
Citation: Márquez-Grajales, A.;

Mezura-Montes, E.; Acosta-Mesa,

H.-G.; Salas-Martínez, F. Surrogate-

Assisted Symbolic Time-Series

Discretization Using Multi-

Breakpoints and a Multi-Objective

Evolutionary Algorithm. Math.

Comput. Appl. 2024, 29, 78. https://

doi.org/10.3390/mca29050078

Received: 31 May 2024

Revised: 31 August 2024

Accepted: 9 September 2024

Published: 11 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

Surrogate-Assisted Symbolic Time-Series Discretization
Using Multi-Breakpoints and a Multi-Objective
Evolutionary Algorithm
Aldo Márquez-Grajales 1,* , Efrén Mezura-Montes 1 , Héctor-Gabriel Acosta-Mesa 1

and Fernando Salas-Martínez 2

1 Artificial Intelligence Research Institute, University of Veracruz, Campus Sur, Calle Paseo Lote II,
Sección Segunda 112, Nuevo Xalapa, Veracruz 91097, Mexico; emezura@uv.mx (E.M.-M.);
heacosta@uv.mx (H.-G.A.-M.)

2 El Colegio de Veracruz, Carrillo Puerto 26, Colonia Centro, Xalapa, Veracruz 91000, Mexico;
fersamtz@gmail.com

* Correspondence: li.aldomg@gmail.com

Abstract: The enhanced multi-objective symbolic discretization for time series (eMODiTS) method
employs a flexible discretization scheme using different value cuts for each non-equal time interval,
which incurs a high computational cost for evaluating each objective function. It is essential to
mention that each solution found by eMODiTS is a different-sized vector. Previous work was
performed where surrogate models were implemented to reduce the computational cost to solve
this problem. However, low-fidelity approximations were obtained concerning the original model.
Consequently, our main objective is to propose an improvement to this work, modifying the updating
process of the surrogate models to minimize their disadvantages. This improvement was evaluated
based on classification, predictive power, and computational cost, comparing it against the original
model and ten discretization methods reported in the literature. The results suggest that the proposal
achieves a higher fidelity to the original model than previous work. It also achieved a computational
cost reduction rate between 15% and 80% concerning the original model. Finally, the classification
error of our proposal is similar to eMODiTS and maintains its behavior compared to the other
discretization methods.

Keywords: surrogate models; time series representation; symbolic representation; multi-objective
optimization

1. Introduction

Time series discretization transforms continuous values into discrete ones [1]. Sym-
bolic discretization is one of the most widely used approaches for transforming time series
due to its ability to exploit data richness and its lower bounding properties, among oth-
ers [2,3]. On the other hand, the Symbolic Aggregate Approximation (SAX) is the most
widely used symbolic discretization method due to its easy conception, implementation,
and low computational time [2,3].

SAX employs the well-known Piecewise Aggregate Approximation (PAA). PAA re-
duces the dimensionality of the time series by averaging the values falling on one of the
equal-sized time intervals defined at the beginning of the SAX procedure. Finally, each
average value is mapped to a set of breakpoints computed based on the Gaussian dis-
tribution to assign the corresponding symbol. Despite SAX’s advantages, SAX has been
criticized for its Gaussian distribution assumption and its inevitable information loss when
the dimensionality of the data is reduced [4–7].

As a consequence, several approaches have emerged to improve the limitations of
SAX, such as Extended SAX (ESAX) [3,8], adaptive (𝛼SAX) [9], Random Shifting-based SAX
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(rSAX) [10], one-dimensional SAX (1D-SAX) [11], Hexadecimal Aggregate approXimation
(HAX) [12], Point Aggregate approXimation (PAX) [12], season SAX (sSAX) [13], trend SAX
(tSAX) [13], probabilistic SAX (pSAX) [14], clustering SAX (cSAX) [14], Symbolic Aggregate
approXimation based on Kmeans (SAX-Kmeans) [15], and Extended Symbolic Aggregate
approXimation based on Kmeans (ESAX-Kmeans) [15]. These methods use a local search
to find the discretization scheme. However, some methods focus on implementing a
global search for this task; for example, the Evolutionary Programming (EP) approach [16],
Harmony SAX (HSAX) [17], Genetic Algorithm SAX (GASAX) [18], Differential Evolution
SAX (DESAX) [19], and eMODiTS [20]. The main drawback of these techniques is their high
computational cost due to the increased number of operations needed to find a solution.

One way to reduce this cost is the use of surrogate models. Surrogate models reduce
the processing time in most complex optimization problems [21]. The areas where surrogate
models are applied are diverse. According to the literature, engineering is the area with
the most applications of these models [22–29], followed by information and computing
sciences [30–33], mathematical sciences [34,35], and built environment and design [36,37],
among others; see Figure 1.
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Figure 1. Amount of publications on surrogate models to date. This bibliographic analysis was
elaborated using Dimensions AI [38] and the keywords surrogate model optimization or approximation
model optimization.

Moreover, surrogate models are employed for machine learning tasks. In this sense,
an analysis of the use of surrogate models in each machine learning task is presented in
Figure 2. This figure shows that the prediction task is the most recurring data mining task
where an approximation model is used instead of the original prediction model. However,
for tasks such as classification, the number of publications is less than the number of publi-
cations examining predictions, resulting in an opportunity niche for researchers. Mostly, the
surrogate model research applied to time series classification is focused on hyperparameter
optimization [39], deep learning [40], and neuroevolution [41]. Nevertheless, as far as the
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state-of-the-art has been reviewed, surrogate models have been scarcely implemented in
time series discretization.

In this context, ref. [42] is one of the few works in which surrogate models were imple-
mented to minimize the computational cost by identifying an appropriate discretization
scheme for temporal data. The researchers applied surrogate models to eMODiTS [20].
eMODiTS is a temporal data mining technique that discretizes time series using a unique
set of breakpoint values for each time segment and three objective functions. The dataset
is discretized before computing the value of each objective function for an individual.
Hence, this process implies a high computational cost to evaluate each objective function,
representing an essential disadvantage of the method. Therefore, surrogate models were
employed to approximate the values of the three objective functions. As the individual
representation size of eMODiTS varies across instances, k-nearest neighbor (KNN) was
employed as a surrogate model. Moreover, the Pareto front was evaluated in the original
models every 𝑁th generation and added to the training set to update the surrogate models.
Nevertheless, this resulted in a lessened update of the surrogate model, thereby reducing
the model’s fidelity.

70%

Prediction

6% Clustering

4% Feature selection

7% Characterization

13% Classification

Figure 2. Marimekko chart searched at https://www.dimensions.ai/ using the keywords “Surrogate
model optimization” OR “approximation model optimization” and “clustering”, “classification”,
“prediction”, “associative analysis”, “characterization”, and “feature selection”.

Consequently, our primary motivation for this research is to extend the findings of [42],
proposing a novel surrogate model update process, being the particular contribution of this
work. The proposed methodology evaluates the Pareto front using the original objective
functions at each generation (individual-based strategy) and the current population at
regular intervals (generation-based strategy). Additionally, each time the generation-
based update is applied, the Pareto front (evaluated on the original functions) will be
incorporated into the training set. This proposal aims to increase the number of times the
model is updated to increase model fidelity.

Therefore, the objectives of this research are described below:

1. To increase the number of evaluations conducted on the original problem functions,
thereby improving the fidelity of the surrogate models.

2. To maintain the accuracy of the classification task achieved by the original model
(eMODiTS).

3. To analyze the surrogate model behavior compared with SAX-based discretization
methods to verify whether the proposal maintains, improves, or worsens by incorpo-
rating these models regarding the well-known discretization approaches.

The organization of this document is presented as follows. First, Section 2 describes
the materials and methods used in this research and the implemented methodology. On the
other hand, Section 3 presents the experiments performed to reach the objectives introduced
in Section 1 and the discussion of the results. Finally, Section 4 describes the conclusions
based on the results presented in the previous section.

https://www.dimensions.ai/
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2. Materials and Methods

This section describes the materials (data set) and methods used to understand and
reproduce our proposal.

2.1. Symbolic Aggregate approXimation (SAX)

SAX is the most famous symbolic time series discretization method. SAX is based on
the dimensionality reduction method called PAA.

PAA partitions the time series into equal 𝑝 intervalsW, averaging the time series
values within each interval. Each average value is called the PAA coefficient.

Definition 1. Let 𝒯𝑖 be a time series, 𝜏𝑡 be a time series value at time 𝑡, andW = {𝓌1,𝓌2,𝓌3, . . . ,
𝓌 |W| } be a set of equal-sized intervals (𝓌𝑖 = [𝓌𝑖 ,𝓌𝑖+1), 𝑖 ≠ |W|). The PAA coefficient s of the
interval 𝓌𝑖 is computed as 𝑠𝓌𝑖

= 1
𝜂

∑
𝑡∈𝓌𝑖

𝑠𝑡 , where 𝜂 is the number of time series values within the
interval 𝓌𝑖 .

The calculation of the PAA coefficients is visually represented in Figure 3a. In this
particular case, there are six intervals of equal size, denoted as |W| = 6. For each interval
𝓌𝑖 , the coefficient 𝑠𝓌𝑖

is determined based on the values within that interval.

0 10 20

−1

−0.5

𝓌1 𝓌2 𝓌3 𝓌4 𝓌5

𝑠𝓌1 𝑠𝓌2

𝑠𝓌3

𝑠𝓌4

𝑠𝓌5

(a) Illustration of PAA coefficients obtained
from six equally sized intervals.

𝓈1 : 𝑎

𝓈2 : 𝑏
𝓈3 : 𝑐
𝓈4 : 𝑑
𝓈5 : 𝑒

𝓈6 : 𝑓

0 10 20

𝓌1 𝓌2 𝓌3 𝓌4 𝓌5

d
c

b

d

b

(b) SAX representation for time series

Figure 3. Representations for PAA and SAX algorithms. The final string 𝑑𝑐𝑏𝑑𝑏 is obtained by
mapping each PAA coefficient 𝑠𝓌𝑖

to a symbol 𝓈 𝑗 .

SAX is a method that transforms time series into reduced-symbolic discretization using
the PAA approach. The transformation process involves mapping each PAA coefficient
(referred to as word segments) to symbols. It is achieved by defining a set of intervals,
known as breakpoints or alpahet cuts, in the value space based on a normal distribution. Each
interval in the set represents a symbol or character, denoted as 𝓈𝑖 . The PAA coefficient that
falls within a specific interval is then replaced by its corresponding symbol. The resulting
collection of symbols is called string.

Definition 2. Let A = {(𝛼1, 𝓈1), (𝛼2, 𝓈2), (𝛼3, 𝓈3), . . . , (𝛼 |A | , 𝓈|A | )} be a set of intervals or break-
points in the value spaces 𝛼 𝑗 = [𝛼 𝑗 ,𝛼 𝑗+1), 𝑗 ≠ |A| with their corresponding symbol 𝓈 𝑗 . A string
(𝒮) is formed as 𝒮 = {𝓈 𝑗 |𝑠𝓌𝑖

∈ 𝛼 𝑗 },∀𝑖 ∈ {1, 2, . . . , |𝑊 |} and ∀ 𝑗 ∈ {1, 2, . . . , |𝐴|}.

Figure 3b shows the SAX representation of the PAA coefficients shown in Figure 3a.
In this example, the breakpoints are |A| = 6. Each PAA coefficient 𝑠𝓌𝑖

is replaced by
a corresponding symbol according to the interval in which it falls. The resulting string
for this example is 𝑑𝑐𝑏𝑑𝑏. It is worth mentioning that SAX requires two crucial initial
parameters: the number of word segments (|W|) and the number of breakpoints (|A|).
Both parameters impact the overall behavior of the approach. Normalizing the time
series before discretization is also necessary, as the breakpoints are generated based on
this distribution.
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2.2. Multi-Objective Optimization Problem (MOOP)

MOOP involves simultaneously optimizing functions via maximizing, minimizing,
or both. Furthermore, each possible solution results in a trade-off in each function [43].
Therefore, MOOP is expressed in Definition 3.

Definition 3. Let ®𝑥 = [𝑥1, 𝑥2, . . . , 𝑥 | ®𝑥 | ] be the vector of decision variables for a problem, where | ®𝑥 |
is the number of variables, ®𝐹 is the set of objective functions to be optimized, 𝑔𝑖 (®𝑥) and ℎ𝑒 (®𝑥) are
inequality and equality constrained functions, respectively, 𝐼 is the number of inequality functions,
𝐸 is the number of equality functions, and 𝐿 and𝑈 are the lower and upper domain values of the
decision variables space, respectively. The MOOP can be stated as shown in Equation (1) [43–45].

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

®𝐹 = [ 𝑓1 (®𝑥), 𝑓2 (®𝑥), . . . , 𝑓 | ®𝐹 | (®𝑥)]
𝑇

𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 :

𝑔𝑖 (®𝑥) ≤ 0, 𝑓 𝑜𝑟 𝑖 = {1, 2, . . . , 𝐼}
ℎ𝑒 (®𝑥) = 0, 𝑓 𝑜𝑟 𝑒 = {1, 2, . . . , 𝐸}
®𝑥 ∈ [𝐿,𝑈]

(1)

Instead of finding a unique solution, MOOP aims to find a set of feasible solutions [46].
Nevertheless, locating this set of feasible solutions poses a significant challenge. The Pareto-
optimality approach is widely utilized in MOOP due to its ability to produce competitive
outcomes [47,48]. Furthermore, Pareto introduced a definition of dominance to determine
the superior solution from a given set of solutions [49]. This form of dominance is referred
to as Pareto dominance and is defined in the following manner.

Definition 4. Let 𝑓 ∈ ®𝐹 be an objective function and ®𝑥1 and ®𝑥2 be two feasible solutions. ®𝑥1
dominates (≺) ®𝑥2 based on Pareto dominance, if and only if 𝑓𝑖 (®𝑥1) ≤ 𝑓𝑖 (®𝑥2) ∀ 𝑖 ∈ {1, 2, . . . , | ®𝐹 |}
and 𝑓 𝑗 (®𝑥1) < 𝑓 𝑗 (®𝑥2) at least in one 𝑗 ∈ {1, 2, . . . , | ®𝐹 |} for a minimization problem.

This dominance makes it possible to obtain a collection of non-dominant solutions,
called the Pareto set, and its image is the Pareto front (𝔉). From this set, a final solution is
chosen based on the user’s preference.

2.3. Enhanced Multi-Objective Symbolic Discretization for Time Series (eMODiTS)

eMODiTS is a SAX-based discretization approach [20]. Thus, it employs the PAA
technique to reduce dimensionality, word segment cuts, alphabet cuts, and the same
symbol assignment process. However, unlike SAX, each word segment includes distinct,
random, and non-normal distributed breakpoints. Therefore, it does not assume a normal
distribution in time series. A graphical representation of the eMODiTS discretization
scheme for the example depicted in Figure 3b is given in Figure 4.

In addition, eMODiTS aims to determine the optimal number of word segments and
breakpoints in the discretization process. The eMODiTS approach focuses on optimizing
three functions at the same time: entropy, complexity, and information loss. Consequently,
the search task to find a suitable discretization scheme employs the well-known Non-
dominated Sorting Genetic Algorithm (NSGA-II) [50–52]. Some NSGA-II-specific compo-
nents were modified to handle the individual representation of eMODiTS. Figure 5 depicts
the general discretization procedure employed in eMODiTS. The dotted and light-gray
squares represent the modified steps of NSGA-II.
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( [−0.8,−0.2), 𝑐)}

A𝓌2 :{([−1.4,−1.2), 𝑎), ( [−1.2,−1.05), 𝑏),
( [−1.05,−0.7), 𝑐), ( [−0.7,−0.5), 𝑑),
( [−0.5,−0.2), 𝑒)}

A𝓌3 :{([−1.4,−1.18), 𝑎), ( [−1.18,−0.77), 𝑏),
( [−0.77,−0.45), 𝑐), ( [−0.45,−0.2), 𝑑)}

A𝓌4 :{([−1.4,−0.85), 𝑎), ( [−0.85,−0.35), 𝑏),
( [−0.35,−0.2), 𝑐)}

A𝓌5 :{([−1.4,−1.15), 𝑎),( [−1.15,−0.2), 𝑏)}

Figure 4. eMODiTS scheme discretization approach where each word segment 𝓌𝑖 contains its
breakpoint scheme A𝓌𝑖

. In this example, the final string is 𝑐𝑐𝑏𝑎𝑏.

Begin

Population creation Population evaluation

Parent selection
Fast non-dominated

sorting and crowding
distance computation

Creation, muta-
tion and evalua-
tion of offspring

Population
replacement

Final solu-
tion selection

Is it sat-
isfying

stop
criteria?

End

yes

no

Figure 5. eMODiTS’s flowchart. Dotted and light gray boxes represent the NSGA-II stages necessary
to adapt them to the eMODiTS representation schemes.

2.3.1. Population Generation

The population comprises individuals who represent discretization schemes, where
each word break includes a distinct breakpoints scheme. The word segments and break-
points are integer and float value arrays, respectively. As an illustration, Figure 6 displays
the vector that represents Figure 4. In this representation, each word segment 𝓌𝑖 is accom-
panied by its corresponding breakpoints A𝓌𝑖 , 𝑗 . At the start of eMODiTS, these individuals
are initialized randomly, taking into account the length and values of a temporal dataset.
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𝓌1 A𝓌1,1 A𝓌1,2 𝓌2 A𝓌2,1 A𝓌2,2 A𝓌2,3 A𝓌2,4

5 -1 -0.8 13 -1.2 -1.05 -0.7 -0.5 · · ·

𝓌3 A𝓌3,1 A𝓌3,2 A𝓌3,3 𝓌4 A𝓌4,1 A𝓌4,2 𝓌5 A𝓌5,1

18 -1.18 -0.77 -0.45 22 -0.85 -0.35 25 -1.15

Figure 6. Representation of an individual in eMODiTS.

2.3.2. Evaluation Process

As previously mentioned, the eMODiTS method aims to identify flexible discretization
schemes that are based on entropy (𝐸), complexity (𝐶𝑋), and information loss (𝐼𝐿). Each
function is specifically targeted in the search for appropriate discretization schemes. 𝐸 is
employed as a method for estimating classification using a confusion matrix (𝑐𝑚) created
through the discretized time series (𝒮), where the rows of the confusion matrix are the
unique discretized time series, and the columns represent the different classes in a database
for each. The data in the matrix indicate the frequency of each class for a particular
discretized time series. 𝐸 is calculated using Equation (2), where 𝑃(𝑐𝑚(𝒮𝑖 , 𝑐)) denotes the
probability of a discretized time series being assigned the class 𝑐 by 𝑐𝑚. When the measure
values are close to zero, it indicates that each time series is assigned to only one class.
On the contrary, values close to one suggest that a time series has multiple class labels.
Therefore, values close to zero are preferred [16,20].

𝐸 =

𝑀∑︁
𝑖=1

−
𝐶∑︁
𝑐=1

𝑃(𝑐𝑚(𝒮𝑖 , 𝑐)) · log2 𝑃(𝑐𝑚(𝒮𝑖 , 𝑐)) (2)

Alternatively, 𝐶𝑋 assesses the complexity of the resulting discrete database by con-
sidering the number of distinct discretized time series. This measure is used to determine
the level of difficulty for classifiers in comprehending the discrete dataset. A value close to
zero indicates only a few instances in the discrete dataset, making the classification task
more manageable. In contrast, a value close to one suggests that the number of discretized
time series is similar to the number of original time series, resulting in a more complex
discriminator model for the classifier. Therefore, values close to zero are preferable. 𝐶𝑋 is
expressed in Equation (3), where |D| represents the number of time series in the original
dataset, |𝒮| is the number of unique discretized time series, and 𝐶 denotes the total number
of classes in the problem.

𝐶𝑋 =

{ |D |− |𝒮 |−𝐶
|D |+(𝐶−1) |𝒮| −𝐶 < 0
|𝒮 |−𝐶

|D |+(𝐶−1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3)

Finally, the information loss (𝐼𝐿) measure is used to evaluate the data lost during
dimensionality reduction. The Mean Square Error (MSE) measure is a commonly used
metric for this purpose. MSE calculates the similarity among two time series of equal
size, so it is necessary to reconstruct the discretized time series to compare it with the
original (𝒯𝑖). Values close to zero indicate that the time series are similar, while values
close to one indicate dissimilarity. 𝐼𝐿 is calculated using Equation (4), where ℛ represents
a reconstructed time series, |ℛ| is the number of reconstructed time series, and 𝑛 is the
length of the reconstructed time series. Both series are scaled to intervals [0, 1] for a
fair comparison.
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𝐼𝐿 =
1
|ℛ|

|ℛ |∑︁
𝑖=1

𝑀𝑆𝐸 (ℛ𝑖 ,𝒯𝑖)

𝑀𝑆𝐸 (ℛ𝑖 ,𝒯𝑖) =
∑(𝓇𝑖 − 𝜏𝑗 )2

𝑛 − 1
,𝓇𝑖 ∈ ℛ𝑖 , 𝜏𝑗 ∈ 𝒯𝑖

(4)

2.3.3. Offspring Creation and Mutation

As previously stated, the individuals in eMODiTS consist of varying-sized vectors.
Therefore, the crossover operator was modified to generate novel individuals by combining
two solutions given this condition. The recombination operator used in this study was
the commonly used one-point crossover. In this operator, a random cut is made for both
parents, and the resulting segments are then combined [53–57]. However, in this particular
case, a different cut is randomly applied for each parent, considering the parents’ sizes.
Subsequently, each section of the parents is merged as follows. In the first child (𝑂1), the
first part of the first parent (𝑃1𝑠𝑡

1 ) corresponds to its first part, while the second part of the
second parent (𝑃2𝑛𝑑

2 ) is copied to its last part. For the second child (𝑂2), the first part of the
second parent (𝑃1𝑠𝑡

2 ) becomes its first part, and the second part of the first parent (𝑃2𝑛𝑑
2 ) fills

its second part. Figure 7 illustrates the adapted one-point crossover operator.
In contrast, the uniform mutation operator is utilized, selecting individual positions

randomly to modify based on a mutation percentage defined by the user [55,58].

𝓌1 A𝓌1,1 A𝓌1,2 𝓌2 A𝓌2,1 A𝓌2,2 A𝓌2,3 A𝓌2,4 𝓌3 A𝓌3,1 A𝓌3,2

𝑃1 5 -1 -0.6 9 -1.2 -1.05 -0.7 -0.5 13 -1 -0.72

𝓌1 A𝓌1,1 A𝓌1,2 A𝓌1,3 A𝓌1,4 𝓌2 A𝓌2,1 A𝓌2,2 𝓌3 A𝓌3,1

𝑃2 3 -1.18 -0.9 -0.45 -0.3 10 -0.85 -0.35 25 -1.15

𝓌1 A𝓌1,1 A𝓌1,2 𝓌2 A𝓌2,1 A𝓌2,2 A𝓌2,3 A𝓌2,4 𝓌3 A𝓌3,1 A𝓌3,2 𝓌4 A𝓌4,1

𝑂1 5 -1 -0.6 9 -1.2 -1.05 -0.7 -0.5 10 -0.85 -0.35 25 -1.15

𝓌1 A𝓌1,1 A𝓌1,2 A𝓌1,3 A𝓌1,4 𝓌2 A𝓌2,1 A𝓌2,2

𝑂2 3 -1.18 -0.9 -0.45 -0.3 13 -1 -0.7

𝑃1𝑠𝑡
1 𝑃2𝑛𝑑

1

𝑃1𝑠𝑡
2 𝑃2𝑛𝑑

2

𝑃1𝑠𝑡
1 𝑃2𝑛𝑑

2

𝑃1𝑠𝑡
2 𝑃2𝑛𝑑

1

Figure 7. Crossover operator based on the one-point approach. The dashed line represents the cuts
performed by each parent.

2.3.4. Population Replacement

The last process of eMODiTS consists of replacing the current population based on the
union of the parent and offspring sets. Fast, non-dominated sorting is applied to obtain the
ranking of the parent and offspring set. Subsequently, the next-generation population is
filled with the first front of the joined set. If the new population ends with a size smaller
than the current population, the second front is selected for the filling procedure. If the
updated population size remains less than the current population, the third position is
chosen, and so on.
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2.3.5. Preference Handling

The eMODiTS search mechanism utilizes NSGA-II, which results in a collection of
non-dominated solutions (Pareto front) being generated upon completion of the search
process rather than a singular solution. Hence, it is essential to have a preference selection
mechanism in place to select a single solution from the Pareto front. The preference
handling employed in eMODiTS relies on the misclassification rate achieved for each
solution on the Pareto front by applying the decision tree classifier to the training set.
The final discretization scheme is chosen based on the solution that achieves the lowest
misclassification rate. It is important to note that the test set is used solely to demonstrate
the final classification performance and not to select the final discretization scheme.

2.4. Surrogate-Assisted Multi-Objective Symbolic Discretization for Time Series (sMODiTS)

Due to the flexible discretization scheme integrated into eMODiTS, the search space
expands, leading to a higher computational cost. The computational cost is primarily
associated with evaluating every solution in the three objective functions. Consequently,
a modified approach that integrates approximated models is introduced to reduce the
computational cost of eMODiTS. This approach is called Surrogate-assisted Multi-objective
Symbolic Discretization for Time Series (sMODiTS). A surrogate model is a substitute in
optimization scenarios involving computationally intensive problems. It uses an iterative
and updating approach to develop an approximate model that is simpler to manage and less
computationally demanding compared to the original model [59–62]. Figure 8 illustrates
the general procedure for implementing sMODiTS, highlighting the specific instances when
the surrogate model needs to be established and revised.

2.4.1. Training Set Creation

The training set for the surrogate models was generated by applying a uniform
design of the experiments. The solutions were randomly initialized within the search
space following a uniform distribution [21,63–65]. The design is primarily motivated by
the varying number of individual decision variables, making applying traditional initial
sampling methods more complex.

2.4.2. Surrogate Model Creation

Several surrogate models have been used for multi-objective evolutionary optimiza-
tion [66,67], including the Gaussian process [68–73], Support Vector Machines (SVMs) [29,74,75],
Kriging [29,76,77], kernel extreme learning machines [29], Radial Basis Function (RBF) [72,76–79],
and artificial neural networks [80–82], among others. These models are usually applied to indi-
viduals of the same size. On the other hand, another model used mainly for single-objective
optimization is 𝑘-nearest neighbor for regression (𝐾𝑁𝑁𝑅) [61,83,84], which allows for compari-
son of two unequal-sized vectors by adjusting the distance measure.

𝐾𝑁𝑁𝑅 is based on the original 𝐾𝑁𝑁 method. The main difference between them is
that 𝐾𝑁𝑁𝑅 uses continuous variables as class labels instead of discrete variables due to the
nature of the problems they address. The 𝐾𝑁𝑁𝑅 approach provides the mean class label
values of the 𝑘 nearest neighbors of a data instance rather than the frequency of the class
label. This method is computed using Equation (5), where ®𝑦𝑖 is a solution belonging to the
training set [61].

𝐾𝑁𝑁𝑅 (®𝑥𝑖) =
∑𝑘
𝑖 𝑓 (®𝑦𝑖)
𝑘

(5)

Since 𝐾𝑁𝑁𝑅 is a distance-based classifier and eMODiTS contains solutions of different
sizes, an elastic similarity measure was incorporated into 𝐾𝑁𝑁𝑅 to compare two individuals
with sMODiTS. Due to the competitive results reported in the state of the art, the selected
elastic measure was Dynamic Time Warping (DTW). However, the primary disadvantage
of DTW is the computational complexity caused by the exhaustive search for all possible
subsequences in the compared vectors.
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Figure 8. General scheme of sMODiTS. Green arrows indicate paths to follow when the conditions
are satisfied. Red arrows indicate paths to follow when conditions are not satisfied. Blue arrows
represent the normal flow of the diagram.

2.4.3. Surrogate Model Update

Evolution control is a fundamental component of surrogate modeling in optimization
tasks. Consequently, sMODiTS implements an individual and generation-based strategy to
update each surrogate model. Algorithm 1 demonstrates this process. The individual-based
strategy consists of evaluating each individual of the Pareto front in the original objective
functions. It is applied to each generation of the evolutionary process. On the other hand,
in the generation-based strategy, the current population is evaluated based on the original
functions every defined number of generations (𝑈𝐺).

Furthermore, in this strategy, Pareto-front individuals are inserted into each training set
P𝑖
𝑡𝑟𝑎𝑖𝑛

, and the model is retrained, keeping its size to avoid excessive growth and, therefore,
high consumption of computational resources. Consequently, fast, non-dominated sorting
was applied to the training set for this process. First, the new training set is filled with
non-dominated solutions. Then, if the new training set size is less than the previous set, the
following non-dominated solutions are implemented without counting the first ones until
the size of the new training set is complete.

Finally, the frequency of application of the generation-based strategy is determined
based on the predictive power of the Pareto front, measured by the metric 𝑑 𝑗 described
in the next section [85]. In other words, the update process will be delayed based on an
update factor 𝑈𝐹 if each surrogate model achieves prediction values greater than 90%
(𝜀). In contrast, if a surrogate model achieves prediction values below 90%, the update
process will be executed earlier based on the obtained prediction. This parameter was
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selected to guarantee a high fidelity in the subrogated model relative to the original model.
Additionally, several authors recommend a value higher than 80% to guarantee competitive
results [86,87].

Algorithm 1 Surrogate model update procedure

Require:
𝑈𝐺: generation number to apply the generation-based strategy
𝑈𝐹: update factor
P𝑖
𝑡𝑟𝑎𝑖𝑛

: training set of the model 𝑖
𝔉: Pareto front
𝜀: prediction error threshold
𝑔: generation actual

1: 𝑌 = 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝔉) ⊲ Evaluation performed using surrogate model
(Equation (5))

2: 𝑌 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝔉) ⊲ Evaluation performed using Equations (2)–(4)
3: if 𝑔 == 𝑈𝐺 then
4: 𝑒𝑟𝑟𝑜𝑟 = 𝑑 𝑗 (𝑌 ,𝑌 ) ⊲ 𝑑 𝑗 is computed using Equation (6)
5: if 𝑒𝑟𝑟𝑜𝑟 <= 𝜀 then
6: P𝑖

𝑡𝑟𝑎𝑖𝑛
= P𝑖

𝑡𝑟𝑎𝑖𝑛
∪𝔉

7: 𝑚𝑜𝑑𝑒𝑙_𝑡𝑟𝑎𝑖𝑛(𝑖,P𝑖
𝑡𝑟𝑎𝑖𝑛
) ⊲ Train the model 𝑖 using P𝑖

𝑡𝑟𝑎𝑖𝑛

8: 𝑖𝑛𝑐 = 𝑟𝑜𝑢𝑛𝑑 (𝑈𝐹 ∗ 𝑒𝑟𝑟𝑜𝑟 , 0)
9: 𝑈𝐺 = 𝑈𝐺 + 𝑖𝑛𝑐

10: else
11: 𝑈𝐹 = 𝑈𝐹 ∗ 2

2.5. Performance Metric for Surrogate Model Prediction

Evaluating surrogate models’ predictive power is essential for implementing them, as
this indicates their fidelity to the original models.

A metric used to evaluate the goodness of fit in regression models is the modified
agreement index (𝑑 𝑗 ) or the Willmott index [85]. The 𝑑 𝑗 values range from 0 to 1, where 0
indicates total disagreement between the observed and predicted values, and 1 indicates
total agreement. Unlike 𝑅2, which can generate negative values when comparing unrelated
sets of values, 𝑑 𝑗 always produces results within the defined range. The 𝑑 𝑗 metric is
calculated using Equation (6), where the observed and predicted values are denoted by 𝑌𝑖
and 𝑌𝑖 , respectively, and the average of the observed values is represented by 𝑌 . The value
of 𝑗 is usually set to one.

𝑑 𝑗 = 1 −

∑ |𝑌 |
𝑖=1

���𝑌𝑖 −𝑌𝑖 ��� 𝑗∑ |𝑌 |
𝑖=1

���𝑌𝑖 −𝑌 ��� + ���𝑌𝑖 −𝑌 ��� 𝑗 (6)

2.6. Datasets

This study used 41 databases from the University of California Repository (UCR) to
test our proposal [88]. Each database was donated by the original authors and categorized
according to the problem addressed in their respective articles. Table 1 shows the databases
utilized in this document.

Each database is classified into different domains based on the type of data input.
For instance, data sets classified as image types comprise time series obtained from image
outlines or other methods used to convert an image into a time series. On the contrary,
the Spectro type includes a time series extracted from spectrograms of a specific food.
Additionally, the sensor type comprises time series collected from various sensors, including
engine noise, motion tracking, and electrical power metrics. The UCR repository [88]
provides explanations and access to all types of datasets.
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Table 1. Datasets used in this research. This data were obtained from [88]. The ‘Abbrev’ column is
the authors’ suggested abbreviation for the database name.

Dataset Abbrev. Train Size Test Size Length Classes
Number Type

ArrowHead ARROW 36 175 251 3 IMAGE
CBF CBF 30 900 128 3 SIMULATED
Coffee COFFEE 28 28 286 2 SPECTRO
CricketX CRICKX 390 390 300 12 MOTION
CricketY CRICKY 390 390 300 12 MOTION
CricketZ CRICKZ 390 390 300 12 MOTION
DiatomSizeReduction DSR 16 306 345 4 IMAGE
DistalPhalanxOutlineAgeGroup DPOAG 400 139 80 3 IMAGE
DistalPhalanxOutlineCorrect DPOC 600 276 80 2 IMAGE
DistalPhalanxTW DPTW 400 139 80 6 IMAGE
ECG200 ECG200 100 100 96 2 ECG
ECG5000 ECG5K 500 4500 140 5 ECG
ECGFiveDays ECG5D 23 861 136 2 ECG
FaceAll FALL 560 1690 131 14 IMAGE
FacesUCR FUCR 200 2050 131 14 IMAGE
GunPoint GUNP 50 150 150 2 MOTION
InsectWingbeatSound IWS 220 1980 256 11 EPG
ItalyPowerDemand ITAPD 67 1029 24 2 EPG
Lightning7 LIGHT7 70 73 319 7 SENSOR
MedicalImages MEDIMG 381 760 99 10 HAR
MiddlePhalanxOutlineAgeGroup MPOAG 400 154 80 3 SENSOR
MiddlePhalanxOutlineCorrect MPOC 600 291 80 2 SENSOR
MiddlePhalanxTW MPTW 399 154 80 6 OTHER
MoteStrain MOTEST 20 1252 84 2 SIMULATED
PhalangesOutlinesCorrect PHOC 1800 858 80 2 IMAGE
Plane PLANE 105 105 144 7 IMAGE
ProximalPhalanxOutlineAgeGroup PPOAG 400 205 80 3 AUDIO
ProximalPhalanxOutlineCorrect PPOC 600 291 80 2 IMAGE
ProximalPhalanxTW PPTW 400 205 80 6 SENSOR
SonyAIBORobotSurface1 SONY1 20 601 70 2 IMAGE
SonyAIBORobotSurface2 SONY2 27 953 65 2 MISC
SwedishLeaf SWEDLF 500 625 128 15 SOUND
SyntheticControl SYNCTR 300 300 60 6 SENSOR
ToeSegmentation1 TOES1 40 228 277 2 HEMODYNAMICS
ToeSegmentation2 TOES2 36 130 343 2 HEMODYNAMICS
Trace TRACE 100 100 275 4 HEMODYNAMICS
TwoLeadECG TWOECG 23 1139 82 2 DEVICE
TwoPatterns TWOPAT 1000 4000 128 4 SENSOR
Wafer WAFER 1000 6164 152 2 HAR
Wine WINE 57 54 234 2 DEVICE
WordSynonyms WORDS 267 638 270 25 AUDIO

3. Results and Discussion

This section outlines the experimental design used to assess our proposal’s efficacy
across all dimensions. It also presents the findings of the experiments and their respective
discussions. It is essential to mention that the methods compared in this section were
implemented within the same experimental environment.
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3.1. Experimental Design

The experiments performed and shown in the following sections attempt to analyze the
behavior of our proposal comprehensively, covering (1) the predictive capability measuring
the fidelity of the surrogated model concerning the original model, (2) the classification
capability regarding the original approach, and (3) the classification capability concerning
other widely used time series discretizers. Consequently, the experiments were planned to
answer the following research questions based on the objectives defined in Section 1:

• Can sMODiTS increase the model fidelity regarding [42]? This question arises when
analyzing the prediction power of sMODiTS and the proposal introduced in [42]
compared to eMODiTS (original model). The results will seek to achieve the first
research objective and are presented in Section 3.4.

• Is it possible to minimize the computational cost incurred by evaluating the solutions
in the eMODiTS functions without losing the ability to classify the time series? This
question arises to achieve the second research objective, which seeks to find an alterna-
tive evaluation of the objective functions without losing the time series classification
rate. The answer to this question will be presented in Section 3.5.

• Is sMODiTS a competitive alternative compared to SAX-based symbolic discretization
models? Finally, this question arises to analyze whether implementing the surrogate
models in sMODiTS remains competitive in the task for which the tool was designed.
Therefore, a comparison is made against symbolic discretization models showing
competitive performance in time-series classification. In Section 3.6, the results that
answer this question will be presented.

3.2. Parameter Settings

The parameters used for sMODiTS are the same as those recommended by the authors
of eMODiTS [20], which were obtained through various tests with different configurations.
These values are presented in Table 2. The parameter values of sMODiTS were taken
from [42] for a fair comparison. These parameter values are described as follows. The
model update process was performed at the beginning of every 60 generations for the
generation-based strategy, starting with five updates and changing according to prediction
ability. The prediction measure was 𝑑 𝑗 , and the prediction error threshold used to update
the generation-based application was 0.9. Regarding the DTW parameter, the window size
employed for the Sakoe-Chiba constraint was 10%; an often-used value when this method
is implemented [89].

Table 2. Parameter settings for eMODiTS and sMODiTS. The values were selected according to those
reported in [20].

Parameter Value

Population size 100
Generation number 300

Number of independent executions 15
Crossover rate 80%
Mutation rate 20%

The EP approach was compared using the same sMODiTS experimental environment
as that used for the SAX-based methods. However, since the other SAX-based approaches
do not report results for all databases in the UCR repository, most databases have no
parameter settings. Therefore, the word size and alphabet values for each method are
obtained from the best solution found by EP. Furthermore, these symbolic discretization
approaches require additional parameters, such as 1D-SAX and rSAX. For example, for
1D-SAX, the slope number used for its execution was eight, and for rSAX, the value of
the parameter 𝜏 was 10. For the other methods and their parameters, the initial settings
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suggested by the authors were used due to the competitive performance observed in their
specific applications.

3.3. Performance Measures

All methods were compared using the F-measure (𝐹𝑀). This measure is one of
the most robust and is insensitive to class balancing. The F-measure is expressed in
Equation (7), where 𝑇𝑃 represents the number of true positives, 𝐹𝑁 represents the number
of false negatives, and 𝐹𝑃 represents the number of false positives. Values close to one are
preferred because they represent a suitable method performance.

𝐹𝑀 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 (7)

Moreover, the F-measure ratio (𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒_𝑟𝑎𝑡𝑖𝑜) between eMODiTS and sMODiTS,
expressed in Equation (8), was used to interpret the data. When this ratio exceeds one,
sMODiTS will achieve a higher F-measure value than eMODiTS and perform better. Oth-
erwise, when this ratio is less than one, eMODiTS will have outperformed sMODiTS
according to the F-measure. Finally, when the ratio is equal to one, it means that both
methods will have the same performance in terms of classification.

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒_𝑟𝑎𝑡𝑖𝑜 =
𝑠𝑀𝑂𝐷𝑖𝑇𝑆_𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑒𝑀𝑂𝐷𝑖𝑇𝑆_𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒

(8)

Concerning statistical analysis, a normality test was applied for each data group
in each comparison. It is essential to mention that the data used for this test were the
misclassification rate reached using each method for all datasets. The normality test used
was the Anderson–Darling test, with a confidence level of 95%. The data groups do not
present a normal distribution for the first and last comparisons. Thus, the selected statistical
test was the Friedman test with the Nemenyi post hoc test ata 95% confidence interval for both.

This confidence interval was chosen empirically, because a level of 95% is considered
to be a balance between precision and reliability, meaning that the experiment, when
repeated 95 times, will match the result. The opposite is true for the 90% and 99% intervals,
where the reliability decreases for the former but increases for the latter, and the precision
increases for the former but decreases for the latter [90].

One essential way to compare two Multi-Objective Evolutionary Algorithms (MOEA)
is to compare the similarity among their final Pareto fronts. Consequently, a set of well-
known metrics is employed to compare the Pareto fronts of eMODiTS and sMODiTS. These
metrics are described below.

• HVR [43]: This metric is based on the hypervolume (𝐻) measure, which computes
the volume in the space of objective functions covered by a set of non-dominated
solutions based on a reference point. Therefore, the 𝐻𝑉𝑅 computation is expressed in
Equation (9), where 𝐻𝔉𝑖

is the hypervolume of the obtained Pareto front and 𝐻𝔉𝑗
is the

hypervolume of the true Pareto front. In this document, we take the true Pareto front
as the eMODiTS Pareto front and the obtained Pareto front as the sMODiTS Pareto
front. 𝐻𝑉𝑅 < 1 indicates that the sMODiTS Pareto front does not reach the eMODiTS
Pareto front, 𝐻𝑉𝑅 = 1 indicates that both fronts are similar, and 𝐻𝑉𝑅 > 1 indicates
that the sMODiTS Pareto front outperforms the eMODiTS Pareto front. Therefore, the
ideal value is 𝐻𝑅𝑉 = 1.

𝐻𝑉𝑅 =
𝐻𝔉𝑖

𝐻𝔉𝑗

(9)

• Generational distance (GD) [91]: 𝐺𝐷 measures the closeness of the obtained and
true Pareto front. It is expressed in Equation (10), where |𝔉𝑖 | is the number of non-
dominated solutions in the obtained Pareto front, and 𝑑𝑖 is the Euclidean distance
between each solution of the obtained Pareto front and the nearest solution of the
True Pareto front, measured in the space of the objective functions. Like HVR, for our
purpose, the true Pareto front is taken as the eMODiTS Pareto front, and the obtained
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Pareto front is taken as the sMODiTS Pareto front. Values near zero indicate that
the sMODiTS Pareto front is similar to the eMODiTS Pareto front. It is important to
mention that the main reason for using this metric is to measure the closeness between
the Pareto fronts. Therefore, it is not necessary to apply a data normalization technique
to avoid bias in the distances of the points.

𝐺𝐷 =

√︃∑ |𝔉𝑖 |
𝑖=1 𝑑

2
𝑖

|𝔉𝑖 |
(10)

• Coverage measure (C) [92]: This measure computes the portion of two Pareto fronts
covered or dominated by one another or vice versa. Equation (11) is used to compute
this measure, where 𝐶 (𝔉𝑖 ,𝔉 𝑗 ) = 1 indicates that all elements of 𝔉 𝑗 are dominated
by 𝔉𝑖 , and 𝐶 (𝔉𝑖 ,𝔉 𝑗 ) = 0 indicates that no elements from 𝔉 𝑗 are dominated by 𝔉𝑖 . It
is important to mention that 𝐶 (𝔉𝑖 ,𝔉 𝑗 ) ≠ 𝐶 (𝔉 𝑗 ,𝔉𝑖) and 𝐶 (𝔉𝑖 ,𝔉 𝑗 ) ≠ (1 − 𝐶 (𝔉 𝑗 ,𝔉𝑖)).
Therefore, both scenarios must be analyzed to provide a wide view of this measure.
Two Pareto fronts are considered as similar when the coverage in both senses is zero
simultaneously.

𝐶 (𝔉𝑖 ,𝔉 𝑗 ) =
{®𝑦 ∈ 𝔉 𝑗 |∃®𝑥 ∈ 𝔉𝑖 : ®𝑥 ≺ ®𝑦}

|𝔉 𝑗 |
(11)

• Convergence index (CI) [92]: This measure is the difference between the coverage
of 𝔉𝑖 over 𝔉 𝑗 . It is expressed by Equation (12), where 𝐶𝐼 (𝔉𝑖 ,𝔉 𝑗 ) ≥ 0 denotes that
the portion coverage of 𝔉𝑖 is higher than 𝔉 𝑗 . Otherwise, the portion of 𝔉 𝑗 is higher
than 𝔉𝑖 .

𝐶𝐼 (𝔉𝑖 ,𝔉 𝑗 ) = 𝐶 (𝔉𝑖 ,𝔉 𝑗 ) −𝐶 (𝔉 𝑗 ,𝔉𝑖) (12)

Finally, for computational cost analysis, the percentage reduction in the number of
evaluations performed was calculated using Equation (13), where sMODiTS_Evals is the
number of evaluations performed by sMODiTS and eMODiTS_Evals is the number of
evaluations performed by eMODiTS.

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠𝑅𝑎𝑡𝑖𝑜 =
|𝑠𝑀𝑂𝐷𝑖𝑇𝑆_𝐸𝑣𝑎𝑙𝑠 − 𝑒𝑀𝑂𝐷𝑖𝑇𝑆_𝐸𝑣𝑎𝑙𝑠 |

𝑒𝑀𝑂𝐷𝑖𝑇𝑆_𝐸𝑣𝑎𝑙𝑠
∗ 100 (13)

3.4. sMODiTS’ Prediction Power Analysis

The sMODiTS’ prediction power was measured based on the accumulated Pareto
front obtained in each data set using the measures of root mean square error (RMSE), 𝑑 𝑗 ,
mean absolute percentage error (MAPE), and mean absolute error (MAE). It is essential
to mention that each Pareto front point is a solution estimated from the surrogate model.
Therefore, each point was evaluated in the original functions to perform the approxima-
tion analysis. Moreover, sMODiTS was compared with the previous work presented by
Márquez-Grajales et al. [42] due to the intention of this work to improve its prediction
power. Both were executed using five configurations, 1𝑁𝑁𝐷𝑇𝑊 , 3𝑁𝑁𝐷𝑇𝑊 , 5𝑁𝑁𝐷𝑇𝑊 ,
7𝑁𝑁𝐷𝑇𝑊 , and 9𝑁𝑁𝐷𝑇𝑊 for 𝑘 = {1, 3, 5, 7, 9} of the algorithm 𝐾𝑁𝑁𝑅, respectively, to find
the best value for the parameter 𝑘 . These values of k have been selected because several
papers report better performance when k is less than or equal to nine [93–95]. The authors
mention that with values higher than nine for the parameter k, the improvement in the
results is minimal or null, and, on the contrary, with values between one and nine, the
results show a significant performance in the problems where the KNN algorithm has been
tested. Figure 9 and Table 3 show this analysis.
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Figure 9. Prediction power reached by (a) Márquez-Grajales et al. [42] and (b) sMODiTS. The color
bars represent the absolute discrepancy between the two approaches regarding the prediction error.



Math. Comput. Appl. 2024, 29, 78 17 of 27

Table 3. Average prediction metrics achieved by Márquez-Grajales et al. [42] and sMODiTS. The
numbers in parentheses represent the standard deviation of each measure and approach. Bold
numbers represent the best values for each measure.
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Figure 9 shows the prediction plots in which the predicted values are compared with
the original values. The color bar represents the absolute prediction error between the
predicted and observed values, with a difference close to zero representing a high-accuracy
prediction and a difference close to one representing a low-accuracy prediction. Moreover, a
red dotted line is displayed to locate the scenario where the predicted and observed values
match. Consequently, points close to or inside the red line represent a good approximation.

As we can see, in this figure, sMODiTS presents a higher accuracy in the approximation
of the values of the objective functions, showing differences of less than 0.6 in the function
of Complexity and Information Loss (InfoLoss), being entropy, the function with a higher
difference value. In contrast, the approach presented by Márquez-Grajales et al. [42]
presents a more significant number of differences with values greater than 0.8 in predicting
both entropy and complexity, with information loss producing the most favorable outcomes.
However, these values do not exceed those found by sMODiTS, whose plots are mainly
around the red line in this function.

Moreover, these results are confirmed in Table 3, where the highest results are found
for sMODiTS in most prediction measures. For example, the values of 𝑑 𝑗 using sMODiTS
are highest in the 1𝑁𝑁𝐷𝑇𝑊 version for the entropy function (0.6198) and the information
loss function (0.5356), while the 3𝑁𝑁𝐷𝑇𝑊 and 5𝑁𝑁𝐷𝑇𝑊 versions obtained the best value
for the complexity function (0.6704). Regarding RMSE and MAE, only for the entropy
function, the method introduced by Márquez-Grajales et al. [42] obtained lower values
than those shown by sMODiTS (0.0748 and 0.0318 for RMSE and MAE, respectively). In
contrast, the opposite is the case for the other functions, where sMODiTS is superior.

It is essential to mention that these results are due to the updating process of the
proposed surrogate model, which evaluates its performance more frequently during the
optimization process, achieving a more frequent update of the model fidelity compared to
the one proposed by Márquez-Grajales et al. [42]. On the other hand, increasing the update
frequency may affect the computational cost savings.
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Consequently, a singular subrogated model cannot accurately represent all three func-
tions. This situation is evidenced by distinct versions of 𝐾𝑁𝑁𝑅 yield disparate outcomes
across all three objective functions. Therefore, it is plausible to employ an alternative ma-
chine learning approach to align with the specific requirements of each function. Moreover,
the outcomes above have enabled us to achieve the initial objective proposed in Section 1
and to answer the first research question mentioned before. It allows us to conclude that a
more accurate approximation of the model can be achieved by modifying how the surrogate
models are updated.

3.5. Comparison between eMODiTS and sMODiTS

The second analysis compares the performance between the original method (eMOD-
iTS) and sMODiTS. Since both methods apply a multi-objective evolutionary algorithm, it
is necessary to compare their performance based on the Pareto fronts obtained by both to
validate that sMODiTS manages to approximate the front to the original one, which would
mean that it has a similar performance but with a low computational cost. Therefore, this
section also analyses the computational cost of the methods to verify that the Pareto fronts
are similar and that the proposal has a lower cost.

Finally, it is necessary to validate the performance of sMODiTS concerning the time
series classification task. For this purpose, a solution for both fronts was selected based on
the technique that performed best for eMODiTS [20].

These experiments will provide a comprehensive understanding of how the surrogate
model performs compared to the original model based on its effectiveness in addressing
the study problem.

3.5.1. Classification Performance

Figure 10 presents the results of the Friedman test combined with the Nemenyi post
hoc test at a 95% confidence level to compare the original method (eMODiTS) against
each surrogate model (sMODiTS). These tests were chosen because the data do not follow
a normal distribution. As we can see, none of the compared methods had significant
statistical differences; that is, all had the same behavior in terms of classification. These
outcomes were anticipated, since the surrogate model approximates the actual model
rather than enhancing it. Additionally, eMODiTS ranked better concerning the F-measure,
which means that in most databases, eMODiTS still reaches better classification rates than
sMODiTS. This behavior may be due to the initial sampling employed by sMODiTS, which
does not guarantee that the initial training set covers the entire search space. Nevertheless,
the search space in eMODiTS is vast and complex to cover using the conventional sampling
methods due to the discretization scheme used by eMODiTS.

In particular, Table 4 shows the detailed results using the Wilcoxon Rank Sum Test
statistic with a confidence level of 95% and the F-measure ratio (Equation (8)). This
table shows that eMODiTS outperforms all sMODiTS versions in about half of the tested
databases. However, in the remaining databases, sMODiTS manages to match the results
with eMODiTS and even to outperform eMODiTS slightly in some of them due to the
nature of the multi-objective evolutionary algorithm employed, which can find different
solutions each time it is run because of its deterministic essence. On the other hand, when
observing the range of values of the F-measure ratio, we can see that they are between 0.7
and 1.3, meaning that both methods are slightly close to each other, demonstrating that the
surrogate models achieve an adequate approximation concerning the original model.
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Table 4. F-measure ratio between eMODiTS and sMODiTS using the Wilcoxon rank sum test with
a 95% confidence interval. Values in parentheses describe the 𝑝-value obtained from the statistical
test, and the symbols in brackets indicate the type of interpretation of the results. The − symbol
expresses that eMODiTS outperforms the sMODiTS version, and there is a statistically significant
difference between them. The + symbol indicates that sMODiTS outperforms eMODiTS, and there is a
significant statistical difference. On the other hand, the symbol * indicates that eMODiTS outperforms
sMODiTS, and there is no significant statistical difference. Finally, the symbol • indicates that
sMODiTS outperforms eMODiTS, but there is no significant difference between them.

Dataset Abbrev. sMODiTS1NNDTW sMODiTS3NNDTW sMODiTS5NNDTW sMODiTS7NNDTW sMODiTS9NNDTW

ARROW 0.7673 (0.002) [−] 0.8937 (0.0059) [−] 1.0192 (0.002) [+] 0.8457 (0.0039) [−] 0.9714 (0.625) [*]
CBF 1.1505 (0.002) [+] 0.9459 (0.002) [−] 1.041 (0.0098) [+] 0.9835 (0.002) [−] 0.9302 (0.002) [−]
COFFEE 0.8001 (0.002) [−] 0.8108 (0.002) [−] 0.8674 (0.0098) [−] 0.7831 (0.002) [−] 0.7819 (0.002) [−]
CRICKX 1.0237 (0.002) [+] 1.0436 (0.002) [+] 1.0371 (0.0195) [+] 1.026 (0.1309) [•] 1.0271 (0.3223) [•]
CRICKY 0.945 (0.002) [−] 0.9709 (0.002) [−] 1.0029 (0.084) [•] 0.986 (0.002) [−] 0.9803 (0.002) [−]
CRICKZ 0.9648 (0.002) [−] 0.9865 (0.2754) [*] 0.9889 (0.084) [*] 0.9541 (0.002) [−] 0.9867 (0.4922) [*]
DSR 0.9845 (0.1055) [*] 1.004 (0.4922) [•] 0.8962 (0.002) [−] 0.9512 (0.002) [−] 0.9578 (0.002) [−]
DPOAG 1.0013 (0.0645) [•] 1.003 (0.002) [+] 1.0023 (0.1055) [•] 1.0106 (0.002) [+] 0.9996 (0.0195) [−]
DPOC 0.938 (0.0039) [−] 0.9331 (0.002) [−] 0.8643 (0.0039) [−] 0.9904 (1) [*] 0.974 (0.9219) [*]
DPTW 0.9248 (0.002) [−] 0.938 (0.002) [−] 0.9285 (0.002) [−] 0.8387 (0.002) [−] 0.943 (0.002) [−]
ECG200 1.0613 (0.002) [+] 0.7807 (0.002) [−] 1.051 (0.0059) [+] 0.9615 (0.0371) [−] 0.9906 (0.2754) [*]
ECG5K 0.9483 (0.002) [−] 0.781 (0.002) [−] 0.9884 (0.2754) [*] 0.9598 (0.0039) [−] 0.9528 (0.3223) [*]
ECG5D 0.8682 (0.002) [−] 0.8093 (0.002) [−] 0.8213 (0.002) [−] 0.9557 (0.002) [−] 0.8446 (0.002) [−]
FALL 1.0291 (0.002) [+] 1.0321 (0.002) [+] 1.0194 (0.002) [+] 1.0194 (0.002) [+] 1.0272 (0.002) [+]
FUCR 0.8872 (0.002) [−] 0.9729 (0.002) [−] 0.9632 (0.002) [−] 0.8411 (0.002) [−] 0.9254 (0.002) [−]
GUNP 0.9483 (0.0039) [−] 0.8051 (0.002) [−] 0.9866 (0.002) [−] 0.8377 (0.002) [−] 0.8554 (0.002) [−]
IWS 1.0128 (0.002) [+] 1.021 (0.1309) [•] 0.9784 (0.0488) [−] 0.9906 (0.3223) [*] 1.0023 (0.0098) [+]
ITAPD 0.9986 (0.002) [−] 0.9677 (0.002) [−] 0.9909 (0.002) [−] 0.9812 (0.002) [−] 0.9578 (0.002) [−]
LIGHT7 1.0344 (0.002) [+] 1.0593 (0.002) [+] 0.9616 (0.002) [−] 1.0631 (0.0059) [+] 1.0093 (0.5566) [•]
MEDIMG 0.9456 (0.002) [−] 0.9861 (0.0039) [−] 1.1046 (0.002) [+] 0.8115 (0.002) [−] 1.0361 (0.002) [+]
MPOAG 0.9879 (0.0488) [−] 0.9946 (0.7695) [*] 1.0202 (0.002) [+] 0.9992 (0.625) [*] 1.0005 (0.1055) [•]
MPOC 0.9519 (0.002) [−] 0.8737 (0.002) [−] 0.9134 (0.002) [−] 0.9811 (0.7695) [*] 0.9661 (0.3223) [*]
MPTW 0.9976 (0.0039) [−] 1.0079 (0.0645) [•] 0.9782 (0.002) [−] 0.9926 (0.002) [−] 0.9972 (0.002) [−]
MOTEST 0.9822 (0.0137) [−] 1.0021 (0.625) [•] 0.9796 (0.002) [−] 0.9781 (0.002) [−] 1.0212 (0.4316) [•]
PHOC 1.0133 (0.1602) [•] 0.9992 (0.6953) [*] 0.9735 (0.002) [−] 0.9924 (0.002) [−] 0.9972 (0.0039) [−]
PLANE 0.9901 (0.4922) [*] 1.0193 (0.002) [+] 1.0207 (0.002) [+] 1.0333 (0.0039) [+] 1.0033 (0.0098) [+]
PPOAG 1.0367 (0.002) [+] 0.8407 (0.002) [−] 0.9065 (0.002) [−] 0.9885 (0.1602) [*] 0.9761 (0.0195) [−]
PPOC 0.8959 (0.002) [−] 0.9604 (0.0059) [−] 0.8479 (0.002) [−] 0.9167 (0.002) [−] 0.8842 (0.002) [−]
PPTW 0.941 (0.1055) [*] 0.9493 (0.1055) [*] 0.9696 (0.0039) [−] 0.9824 (0.8457) [*] 0.9511 (0.0273) [−]
SONY1 1.0087 (1) [•] 0.9582 (0.4922) [*] 1.011 (0.0039) [+] 1.1265 (0.002) [+] 1.0496 (0.002) [+]
SONY2 0.8905 (0.002) [−] 0.8561 (0.002) [−] 1.0303 (0.0645) [•] 1.0042 (0.0039) [+] 0.8561 (0.002) [−]
SWEDLF 0.9802 (0.0645) [*] 0.9437 (0.0039) [−] 0.8413 (0.002) [−] 1.0039 (0.0195) [+] 0.9045 (0.0137) [−]
SYNCTR 0.8787 (0.002) [−] 0.9206 (0.002) [−] 1.1072 (0.002) [+] 0.9225 (0.0039) [−] 0.9764 (0.0098) [−]
TOES1 0.8923 (0.002) [−] 0.883 (0.002) [−] 0.7864 (0.002) [−] 0.8268 (0.002) [−] 0.8292 (0.002) [−]
TOES2 1.0006 (0.0098) [+] 1.0001 (0.4922) [•] 0.9987 (0.002) [−] 1.0007 (0.3223) [•] 0.994 (0.002) [−]
TRACE 1.0966 (0.002) [+] 1.248 (0.0039) [+] 1.2622 (0.002) [+] 1.1132 (0.002) [+] 1.2332 (0.002) [+]
TWOECG 0.9385 (0.0371) [−] 1.1467 (0.002) [+] 1.0288 (0.002) [+] 0.8172 (0.002) [−] 0.888 (0.084) [*]
TWOPAT 1.0349 (1) [•] 1.0692 (0.002) [+] 0.9111 (0.002) [−] 0.9268 (0.002) [−] 1.0543 (0.1055) [•]
WAFER 0.8496 (0.002) [−] 0.9199 (0.002) [−] 0.7623 (0.002) [−] 0.8426 (0.002) [−] 0.9631 (0.6953) [*]
WINE 0.8519 (0.002) [−] 0.9554 (0.002) [−] 1.1025 (0.002) [+] 1.0133 (0.084) [•] 0.9276 (0.002) [−]
WORDS 0.7998 (0.002) [−] 0.8271 (0.0039) [−] 0.7934 (0.0039) [−] 0.8832 (0.084) [*] 0.5836 (0.002) [−]

Total (−/+/*/•) (24/9/4/4) (23/8/5/5) (23/13/2/3) (23/8/7/3) (22/6/8/5)
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Figure 10. Statistical comparison results between eMODiTS and every version of sMODiTS. The
Friedman test and Nemenyi post hoc test were employed to perform this analysis with a 95%
confidence level.

3.5.2. Analysis of Pareto Fronts

Table 5 shows the average results of applying five performance measures for Pareto
front analysis in all test datasets. In this table, the analyzed Pareto fronts were obtained
from eMODiTS, and each version of sMODiTS was used to compare the ability of the
proposed surrogate model to approximate the solutions to the original model. In addition,
this analysis allowed us to verify the similarity of both approaches in the objective function
space.

Table 5. Analysis results of the Pareto fronts obtained using eMODiTS and each version of sMODiTS
using the performance measures of HVR, Generational Distance (GD), coverage of the eMODiTS
over sMODiTS (

−→
𝐶 ), coverage the sMODiTS over eMODiTS (

←−
𝐶 ), and convergence index (CI). The

values displayed represent the average of each measure for all test databases, and the numbers in
parentheses represent the standard deviation. In addition, the values in bold indicate the maximum
values for each metric, while the values in italics indicate the minimum values.

Version HVR GD
−→
𝐶

←−
𝐶 CI

1NNDTW 0.3891 (±0.2111) 0.0447 (±0.0287) 0.9405 (±0.0753) 0.0031 (±0.0065) 0.9374 (±0.0802)
3NNDTW 0.3454 (±0.2009) 0.0477 (±0.0332) 0.9244 (±0.0945) 0.0062 (±0.0121) 0.9182 (±0.1045)
5NNDTW 0.3341 (±0.1806) 0.0503 (±0.0321) 0.9394 (±0.0703) 0.003 (±0.0056) 0.9364 (±0.0736)
7NNDTW 0.3566 (±0.1996) 0.0523 (±0.0382) 0.943 (±0.0721) 0.0037 (±0.0088) 0.9394 (±0.0775)
9NNDTW 0.334 (±0.1892) 0.0536 (±0.0393) 0.9415 (±0.0672) 0.0029 (±0.0061) 0.9386 (±0.0716)

The HVR measure indicates that the space covered by eMODiTS is more significant
than that covered by each version of sMODiTS. Nevertheless, the HVR mean value for
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each dataset ranges between 0.334 and 0.3891, indicating that the eMODiTS hypervolume
is slightly higher than the sMODiTS in the average case. Given that our MOOP is a
minimization problem, the HVR results indicate that each Pareto front of the sMODiTS
versions is above the eMODiTS Pareto front. These results suggest that the surrogate model
approximation was not faithful to the original model.

Regarding the coverage metric, the convergence index shows that the Pareto fronts
generated by eMODiTS on the test datasets outperform those produced by all versions of
sMODiTS, with values between 0.9182 and 0.9394. As with HVR, these values indicate
that the eMODiTS Pareto fronts are situated below the sMODiTS fronts, which cover them
in almost all databases tested. This result implies that sMODiTS failed to sufficiently
approximate to obtain Pareto fronts similar to the original ones. However, it is essential to
clarify that, due to its nature, sMODiTS could not improve the front obtained by eMODiTS.
Its maximum performance would be to approach or equal the original fronts.

Despite the inability of sMODiTS, in all its versions, to obtain Pareto fronts comparable
to the original, it does succeed in approximating them. This situation can be observed
in the maximum (0.0447) and minimum (0.0536) values of the GD measure, where their
average values are close to zero, indicating that the fronts are very close.

In conclusion, sMODiTS cannot generate Pareto fronts that are identical to eMODiTS.
However, it can achieve a similar outcome, maintaining the same behavioral characteristics.

3.5.3. Computational Cost Analysis

The computational cost was measured based on the number of evaluations performed
in eMODiTS and sMODiTS. Figure 11 shows the number of reduction percentages of evalu-
ations based on Equation (13) reached by sMODiTS compared with eMODiTS. eMODiTS
performs 30,200 calls per objective function in one execution, while sMODiTS computes
an average of 18,389 calls per objective function, representing a reduction of 40%. It is
essential to mention that the number of evaluations executed by sMODiTS varies due to
the model updating process. As mentioned in Section 2.4.3, the training set update process
in sMODiTS consists of evaluating the first Pareto front in original objective functions and
inserting them into this set. Since the number of solutions for the first Pareto front differs,
in each update, sMODiTS performs different calls of the original objective functions.
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Figure 11. Percentage reduction in the number of evaluations reached by sMODiTS compared to
eMODiTS.

As we can see, the reduction percentages of evaluations performed by sMODiTS range
between 15% and 80%. This reduction means that sMODiTS performs fewer of the original
objective function calls, reducing the computational cost of these functions. However,
since sMODiTS uses a surrogate model based on DTW distance, the computational cost is
transferred to this process, increasing the algorithm’s execution time.
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The examination conducted in this section enables us to achieve the second goal
outlined in Section 1 and address the second question mentioned in Section 3.1.

3.6. Comparison of sMODiTS among the SAX-Based Methods

The last experiment compares sMODiTS against SAX-based approaches to analyze
if the surrogate model incorporated in eMODiTS is still conserving the classification per-
formance when its discretization scheme is applied to a temporary dataset. Since all the
data obtained for each method do not follow a normal distribution, the Friedman statis-
tical test was used with the Nemenyi post hoc test with a confidence level of 95%. The
SAX-based models used in this comparison were EP, SAX, 𝛼SAX, ESAX, ESAXKMeans,
1D-SAX, SAXKMeans, rSAX, pSAX, and cSAX. These approaches were selected because of
their competitive results and novel discretization schemes. In the case of sMODiTS, the
3NNDTW and 5NNDTW versions were identified as the most appropriate for inclusion in
this experiment based on Figure 10 because they reported a close ranking between them
and generated the most minor difference concerning eMODiTS.

Figure 12 shows the results of the statistical tests of the comparison of sMODiTS
with SAX-based approaches. eMODiTS was used as a reference for this purpose. This
figure shows no significant difference among all the methods, which means that sMODiTS
presents a similar behavior in the classification task to the well-known symbolic discretiza-
tion methods, preserving the characteristics of the original approach (eMODiTS).
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Figure 12. Statistical comparison results between two versions of sMODiTS and ten SAX-based
approaches. eMODiTS was used as a reference. The Friedman test and Nemenyi post hoc test were
employed to perform this analysis with a 95% confidence level.

As previously mentioned, the outcomes detailed in these sections are anticipated,
since sMODiTS solely employs surrogate models to estimate the objective functions for
identifying appropriate symbolic discretization schemes without introducing any concep-
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tual alterations to the original method. Using surrogate models has proven to be a practical
approach for reducing the evaluation cost of the objective functions.

These results answer the third research question described in Section 3.1 and conse-
quently the third goal of Section 1.

4. Conclusions

Surrogate models are an alternative tool for approximating objective functions in
evolutionary optimization. This document implemented surrogate models for estimating
the objective functions of eMODiTS. This research is an extension of the approach proposed
by Márquez-Grajales et al. [42]. Since eMODITS employs individuals of different sizes, the
KNN algorithm and DTW were incorporated as surrogate models to estimate the objective
function values of eMODiTS. This surrogate-assisted version was called sMODiTS, and its
behavior was compared against the original model.

The results suggest that each version of sMODiTS implemented behaves similarly to
the original approach (eMODiTS), which does not present a significant statistical difference.
However, our proposal presented a higher error classification than the original model.
Moreover, regarding the prediction power of the surrogate model, the metrics suggest that
sMODiTS presents a low accuracy in estimating the values of the original fitness functions.

On the other hand, the Pareto fronts of both approaches were compared using MOEA
performance measures to evaluate the behavior of the final solutions found by each ap-
proach. These measures indicate that the performance of our approach algorithm is similar
to the original algorithm since the two fronts are close to each other.

Regarding computational cost, the number of evaluations performed by the surrogate
version is lower than those achieved by the original, with reduction percentages in the use
of the original objective functions between 15% and 80%, decreasing the computational
cost of the original algorithm.

Finally, the statistical test indicates that sMODiTS achieves competitive results in
classification terms compared to SAX-based symbolic discretization methods because
there is no statistical difference among all the compared methods, ranking less than seven
approaches out of ten.

In summary, the surrogate models used in this study approximated the actual model
outcomes while significantly reducing the number of evaluations of the objective functions,
which are computationally expensive to calculate.. They also preserved the effectiveness of
the time series discretization task compared to methods that have demonstrated competitive
performance in tested problems. Furthermore, although the surrogate models’ accuracy is
low, they are suitable for problems where the solutions have different lengths from each
other, particularly in the time series discretization proposed by the eMODiTS approach.
Consequently, the objectives set out in Section 1 have been achieved, verifying that the
surrogate model maintains the original model results with a competitive approximation
but with a lower computational cost.

As a future study, we propose to implement other surrogate models (one different per
each objective function) that are capable of handling different-sized solutions to increase the
sMODiTS’ estimation accuracy concerning the fitness functions of the eMODiTS method.
Moreover, suitable initial sampling methods can be incorporated into this solution to
achieve a reliable approximation of the original model. Finally, a comparison of different
training set codifications can be performed to evaluate if this feature impacts the fidelity of
the original models.
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