −1, and τ = 1.
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Figure 5. Representation of y(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1,
α = −2, β = 1, and τ = 1.
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Figure 6. Representation of y(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1,
α = −2, β = −1, and τ = 1.
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Figure 7. Representation of y′(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1,
α = 0, β = 1, and τ = 1.
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Figure 8. Representation of y′(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1,
α = 0, β = −1, and τ = 1.
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Figure 9. Representation of y′(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1,
α = −2, β = 1, and τ = 1.
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1 2 3 4 5
t
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-1.5
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-0.5

y'HtL

Figure 10. Representation of y′(t) in the first five intervals [(n − 1)τ, nτ), n = 1, 2, 3, 4, 5 at λ = 1,
α = −2, β = −1, and τ = 1.

5. Conclusions

A delay model with prescribed initial conditions is investigated in this paper. The
present model was precisely solved in an explicit form by means of the method of steps
(MOS). MOS was found to be effective and efficient at treating the problem. Furthermore, a
unified formula was successfully obtained that provided the solution in any sub-interval
for the domain of the problem. A theoretical analysis was introduced to examine the
characteristics/properties of the solution. Such characteristics/properties were confirmed
through several graphs. Further, the behavior of the solution and its derivative were
analyzed and interpreted. In view of the obtained results, MOS can be viewed as a direct,
simple, and effective approach to deal with the current delay model. Indeed, the proposed
analysis can be generalized by including other delay models containing complex initial con-
ditions or by addressing the general inhomogeneous class y′(t) = αy(t) + βy(t − τ) + h(t),
y(t) = ϕ(t) ∀ − τ ≤ t < 0, y(0) = λ, τ ≥ 0, where ϕ(t) and h(t) are arbitrary functions.
This suggested class can be effectively analyzed in future work.
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