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Abstract: Elevated blood glucose levels, known as hyperglycemia, play a significant role in sudden
cardiac arrest, often resulting in sudden cardiac death, particularly among those with diabetes.
Understanding the internal mechanisms has been a challenge for healthcare professionals, leading
many research groups to investigate the relationship between blood glucose levels and cardiac
electrical activity. Our hypothesis suggests that glucose-sensing biophysics mechanisms in cardiac
tissue could clarify this connection. To explore this, we adapted a single-compartment computational
model of the human pacemaker action potential. We incorporated glucose-sensing mechanisms with
voltage-gated sodium ion channels using ordinary differential equations. Parameters for the model
were based on existing experimental studies to mimic the impact of glucose levels on pacemaker
action potential firing. Simulations using voltage clamp and current clamp techniques showed
that elevated glucose levels decreased sodium ion channel currents, leading to a reduction in the
pacemaker action potential frequency. In summary, our mathematical model provides a cellular-level
understanding of how high glucose levels can lead to bradycardia and sudden cardiac death.

Keywords: glucose sensing; ion channel; heart failure; computational modeling; pacemaker; ac-
tion potential

1. Introduction

Cardiovascular disease is the leading global cause of death and imposes significant
economic burdens due to healthcare costs and societal impacts. Effective prevention
and management strategies are urgently needed for ischemic heart disease and stroke
to mitigate their public health impact [1,2]. A heart attack is typically defined as the
obstruction of oxygenated blood flow from the heart to a specific segment. Electrical
signaling in cardiac muscle coordinates the heart’s contractions, regulating its rhythm
and ensuring effective pumping. Sudden cardiac arrest (SCA), occurring abruptly due to
irregular electrical activities of the heart, leads to sudden cardiac death (SCD) if the victim
does not receive immediate treatment [3,4]. Bradycardia (heart rate of less than 60 beats per
minute) and tachycardia (heart rate of more than 100 beats per minute) are two arrhythmic
conditions that can lead to SCA and SCD [5,6]. Cardiac tissues are electrically excitable,
initiating a series of electrical activities including depolarization, hyperpolarization, and the
generation of action potentials (AP), which in turn generate mechanical forces responsible
for pumping blood into various organs of the body [7–10]. The cardiac AP is a voltage
change that propagates along the membrane of a myocyte, and it is an “all-or-nothing”
event triggered by a sufficient depolarization reaching a threshold voltage [11]. In addition,
the electrical signaling in different regions of the heart are not uniform as these sections
generate a set of clearly distinguishable AP configurations [12,13]. Cardiac APs generated at
the location of the sinoatrial node (pacemaker AP), atrioventricular node, and bundle of His
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and Purkinje fibers are major contributors to rhythmic function [14]. A diverse group of ion
channels are present in the different regions of the cardiac tissue to generate and modulate
all these electrical properties including the AP [15,16]. The most common ion channels in
both excitable and non-excitable tissues are sodium, potassium, and calcium ion channels.
Sodium channels initiate the rapid depolarization phase by allowing sodium influx, while
potassium channels contribute to repolarization by facilitating potassium efflux. Calcium
channels are involved in both depolarization and repolarization phases, maintaining the
plateau phase and regulating contraction. These channels ensure the proper rhythmicity
and contractility of the heart, essential for its normal function and circulation [17].

A set of clinical and experimental studies indicate that abnormal blood glucose con-
centrations are intricately linked to cardiac electrical properties, contributing significantly
to SCD [18–20]. About one-third of SCD cases are associated with an interplay between
abnormal blood glucose levels and cardiac electrical dysfunctions [21]. Hyperglycemia,
characteristic of diabetes and glucose intolerance, can lead to non-enzymatic glycosylation
and damage to cardiac tissues, affecting the heart’s electrical conductivity and predisposing
individuals to fatal arrhythmias [19,21]. Elevated glucose levels are also correlated with
increased arterial stiffness and microvascular damage, further exacerbating the risk of
cardiac events [21]. These findings highlight the complex relationship between metabolic
disturbances and cardiac function, underscoring the importance of managing blood glucose
levels in preventing SCD. It is well known that elevated blood glucose levels are primary
symptoms in people with both type 1 and type 2 diabetes due to a lack of sufficient insulin
secretion from the pancreatic β cells [22–24]. Patients with type 2 diabetes are associated
with an increased risk of SCA [25–27]. The scientific communities are exploring novel
promising therapies to overcome the limitations of current exogenous insulin delivery for
maintaining stable basal blood glucose concentrations. The ion channels are new medical
research interests in finding novel pharmacological agents to maintain constant electrical
properties in cardiac tissues [28–30]. In our body, the ion channels act as biological sensors
by facilitating the flow of respective ions across the cell membrane after sensing several
stimuli such as pH, light, force, hormones, chemicals, and electrical potentials [31,32]. In
cardiac electrophysiology, voltage-gated sodium channels are the transmembrane proteins
located across the cell membrane of cardiomyocytes. The influx of sodium ions through
these ion channels is responsible for the initial fast upstroke of the cardiac AP [33]. There-
fore, any dysfunction in this ion channel can alter the AP patterns and electrical signaling
in the cardiomyocytes. It is demonstrated that extracellular glucose application inhibits
the voltage-gated sodium channel current in the pancreatic β cells [34]. Therefore, we
can predict a hypothesis that the cardiac voltage-gated sodium ion channels also act like
glucose sensors and modulate the cardiac AP patterns concerning blood glucose concen-
trations. Therefore, any additional knowledge of the glucose-sensing mechanism by these
sodium ion channels might be useful to explore new pharmacological targets for SCA.
Unfortunately, the in-depth understanding of the relationship among cardiac ion channel
biophysics, AP generation, and blood sugar levels is unexplored due to the complex nature
of the cardiac electrophysiology experimental setup.

For several decades, computational, mathematical, and in silico techniques have sig-
nificantly contributed to the understanding of complex biological signaling processes by
simulating various scenarios, predicting outcomes, and providing insights that might be
challenging to obtain through traditional experimental methods [35,36]. Computational
simulations have contributed to understanding various types of muscle electrophysiology
by exploring cellular biophysics, thus modulating cellular electrical activities [37,38]. These
models provide insights into ion channel function, including conductance, ion selectiv-
ity, and channel opening, which are pivotal in pathological conditions [39,40]. Another
positive aspect of biophysical modeling is that models directly simulate ion flux through
membrane channels, aiding in understanding their behavior and contribution to disease
processes [40]. Biophysical modeling of cardiac muscle electrophysiology plays a pivotal
role in the discovery of novel therapies by providing a virtual platform to simulate the
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intricate electrical dynamics of the heart. Through these models, researchers can explore
the effects of various pharmacological interventions and ion channel modulations on the
cardiac AP, offering insights into potential therapeutic targets. By iteratively refining these
models based on experimental data and clinical observations, researchers can identify
promising drug candidates, predict their efficacy, and optimize treatment strategies for
cardiovascular diseases [41]. Additionally, patient-specific models tailored to individual
clinical measurements enable personalized medicine approaches, allowing for the devel-
opment of precision therapies optimized for specific cardiac conditions [42]. Ultimately,
biophysical modeling serves as a valuable tool in the translation of basic research findings
into clinically relevant therapies, contributing to advancements in cardiovascular medicine
and patient care [43]. Computational biophysical models are also continually enhanced by
integrating new experimental data, refining parameters, and adjusting algorithms to better
align with empirical findings [44]. This iterative process ensures that models accurately
represent biological phenomena and facilitate deeper insights into complex systems [45].
Although there are numerous biophysical models for cardiac AP (detailed in the Meth-
ods section) aimed at understanding the underlying ion channel kinetics and signaling
pathways, currently, there is no computational model describing the electrophysiological
responses to blood glucose concentrations with ion channel kinetics in cardiac tissues,
particularly for pacemaker action potential (PAP) electrophysiology. Here, we present a
biophysically explained in silico model of PAP electrophysiology to examine the effect of
glycemia on the PAP firing rate. Our objectives for establishing this model are threefold.
First, supported by experimental data, we will simulate and validate the voltage-gated
sodium ion channel kinetics concerning blood glucose concentration. Second, we will
incorporate the ion channel into a single compartmental biophysical model to simulate the
APs and investigate changes in AP parameters concerning blood glucose concentration.
Third, we aim to draw new biological insights to support existing hypotheses from various
experiments and propose new hypotheses for future research directions.

2. Materials and Methods
2.1. Model Adaptation

Biophysically detailed cell modeling made its debut in neuroscience 1952 thanks to
the groundbreaking work of Hodgkin and Huxley on the squid giant axon. In the 1960s,
Noble pioneered the first models of cardiac cellular activity [46]. Since then, an impressive
array of mathematical models for cardiac muscle electrophysiology has emerged. The
complexity of these models has steadily increased over the years as more experimental data
has become available [47]. Recently, several models in cardiac cell electrophysiology have
been mathematically designed to mimic the behavior of cardiac electrical activities [48–56].
These models also serve as a bridge between cellular-level models and organ-level func-
tion, offering a comprehensive understanding of cardiac electrical activity across different
scales. In this study, we customized the Di Francesco model [55] to generate pacemaker
action potentials. It should be noted that the Di Francesco model generates pacemaker AP,
which originates from the sinoatrial (SAN) node. Key modifications involved adjusting ion
channel kinetics and conductances to more closely represent the physiological conditions
pertinent to our study. These changes were meticulously applied to ensure that the gen-
erated action potentials closely resemble the pacemaker activity of SAN cells, offering a
robust basis for our subsequent analyses.

2.2. General Membrane Current Descriptions

The schematic diagram of Figure 1 shows all the ionic components in our model. It
consists of L-type calcium current (ICaL), T-type calcium current (ICaT), sodium–calcium
exchange current (INaCa), fast sodium current (INa), background sodium current (IbNa),
sustained inward current (Ist), ATP-dependent potassium current (IKATP), ultrarapid compo-
nent of delayed rectifying potassium current (IKur), rapid component of delayed rectifying
potassium current (IKr), slow component of delayed rectifying potassium current (IKs),
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background potassium current (IbK), transient outward current (Ito), hyperpolarizing-
activated current (If), muscarinic potassium current (IKACh), and sodium–potassium pump
current (Ip). The sarcoplasmic reticulum, the internal storage of Ca2+, also consists of
several components. Itr is Ca2+ transfer current, Iup is Ca2+ uptake current, and Irel is Ca2+

release current.
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Figure 1. Schematic diagram illustrating all ionic components within a cardiac sinoatrial node cell.
The accompanying paragraph provides descriptions for each component.

The single cell is electrically defined by a resistor-capacitor (RC) circuit, where the
membrane capacitance Cm is parallel with the variable ion channel conductance gion. All
active ion channel conductances gion are associated with respective Nernst potential Eion
in series. In addition, non-specific ionic currents are incorporated to compensate for
any cellular leakage current. Figure 2. Illustrates the schematic overview of the parallel
conductance model for ionic current (INa).

Math. Comput. Appl. 2024, 29, x FOR PEER REVIEW 4 of 14 
 

 

2.2. General Membrane Current Descriptions 
The schematic diagram of Figure 1 shows all the ionic components in our model. It 

consists of L-type calcium current (ICaL), T-type calcium current (ICaT), sodium–calcium ex-
change current (INaCa), fast sodium current (INa), background sodium current (IbNa), sus-
tained inward current (Ist), ATP-dependent potassium current (IKATP), ultrarapid compo-
nent of delayed rectifying potassium current (IKur), rapid component of delayed rectifying 
potassium current (IKr), slow component of delayed rectifying potassium current (IKs), 
background potassium current (IbK), transient outward current (Ito), hyperpolarizing-acti-
vated current (If), muscarinic potassium current (IKACh), and sodium–potassium pump cur-
rent (Ip). The sarcoplasmic reticulum, the internal storage of Ca2+, also consists of several 
components. Itr is Ca2+ transfer current, Iup is Ca2+ uptake current, and Irel is Ca2+ release 
current. 

 
Figure 1. Schematic diagram illustrating all ionic components within a cardiac sinoatrial node cell. 
The accompanying paragraph provides descriptions for each component. 

The single cell is electrically defined by a resistor-capacitor (RC) circuit, where the 
membrane capacitance Cm is parallel with the variable ion channel conductance gion. All 
active ion channel conductances gion are associated with respective Nernst potential Eion in 
series. In addition, non-specific ionic currents are incorporated to compensate for any cel-
lular leakage current. Figure 2. Illustrates the schematic overview of the parallel conduct-
ance model for ionic current (INa). 

 
Figure 2. Schematic overview of parallel conductance model for ionic current (INa). It represents the
flow of ion Na+ by gNa in series with Na+ Nerst potential ENa. Cm is the membrane capacitance.

The time-dependent characteristics of the cell’s membrane potential Vm for Figure 1
are described by Equation (1).

dVm(t)
dt = − 1

Cm
(ICaL + ICaT + INaCa + INa + IbNa + Ist + Il + IKATP + IKur
+IKr + IKs + IbK + Ito + I f + IKACh + Ip)

(1)
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Then, the individual ionic current is calculated by conventual Ohm’s law. It is de-
scribed in Equation (2).

Iion = g
[
m
(

Vm, t,
[
Ca2+

]
i

)]x[
h
(

Vm, t,
[
Ca2+

]
i

)]y
(Vm − ENernst) (2)

where g and ENerrnst is the maximum channel conductance and Nernst potential of the
respective ion channel.

The parameters m and h in Equation (2) are time/voltage/Ca2+ dependent dimension-
less activation and inactivation gating variables respectively. For equation fitting purposes,
another set of dimensionless parameters “x” and “y” are used. The m and h are computed
by a set of first-order differential equations according to the classical Hodgkin–Huxley
(HH) formulation mechanism [57]. For example, Equation (3) computes the instantaneous
value of the activation variable “m” in our PAP model.

dm(Vm, t)
dt

=
m∞ (Vm)− m(Vm, t)

τm
(3)

where m∞, is the steady-state value and τm is the time constant, all being functions of
voltage and/or ionic concentrations.

Here the state parameter dependence on Vm for ion channels is described by the
Boltzmann equation.

m∞ = 1/1 + exp((Vm + Vm 1
2
)/Sm) (4)

where V1/2 is the half activation potential and S is the slope factor.
Table 1 consists of the general constant parameters used in this computational model

Table 1. Model general constant parameters (–dapted from Courtemanche 1998 [50], Davies 2016 [54],
Di Francesco 1985 [55], Fabbri 2017 [56]).

Parameter Definition Value

R Gas constant 8.3143 J K−1 mol−1

T Temperature 310 K
Cm Membrane capacitance 100 pF
F Faraday constant 96.4867 C/mmol
Vcell Cell volume 20,100 µm3

Vi Intracellular volume 13,668 µm3

Vup SR uptake compartment volume 1109.52 µm3

Vrel SR release compartment volume 96.48 µm3

[K+]o Extracellular K1 concentration 5.4 mM
[Na+]o Extracellular Na1 concentration 140 mM
[Ca2+]o Extracellular Ca21 concentration 1.8 mM

2.3. Na Channel with Blood Glucose Sensing Mechanism

INa = gNa n3h(V − ENa) (5)

n∞ =
1

1 + exp
(
−(V+9)

8

) (6)

sh∞ =
1

1 + exp
(
(V+30)

13

) (7)

The blood glucose sensing mechanism is mimicked by changing the half activation
potential for both normal and 18 mM glucose concentration according to the experimental
data [34]. The slope value is tuned to match the experimental data. Observations were
made of changes in the AP, total inward, and sodium ion channel current.
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Simulations were conducted using a consistent time step of 0.04 ms via the Euler
Method on a PC equipped with an Intel Core i7 CPU operating at 3.80 GHz and a dual-core
setup. The NEURON simulation environment was employed for model creation, known for
its accurate representation of excitable cells [58]. The Euler method is a primary numerical
approach for solving ODEs. NEURON offers stability and adaptability in simulations of
neuronal dynamics, making it suitable for ODE solutions due to its straightforwardness [58].
While NEURON primarily adopts implicit integration techniques like backward Euler and
a version of Crank–Nicolson for stability, it also accommodates Euler’s method due to its
efficiency and minimal memory footprint [58]. Post-modeling, stability, and consistency
were assessed by varying the maximum conductance (gmax) of ionic conductances within
+/− 30% of the default. Results showed stable action potentials, with expected responses
to changes in conductance, such as increased gmax resulting in higher AP peak amplitudes,
while maintaining the AP’s normal characteristics.

3. Results

The steady-state activation curve, current-voltage curve, and currents under the
voltage-clamp protocol are generated for the voltage-gated sodium channel currents (INav)
under both control and application of glucose 18 mM) conditions. The INav is formulated
according to the Equations (5)–(7). The HH formalism consists of both activation and
inactivation parameters. Active currents were induced by applying a series of +10 mV
voltage steps ranging from −70 mV to 50 mV, each lasting 50 ms, starting from a holding
potential of −120 mV. This protocol was used to assess the impact of glucose on INav
steady-state activation. The peak of each simulated current was recorded. Figure 3 displays
the simulated and validated steady-state activation curves for the INav. The red solid line
represents the simulated curve from our model under control conditions, while the black
solid line depicts the curve with 18 mM glucose application. The half activation potential
for both control and 18 mM of glucose are −19.5 mV and −28.7 mV, respectively. The filled
red squares and black triangles represent the combined experimental data sourced from
Chen 2018 [34]. It also supports that our simulated curve has good matching with the
experimental data.
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Next, we simulated the INav for 50 ms under the voltage clamp protocol. The holding
potential was held at −90 mV and the membrane potential increased with 10 mV step volt-
age from −70 mV to 40 mV. Figure 4 illustrates the INav under the voltage clamp protocol.
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Figure 4. Simulated INav under the voltage clamp protocol. The holding potential was held at
−90 mV, and the membrane potential increased with 10 mV step voltage from −70 mV to 40 mV.

Then, the INav was generated again under the same voltage clamp protocol with the
application of 18 mM glucose. The simulated current is shown in Figure 5. When we
compare the current amplitude (Y-axis) in Figures 4 and 5, it is clearly illustrated that the
glucose concentration reduces the INav significantly.
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The INav model was integrated into a whole-cell, single-compartment cell model to
simulate APs under both control conditions and the application of glucose. This approach
allowed for a detailed examination of the effects of glucose on cardiac electrophysiology.
To accurately assess the impact of glucose, we characterized the AP waveform using
a comprehensive set of parameters that represent key experimental biomarkers. These
parameters were calculated following standardized guidelines to ensure consistency and
comparability with experimental data.

The parameters evaluated include:

1. Cycle length (CL): The duration between the peaks of two consecutive APs, repre-
senting the pacemaker activity cycle.

2. Peak potential (PP): The maximum value reached during the AP.
3. Action potential amplitude (APA): The difference between the peak potential and

the most negative repolarization potential, reflecting the overall strength of the AP.
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4. Maximum diastolic potential (MDP): The most negative potential reached just before
the peak potential, indicating the cell’s readiness for the next depolarization.

5. Diastolic depolarization rate (DDR): The rate at which the membrane potential rises
during diastole, indicative of the pacemaker cell’s automaticity.

6. Diastolic depolarization rate over the first 100 ms (DDR100): A more specific measure
of the initial depolarization rate during diastole.

7. Action potential duration (APD): The time required for the membrane potential to
repolarize to 90% of its peak value, providing insight into the refractory period and
overall duration of the AP.

These parameters, illustrated in Figure 6, offer a comprehensive profile of the AP.
Additional parameters, such as resting membrane potential (RMP), peak hyperpolarization
(PHP) and after hyperpolarization (AHP), were also assessed. RMP is the baseline electrical
potential of the cell in its quiescent state, while PHP and AHP describe the hyperpolar-
ization phases following the AP peak. Together, these measurements provide a detailed
understanding of the electrophysiological changes induced by glucose in PAPs, which are
critical for interpreting the effects of hyperglycemia on cardiac function.
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between controlled and 18 mM glucose concentrations. Details are described in the paragraph above
Figure 6.

We conducted simulations to generate the PAPs under both control conditions and
with a glucose concentration of 18 mM, as illustrated in Figure 7. The APs were simulated
using a current clamp protocol in a single-cell model. In Figure 7a, a single AP was
generated by injecting a 3 nA current for 100 ms, resulting in a significant reduction in
all measured parameters for glucose concentration of 18 mM. Notably, the model did not
produce any AP spikes when the injected current was below 3 nA. For further investigation
of multiple APs, we injected the same 3 nA current over 11,000 ms. This longer stimulation,
shown in Figure 7b, produced a pattern of AP firing that also demonstrated a reduced
firing frequency for a glucose concentration of 18 mM.

We extended our simulation to investigate the modulation of conduction velocity
(CV) by examining the AP propagation along a one-dimensional strand of sinoatrial cells.
Initially, we simulated an AP in a single elongated cell with a length of 20 mm. The cell was
divided into 101 interconnected compartments, treating it as a continuous cable where each
compartment was considered spatially isopotential. The length constant, a key property for
studying AP propagation in excitable tissues, is typically between 1 and 2 mm in sinoatrial
cells [59]. Additionally, the CV in sinoatrial muscle is approximately 0.5 to 1.0 m/s [60].
A current stimulus was applied at the midpoint of the cell (x = 10 mm), and electrical
activity was recorded at 10 mm and 14 mm (approximately twice the length constant).
The resulting APs were compared, and the conduction velocity was calculated. Upon
introducing glucose, the CV decreased from 0.85 m/s to 0.73 m/s.



Math. Comput. Appl. 2024, 29, 84 9 of 13

Math. Comput. Appl. 2024, 29, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 6. It illustrates the AP parameters (RMP, PP, APD, PHP, APA, and AHP) for comparison 
between controlled and 18 mM glucose concentrations. Details are described in the paragraph above 
Figure 6. 

We conducted simulations to generate the PAPs under both control conditions and 
with a glucose concentration of 18 mM, as illustrated in Figure 7. The APs were simulated 
using a current clamp protocol in a single-cell model. In Figure 7a, a single AP was gener-
ated by injecting a 3 nA current for 100 ms, resulting in a significant reduction in all meas-
ured parameters for glucose concentration of 18 mM. Notably, the model did not produce 
any AP spikes when the injected current was below 3 nA. For further investigation of 
multiple APs, we injected the same 3 nA current over 11,000 ms. This longer stimulation, 
shown in Figure 7b, produced a pattern of AP firing that also demonstrated a reduced 
firing frequency for a glucose concentration of 18 mM. 

We extended our simulation to investigate the modulation of conduction velocity 
(CV) by examining the AP propagation along a one-dimensional strand of sinoatrial cells. 
Initially, we simulated an AP in a single elongated cell with a length of 20 mm. The cell 
was divided into 101 interconnected compartments, treating it as a continuous cable 
where each compartment was considered spatially isopotential. The length constant, a key 
property for studying AP propagation in excitable tissues, is typically between 1 and 2 
mm in sinoatrial cells [59]. Additionally, the CV in sinoatrial muscle is approximately 0.5 
to 1.0 m/s [60]. A current stimulus was applied at the midpoint of the cell (x = 10 mm), and 
electrical activity was recorded at 10 mm and 14 mm (approximately twice the length con-
stant). The resulting APs were compared, and the conduction velocity was calculated. 
Upon introducing glucose, the CV decreased from 0.85 m/s to 0.73 m/s. 

 
Figure 7. AP simulation under both control and 18 mM glucose concentration. In (a), a single AP 
was generated by injecting a 3 nA current for 100 ms, and longer stimulation (3 nA current over 
11,000 ms), shown in (b), produced a pattern of AP firing that also demonstrated a reduced firing 
frequency. 

Figure 7. AP simulation under both control and 18 mM glucose concentration. In (a), a single AP was
generated by injecting a 3 nA current for 100 ms, and longer stimulation (3 nA current over 11,000 ms),
shown in (b), produced a pattern of AP firing that also demonstrated a reduced firing frequency.

We then compared all important parameters for both APs (from Figure 7a) listed in
Table 2. We explored the changes induced by hyperglycemia and the main features of AP
responsible for these changes.

Table 2. Comparison between simulated AP and experimental AP.

Parameter Control Glucose

RMP (mV) −79 −80
AP Peak (mV) 17 5

AHP peak (mV) −83 −82
AP Duration (ms) 38 35

CV (m/s) 0.85 0.73

Recent studies have indicated that hyperglycemia influences the activation and inacti-
vation kinetics of various ion channels [61–63]. However, the precise relationship between
glucose concentration and ion channel current electrophysiology has not been experimen-
tally quantified. In one investigation, Yoshida’s group reported that glucose metabolism
regulates voltage-gated K+ channels in pancreatic β-cells, with voltage-gated current modu-
lation observed at glucose concentrations ranging from 2.8 to 16.6 mM [64]. To explore this
effect in our model, we normalized the glucose concentration to the K+ channel’s maximum
conductance and applied this to an 18 mM glucose concentration. While we anticipated an
impact on excitability and APD duration, Figure 8 reveals a significant alteration (extended)
in APD (without affecting peak amplitude), likely reducing the AP frequency.
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4. Discussion

The human heart is the most delicate organ of the body and cardiac arrest is a common
fatal crisis across the globe. Similarly, a large portion of the population in the world is
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affected by type 2 diabetes due to unhealthy diet. High blood glucose concentration or
hyperglycemia can damage all major organs of the body including the heart, kidneys,
eyes, and brain. Cardiac arrest leads to death immediately, so protecting the heart from
the negative impact of hyperglycemia is the highest priority. Balancing the basal level of
the blood glucose level with optimal insulin therapy is an invasive discomfort process.
Therefore, researchers are investigating all kinds of alternative medication approaches
to protect the heart. A plethora of experimental evidence has demonstrated the possible
linking mechanism between the blood glucose concentration and the abnormal pacemaker
rhythms of the cardiac tissue. Recent research has uncovered a novel approach to reducing
blood glucose levels through the modulation of ion channel currents. Specific ion channels,
when activated, can enhance glucose uptake into cells, thereby lowering blood glucose
levels. These channels facilitate ion movement across cell membranes, triggering pathways
that increase glucose transporter activity. This discovery offers new avenues for diabetes
treatment, potentially providing alternatives to traditional insulin-based therapies. By
targeting these ion channels, researchers aim to develop new drugs that efficiently manage
blood glucose levels, offering a promising strategy to improve the lives of individuals
with diabetes. In addition, understanding the blood glucose sensing mechanism to reduce
cardiac ion channel current is also essential due to the interdependent nature of metabolic
and cardiac functions. By using various cardiac ion channel agonists and antagonists,
particularly for sodium and calcium channels, metabolic demand on cardiac cells can be re-
covered, membrane potential stabilized, and excessive excitability prevented. Modeling the
blood glucose sensing mechanism by reducing sodium current conductance is particularly
relevant for cardiac arrest due to the link between metabolic status and cardiac function.
In comparison to modulating other ion channel currents, reducing sodium current con-
ductance offers a unique perspective due to the pivotal role of sodium channels in cellular
excitability and metabolic signaling. Sodium channels are integral to action potential initia-
tion and propagation, influencing overall cellular electrical activity. Experimental studies
are always complex and need a longer time to investigate any new biological process. To
overcome these limitations, computational modeling approaches are substantially useful
for expanding our knowledge in fundamental biological research. In this in silico study,
we, therefore, established a computational model of the glucose sensing mechanisms in
human PAP electrophysiology. First, the biophysically detailed voltage-gated sodium ion
channel is built, and the ionic currents are simulated under the voltage clamp protocol.
The simulation showed reduced current patterns for the high blood glucose concentration.
Second, we integrated the sodium ion channel mechanism into a single compartmental
PAP model, which was rebuilt from the published models. Under the current clamp pro-
tocols, we simulated the PAP under both control and high blood glucose concentration
conditions. The simulation showed the changes in the AP shapes for RMP, APP, and APD.
It supports the less excitability property of the PAP. That means the less numbers of AP are
evoked for a current stimulus with a fixed duration. It will lead to bradycardia which is a
reduced frequency of the pace-making activity. In the introduction part, we have discussed
how bradycardia causes SCA. From these simulation results, we can conclude that the
agonists of the voltage-gated sodium ion channel of a specific subtype might be useful to
compensate for the high glucose concentration effects. An elaborate experimental study
can support this hypothesis. It is important to recognize that bradycardia and tachycardia
result from deviations in the ECG waveform, also known as the PQRSTU waveform. The
ECG waveform is generated by integrating the action potentials from the sinoatrial node,
atrial muscle, atrioventricular node, bundle of His, Purkinje fibers, and ventricular muscle.
Investigating ventricular electrical activities is also essential for understanding bradycardia
and tachycardia. Our simulation results extend the prediction of the effects of high glucose
concentration on sinoatrial electrical activities. More rigorous and complex modeling
approaches, combined with experimental data, are essential to explore the effects of high
glucose concentration on all ion channels and action potentials, potentially identifying
new pharmacological targets. Our findings also suggest that hyperglycemia significantly
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modulates K+ channel activity, leading to prolonged APD and potentially reduced action
potential frequency. This underscores the importance of glucose regulation in maintaining
normal cellular excitability, with implications for understanding diabetic complications.

It should be noted that while the glucose-sensing mechanism model for sodium ion
channel biophysics has been experimentally validated with the rat heart, it is subsequently
incorporated into a whole-cell model of the human heart. This approach is common in
modeling studies, where it is often necessary to use parameters from different species,
which is considered a limitation. We recognize that while we have carefully tailored the
Di Francesco model [55] to meet our study’s goals, certain assumptions and modifications
may have introduced limitations. Although our adaptation process was thorough, it may
not fully replicate the complex details of pacemaker action potentials as they occur in vivo.
Furthermore, the pacemaker action potential produced by our model, although similar to
those of the SAN, does not exactly replicate the shape of atrial or SAN action potentials,
which may restrict the broader applicability of our results to other cardiac tissues. Further
experimental work and model refinement are needed to improve its precision and broader
relevance. Another major limitation of this computational study is that we have not
considered the effects of glucose upon other ion channels due to a lack of experimental data.
Another limitation is the simulation of the single compartmental biophysical cell model.
The electrical properties of the multi-cellular network model will be different from the
single-cell model. However, this present model is flexible to integrate other ion channels
and extend for a multi-compartmental network model by adding experimental data in
the future.
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