An Alternative Analysis of Computational Learning within Behavioral Neuropharmacology in an Experimental Anxiety Model Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Groups
2.3. Behavioral Tests
2.3.1. Elevated Plus-Maze Test
2.3.2. Locomotor Activity Test (Open-Field Test)
2.4. Data Analysis
2.4.1. Regression Trees Analysis
2.4.2. Bayesian Networks
- TOA (low activity (LA) when they had a value below 115.66 s, high activity (HA) when they had a value equal to or greater than the mentioned cut-off point.)
- OAE (LA when they had a frequency below 5.97 times, HA when they had a frequency equal to or greater than the mentioned cut-off point.)
- C (LA when they had a frequency below 39.05 times, HA when they had a frequency equal to or greater than the mentioned cut-off point.)
- TR (LA when they had a value below 18.22 s, HA when they had a value equal to or greater than the mentioned cut-off point.)
- TG (LA when they had a value below 20.27 s, HA when they had a value equal to or greater than the mentioned cut-off point.)
- TOA (LA when they had a value below 79.69 s, moderate activity (MA) when they had a value equal to or greater than 79.79 and less than 172.38 s, HA when they had a value equal to or greater than 172.38 s.)
- PEOA (LA when they had a value below 0.639, HA when they had a frequency equal to or greater than the cut-off point.)
- AIn (LA when they had a value below 0.376, MA when they had a value equal to or greater than 0.367 and less than 0.531, HA when they had a value equal to or greater than 0.531.)
- TR (LA when they had a value below 11.72 s, HA when they had a value equal to or greater than the cut-off point.)
- TG (LA when they had a value below 12.21 s, HA when they had a value equal to or greater than the mentioned cut-off point.)
3. Results
3.1. Regression Trees
3.2. Bayesian Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kindt, M. A behavioural neuroscience perspective on the aetiology and treatment of anxiety disorders. Behav. Res. Ther. 2014, 62, 24–36. [Google Scholar] [CrossRef]
- Levitis, D.A.; Lidicker, W.Z., Jr.; Freund, G. Behavioural biologists do not agree on what constitutes behaviour. Anim. Behav. 2009, 78, 103–110. [Google Scholar] [CrossRef]
- Boutrel, B.; Koob, G.F. What keeps us awake: The neuropharmacology of stimulants and wakefulness promoting medications. Sleep 2004, 27, 1181–1194. [Google Scholar] [CrossRef] [PubMed]
- Mondoloni, S.; Durand-de Cuttoli, R.; Mourot, A. Cell-specific neuropharmacology. Trends Pharmacol. Sci. 2009, 40, 696–710. [Google Scholar] [CrossRef]
- Lattal, K.A.; Fernandez, E.J. Grounding applied animal behavior practices in the experimental analysis of behavior. J. Exp. Anal. Behav. 2022, 118, 186–207. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L.; Abel, T.; Akil, H.; Carlezon, W.A., Jr.; Moghaddam, B.; Nestler, E.J.; Ressler, K.J.; Thompson, S.M. The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacol 2019, 44, 1349–1353. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.J.; Martin, A.L. Animal training, environmental enrichment, and animal welfare: A history of behavior analysis in zoos. J. Zool. Bot. Gard. 2021, 2, 531–543. [Google Scholar] [CrossRef]
- Friedman, S.G.; Stringfield, C.E.; Desmarchelier, M.R. Animal Behavior and Learning: Support from Applied Behavior Analysis. Vet. Clin. N. Am. Exot. Anim. Prac. 2021, 24, 1–16. [Google Scholar] [CrossRef]
- Montgomery, D. Diseño y Análisis de Experimentos, 4th ed.; Limusa: Mexico City, Mexico, 2015; pp. 60–119. [Google Scholar]
- Mitchell, T. Machine Learning; McGraw Hill: New York, NY, USA, 1997; pp. 52–78, 154–199. [Google Scholar]
- Angra, S.; Ahuja, S. Machine learning and its applications: A review. In Proceedings of the 2017 International Conference on Big Data Analytics and Computational Intelligence, ICBDAC, Chirala, India, 23–25 March 2017; IEEE: New York, NY, USA, 2017; pp. 57–60. [Google Scholar]
- Doyle, O.M.; Mehta, M.A.; Brammer, M.J. The role of machine learning in neuroimaging for drug discovery and development. Psychopharmacology 2015, 232, 4179–4189. [Google Scholar] [CrossRef]
- Alexandrov, V.; Brunner, D.; Hanania, T.; Leahy, E. High-throughput analysis of behavior for drug discovery. Eur. J. Pharmacol 2015, 750, 82–89. [Google Scholar] [CrossRef]
- Mayer, B.; Kringel, D.; Lötsch, J. Artificial intelligence and machine learning in clinical pharmacological research. Expert. Rev. Clin. Pharmacol. 2024, 17, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.E.; Kuo, C.C.; Chou, C.H.; Chang, F. A machine learning approach to classify sleep stages of rats. In Proceedings of the 9th WSEAS International Conference on Signal, Speech and Image Processing, and 9th WSEAS International Conference on Multimedia, Internet & Video Technologies, Budapest, Hungary, 3–5 September 2009; pp. 120–125. [Google Scholar]
- Goodwin, N.L.; Nilsson, S.R.; Golden, S.A. Rage Against the Machine: Advancing the study of aggression ethology via machine learning. Psychopharmacology 2020, 237, 2569–2588. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Demeneghi, R.; Rodríguez-Landa, J.F.; Guzmán-Gerónimo, R.I.; Acosta-Mesa, H.G.; Meza-Alvarado, E.; Vargas-Moreno, I.; Herrera-Meza, S. Effect of blackberry juice (Rubus fruticosus L.) on anxiety-like behaviour in Wistar rats. Int. J. Food Sci. Nutr. 2019, 70, 856–867. [Google Scholar] [CrossRef]
- Vargas-Moreno, I.; Avendaño-Garrdo, M.L.; Acosta-Mesa, H.G.; Fernández-Demeneghi, R.; Rodríguez-Landa, J.F.; Herrera-Meza, S. Application of Supervised Machine Learning Models for the Identification of the Anxiolytic-like Effect Produced by Progesterone in Wistar Rats. In Proceedings of the 2021 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 10–12 November 2021; Volume 5, pp. 1–6. [Google Scholar]
- Vargas-Moreno, I.; Rodríguez-Landa, J.F.; Acosta-Mesa, H.G.; Fernández-Demeneghi, R.; Oliart-Ros, R.; Baltazar, D.H.; Herrera-Meza, S. Effects of Sterculia Apetala Seed Oil on Anxiety-like Behavior and Neuronal Cells in the Hippocampus in Rats. J. Food Nutr. Res. 2023, 11, 211–222. [Google Scholar] [CrossRef]
- Lewis, R.J. An introduction to classification and regression tree (CART) analysis. In Annual Meeting of the Society for Academic Emergency Medicine in San Francisco; Department of Emergency Medicine Harbor-UCLA Medical Center Torrance: San Francisco, CA, USA, 2000; Volume 14, pp. 1–14. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Heckerman, D. Bayesian networks for data mining. Data Min. Knowl. Discov. 1997, 1, 79–119. [Google Scholar] [CrossRef]
- Darwiche, A. Bayesian networks. Found. Artif. Intell. 2008, 3, 467–509. [Google Scholar]
- NOM-062-ZOO-1999; Norma Oficial Mexicana. Especificaciones Técnicas para la Producción, Cuidado y Uso de los Animales de Laboratorio. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación: México City, Mexico, 1999.
- Institute of Laboratory Animal Resources (US); Committee on Care. Use of Laboratory Animals: Guide for the Care and Use of Laboratory Animals (No. 86); US Department of Health and Human Services, Public Health Service, NIH: Bethesda, MD, USA, 1986.
- Pellow, S.; Chopin, P.; File, S.E.; Briley, M. Validation of open: Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 1985, 14, 149–167. [Google Scholar] [CrossRef]
- Cohen, H.; Matar, M.A.; Joseph, Z. Animal models of post-traumatic stress disorder. Curr. Protoc. Neurosci. 2013, 64, 9–45. [Google Scholar] [CrossRef]
- Hall, C.S. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J. Comparat. Psychol. 1934, 18, 385. [Google Scholar] [CrossRef]
- Vargas-Moreno, I.; Acosta-Mesa, H.G.; Rodríguez-Landa, J.F.; Avendaño-Garido, M.L.; Herrera-Meza, S. Computational Learning in Behavioral Neuropharmacology. In Mexican International Conference on Artificial Intelligence; Springer Nature: Cham, Switzerland, 2023; pp. 422–431. [Google Scholar]
- Contreras, C.M.; Rodríguez-Landa, J.F.; García-Ríos, R.I.; Cueto-Escobedo, J.; Guillen-Ruiz, G.; Bernal-Morales, B. Myristic acid produces anxiolytic-like effects in Wistar rats in the elevated plus maze. BioMed Res. Int. 2014, 2014, 492141. [Google Scholar] [CrossRef]
- García-Ríos, R.I.; Mora-Pérez, A.; González-Torres, D.; de Jesús Carpio-Reyes, R.; Soria-Fregozo, C. Anxiolytic-like effect of the aqueous extract of Justicia spicigera leaves on female rats: A comparison to diazepam. Phytomedicine 2019, 55, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Martínez, S.; Tendilla-Beltrán, H.; Sandoval, V.; Flores, G.; Terrón, J.A. Chronic restraint stress induces anxiety-like behavior and remodeling of dendritic spines in the central nucleus of the amygdala. Behav. Brain Res. 2022, 416, 113523. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. Wiley interdisciplinary reviews: Data mining and knowledge discovery. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Chen, S.H.; Pollino, C.A. Good practice in Bayesian network modelling. Environ. Model. Soft. 2012, 37, 134–145. [Google Scholar] [CrossRef]
- Lin, Y.S.; Peng, W.H.; Shih, M.F.; Cherng, J.Y. Anxiolytic effect of an extract of Salvia miltiorrhiza Bunge (Danshen) in mice. J. Ethnopharmacol. 2021, 264, 113285. [Google Scholar] [CrossRef]
- Guillén-Ruiz, G.; Cueto-Escobedo, J.; Hernández-López, F.; Rivera-Aburto, L.E.; Herrera-Huerta, E.V.; Rodríguez-Landa, J.F. Estrous cycle modulates the anxiogenic effects of caffeine in the elevated plus maze and light/dark box in female rats. Behav. Brain Res. 2021, 413, 113469. [Google Scholar] [CrossRef] [PubMed]
- Neuwirth, L.S.; Emenike, B.U.; Cruz, G.B.; Cabañas, E.; Vasquez, M.A.; Joseph, J.N.; Ayaz, Z.; Mian, M.; Ali, M.M.; Clarke, E.G.; et al. Taurine-derived compounds produce anxiolytic effects in rats following developmental lead exposure. In Taurine 12: A Conditionally Essential Amino Acid; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 445–460. [Google Scholar]
- Yet, B.; Perkins, Z.B.; Rasmussen, T.E.; Tai, N.R.; Marsh, D.W.R. Combining data and meta-analysis to build Bayesian networks for clinical decision support. J. Biomed. 2014, 52, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Karaboga, H.A.; Gunel, A.; Korkut, S.V.; Demir, I.; Celik, R. Bayesian network as a decision tool for predicting ALS disease. Brain Sci. 2021, 11, 150. [Google Scholar] [CrossRef]
- Morales, D.A.; Vives-Gilabert, Y.; Gómez-Ansón, B.; Bengoetxea, E.; Larrañaga, P.; Bielza, C.; Pagonabarraga, J.; Kulisevsky, J.; Corcuera-Solano, I.; Delfino, M. Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Res. Neuroimaging 2013, 213, 92–98. [Google Scholar] [CrossRef]
- Langarizadeh, M.; Moghbeli, F. Applying naive bayesian networks to disease prediction: A systematic review. Acta Inform. Med. 2016, 24, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, N.; Cao, H.; Wei, W.; Ma, L.; Li, H. Different doses of pharmacological treatments for mild to moderate Alzheimer’s disease: A bayesian network meta-analysis. Front. Pharmacol. 2020, 11, 778. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, F.S.; Almeida, L.L.; Ruffino-Netto, A.; Kritski, A.L.; Mello, F.C.; Werneck, G.L. Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients. BMC Pulm. Med. 2012, 12, 40. [Google Scholar] [CrossRef]
- Cenci, M.A.; Whishaw, I.Q.; Schallert, T. Animal models of neurological deficits: How relevant is the rat? Nat. Rev. Neurosci. 2002, 3, 574–579. [Google Scholar] [CrossRef]
- McGonigle, P.; Ruggeri, B. Animal models of human disease: Challenges in enabling translation. Biochem. Pharmacol. 2014, 87, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, J.; Bennett, B.T. Russell and Burch’s 3Rs then and now: The need for clarity in definition and purpose. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 120–132. [Google Scholar]
- Öztürk, S.; Devecioğlu, İ.; Güçlü, B. Bayesian prediction of psychophysical detection responses from spike activity in the rat sensorimotor cortex. J. Comput. Neurosci. 2023, 51, 207–222. [Google Scholar] [CrossRef]
- Romero, D.; Jané, R. Detecting obstructive apnea episodes using dynamic bayesian networks and ECG-based time-series. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; IEEE: New York, NY, USA, 2022; pp. 3273–3276. [Google Scholar]
Experimental subjects | ||
Strain | Wistar Rats | |
Gender | Male | |
Weight | 250 and 300 g | |
Experimental conditions | ||
Temperature | 25 ± 1 °C | |
Light cycle | Invested 12/12 h | |
Experimental groups | ||
VEH | Vehicle | Sterile water |
ALOP05 | Allopregnanolone | 0.5 mg/kg |
ALOP1 | 1 mg/kg | |
ALOP2 | 2 mg/kg | |
DZP | Diazepam | 2 mg/kg |
Statistical Methods | Machine Learning Models | |
---|---|---|
Univariate analysis. Conclusions linked by significant statistics. Detection of pharmacological effects. | Regression trees | Regression trees proved to be an effective tool for predicting the variable “time in open arms” values in the elevated arm maze. It established significant relationships with multiple variables of the same behavioral test and the open field. This methodology also facilitated identifying groups with anxiolytic effects through branching analysis, making it possible to clearly distinguish prolonged times corresponding to the anxiolytic impacts. These results underscore the value of regression trees as a robust statistical technique for assessing anxiety-associated behaviors and detecting relevant behavioral patterns in preclinical studies. |
Bayesian networks | Bayesian networks made it possible to quantify the probabilities of various behaviors about the treatments administered (vehicle and diazepam). They facilitated the identification of similar behavioral patterns between different doses of allopregnanolone. It showed that some variables (crossing) might not be determinant in the characterization of the treatments. The categorization of behavioral variables provided a solid mathematical foundation for classifying regular activity, hyperactivity, or hypoactivity, providing valuable quantitative support for evaluation in behavioral neuropharmacology. The Bayesian networks are a robust tool for modeling and analyzing complex behavioral responses to pharmacological treatments in anxiety models. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Moreno, I.; Acosta-Mesa, H.G.; Rodríguez-Landa, J.F.; Avendaño-Garrido, M.L.; Fernández-Demeneghi, R.; Herrera-Meza, S. An Alternative Analysis of Computational Learning within Behavioral Neuropharmacology in an Experimental Anxiety Model Investigation. Math. Comput. Appl. 2024, 29, 76. https://doi.org/10.3390/mca29050076
Vargas-Moreno I, Acosta-Mesa HG, Rodríguez-Landa JF, Avendaño-Garrido ML, Fernández-Demeneghi R, Herrera-Meza S. An Alternative Analysis of Computational Learning within Behavioral Neuropharmacology in an Experimental Anxiety Model Investigation. Mathematical and Computational Applications. 2024; 29(5):76. https://doi.org/10.3390/mca29050076
Chicago/Turabian StyleVargas-Moreno, Isidro, Héctor Gabriel Acosta-Mesa, Juan Francisco Rodríguez-Landa, Martha Lorena Avendaño-Garrido, Rafael Fernández-Demeneghi, and Socorro Herrera-Meza. 2024. "An Alternative Analysis of Computational Learning within Behavioral Neuropharmacology in an Experimental Anxiety Model Investigation" Mathematical and Computational Applications 29, no. 5: 76. https://doi.org/10.3390/mca29050076
APA StyleVargas-Moreno, I., Acosta-Mesa, H. G., Rodríguez-Landa, J. F., Avendaño-Garrido, M. L., Fernández-Demeneghi, R., & Herrera-Meza, S. (2024). An Alternative Analysis of Computational Learning within Behavioral Neuropharmacology in an Experimental Anxiety Model Investigation. Mathematical and Computational Applications, 29(5), 76. https://doi.org/10.3390/mca29050076