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Abstract: Linear latent variable models such as principal component analysis (PCA), independent
component analysis (ICA), canonical correlation analysis (CCA), and factor analysis (FA) identify
latent directions (or loadings) either ordered or unordered. These data are then projected onto the
latent directions to obtain their projected representations (or scores). For example, PCA solvers usually
rank principal directions by explaining the most variance to the least variance. In contrast, ICA solvers
usually return independent directions unordered and often with single sources spread across multiple
directions as multiple sub-sources, severely diminishing their usability and interpretability. This paper
proposes a general framework to enhance latent space representations to improve the interpretability
of linear latent spaces. Although the concepts in this paper are programming language agnostic, the
framework is written in Python. This framework simplifies the process of clustering and ranking of
latent vectors to enhance latent information per latent vector and the interpretation of latent vectors.
Several innovative enhancements are incorporated, including latent ranking (LR), latent scaling
(LS), latent clustering (LC), and latent condensing (LCON). LR ranks latent directions according to a
specified scalar metric. LS scales latent directions according to a specified metric. LC automatically
clusters latent directions into a specified number of clusters. Lastly, LCON automatically determines
the appropriate number of clusters to condense the latent directions for a given metric to enable
optimal latent discovery. Additional functionality of the framework includes single-channel and
multi-channel data sources and data pre-processing strategies such as Hankelisation to seamlessly
expand the applicability of linear latent variable models (LLVMs) to a wider variety of data. The
effectiveness of LR, LS, LC, and LCON is shown in two foundational problems crafted with two
applied latent variable models, namely, PCA and ICA.

Keywords: latent space; reconstruction; interpretation; scaling; ranking; clustering; condensing

1. Introduction

Latent variable models are statistical models that describe the relationships between
observed and unobserved, or latent, variables. These models assume that the observed
variables are generated by underlying latent variables, which are not directly measured or
observed but are inferred from available data [1,2]. Figure 1 (adapted from [3,4]) depicts
the encoding process of linear latent variable modelling by taking a high-dimensional
input signal and transforming it into a lower-dimensional latent space, shown here as a
three-dimensional latent representation. Consider Figure 1a, the three-dimensional latent
representation indicated by the axes X-Y-Z that is projected onto Figure 1b: the X-Y
plane, Figure 1c: the Z-X plane, and Figure 1d: the Z-Y plane. The variation in projected
latent structure for the same data is evident. This warrants whether grouping, scaling,
and projecting various latent dimensions can enhance the informativeness of the latent
space. Practically, latent variable models (LVMs) can be classified into reconstruction- and
interpretation-centred models [4].
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(a) (b)

(c) (d)
Figure 1. (Top) Encoding of high-dimensional time series into a lower-dimensional latent space. (a) A
3D latent representation in X-Y-Z projected onto the (b) X-Y (c) Z-X (d) Z-Y planes. These projections
reveal varied latent structural information for the same data, demonstrating the importance of
exploring latent representations in data analysis.

Reconstruction-centred LVMs identify compressed latent representations that effi-
ciently reconstruct variance in the data, often optimal for the given model’s flexibility.
In turn, interpretation-centred LVMs attempt to identify interpretable latent presentations,
e.g., independent variance contributing sources, when explaining the variance in data.
The latter often results in less compressed latent representations. The importance of organ-
ising latent spaces can be seen in Figure 1. This figure shows that certain structures are lost
when data are projected on different planes. However, certain latent representations still
contain more structure than others.

The tasks of these two approaches are distinct: reconstruction-centred models are effi-
cient at compressing data into lower dimensional latent spaces for efficient reconstruction,
while interpretation-centred approaches aim to identify lower-dimensional latent spaces
that are interpretable, where contributing factors or sources of variance in the data are
independent and untangled [4].

Reconstruction-centred LVMs usually present their latent directions, which are or-
dered from explaining the most to least variance or vice versa. These include singular
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value decomposition (SVD) [5,6], principal component analysis (PCA), and conventional
singular spectrum analysis (SSA) [7,8], giving clear discernibility to reconstruction-focused
latent representations. Ironically, interpretation-centred LVMs usually return unordered
latent directions, with single sources spread across multiple directions, making these
latent representations less informative and more difficult to discern, interpret, and manage.
These include independent component analysis (ICA) [9–11], with a variety of underly-
ing objective functions to be maximised such as non-Guassianity measures or proxies
such as negentropy, skewness, kurtosis, or minimisation of mutual information between
latent variables.

This paper examines the impact of applying techniques such as latent scaling (LS),
latent ranking (LR), latent clustering (LC), and latent condensing (LCON) to the latent
spaces generated by linear LVMs that traditionally do not incorporate them. Applying
these methods improves the interpretability of the generated latent representations. It
allows for greater flexibility in analysing various datasets and generating richer and more
informative latent representations. As shown in Figure 2 these four algorithmic approaches
are combined into the LS-PIE module.

Four transformations are proposed to improve the post-processing and identification
of latent representation. Latent ranking (LR) and scaling (LS) rank and scale latent directions
based on specified metrics, while latent clustering (LC) compresses the latent space using
clustering for a user-specified number of clusters. In contrast, latent condensing (LCON)
enables optimal latent discovery by estimating the optimal number of clusters to enhance
the interpretability and usability of latent space representations.

In this case, the ranking and scaling methods (LR, LS), as seen in several methods
such as PCA, are more widely applied, and clustering methods are explored to examine the
underlying latent structure. This has been further expanded on using the underlying struc-
tures to perform follow-up analysis to minimise the discovered latent spaces (LC, LCON).
These enhancements can be applied to latent spaces resulting from reconstruction-centred
and interpretation-centred LVMs to re-rank already ordered latent variables according to
an alternative metric, to order unordered latent variables, or to interrogate the influence of
pre-processing or filtering of data on latent interpretability [12], just to mention a few use
cases. These cases have significant practical and research implications and have yet to be
explored in depth.

Figure 2. A representation of the four transformations implemented using the LS-PIE framework
to analyse datasets more deeply. Latent ranking (LR) and latent scaling (LS) rank and scale latent
directions based on user-specified metrics. Latent clustering (LC) groups similar latent directions
using clustering with a user-specified number of clusters, while latent condensing (LCON) enables
optimal latent discovery by estimating the optimal number of clusters to enhance the interpretability
and usability of latent space representations.

The effectiveness of these analysis methods is showcased in two crafted foundational
problems for two applied latent variable models: PCA and ICA. These two methods have
been chosen because they represent reconstruction-centred and interpretation-centred LVMs.
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2. Required Background
2.1. Latent Variable Models

Auto-association [13] or auto-encoding [14] is a fundamental concept in LVMs to make
the unsupervised learning problem of finding an appropriate latent representation tractable.
A conceptual outline of auto-encoding is shown in Figure 3, which depicts encoding and
decoding. Encoding transforms higher-dimensional input data into a lower-dimensional
latent representation, while decoding transforms the latent representations of higher-
dimensional data back to their higher-dimensional representations. Variance-driven LVMs
compress input data into compact latent representations. In contrast, source-driven latent
representations aim to identify informative latent representations that indicate sources
contributing to the variance in data.

Inferencing on latent or reconstructed representations enables latent and reconstruction
inferencing, respectively. This framework aims to enhance the latent representations of
LVMs for improved and enhanced latent inferencing.

Figure 3. The auto-encoding structure is often used in latent variable modelling (LVM). The training
stage fits the model on the provided data by learning the weights for encoding and decoding.
A higher-dimensional data sample is encoded to a lower-dimensional latent space by encoding.
The latent representation can then be decoded to obtain a higher-dimensional reconstruction of the
sample from its latent representation through decoding. These models are commonly used in many
fields of data science for data compression and reconstruction, while latent inferencing has been
gaining traction recently [1,2].

We use a set of time-series data represented by an m× n matrix X̄, where m is the
number of observations and n is the number of variables or the discrete times at which data
are recorded. For time-series data, the former relates to the number of samples, while the
latter relates to the time length of each sample. Latent variable models typically proceed
as follows

1. Data standardisation through mean centring or whitening of the data, X.
2. Compute the n× n covariance matrix S of the standardised time-series data X.
3. Find latent directions for the data S by maximising or minimising an objective function

plus regularisation terms subject to equality (equality constraints between latent
directions are often enforced, e.g., orthogonality of the latent directions or some
transformed representation of the latent directions. This can always be solved by
direct optimisation, but solving the first-order necessary optimality condition, or a
matrix decomposition may in some cases be computationally more efficient [15]) and
inequality constraints [15]. PCA diagonalises the covariance matrix by finding its
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eigenvectors and eigenvalues, where eigenvectors represent the principal components
and eigenvalues represent the variance each principal component explains.

4. Select k latent directions from a maximum of rank(S). Eigenvalues and their associated
eigenvectors are automatically sorted in descending order, from which k eigenvectors
associated with the largest eigenvalues are usually selected. By choosing eigenvectors
corresponding to the largest eigenvalues, the LVM prioritises reconstruction as they
capture the most significant variation in the time-series data.

5. The latent representation for a sample is obtained by projecting standardised time-
series data X onto k selected latent directions (a.k.a. loadings) to obtain a k-dimensional
latent representation of the sample often referred to as a k-dimensional score.

6. Reconstructing the sample from the latent representation merely requires the sum-
mation of each component of the k-dimensional score multiplied by their respective
latent direction.

LVMs have seen increasing use in various fields with the advent of deep learning.
These faster, larger models have allowed for research into learning sequential probabilistic
models from high-dimensional data, such as audio and video [16]. The rise of new models
has allowed for advancements across personalised medicine, electronic health record
analysis, and epidemiology in a wide range of scientific fields wherein the recovery of
latent generative causes for observed phenomena [17]. These models are especially effective
in fields wherein large datasets must be analysed, e.g., medical research [18]. Of these
approaches, few have seen as much success as autoencoders, a family of unsupervised
learning methods that use neural network architectures to learn lower-dimensional, latent
representations of input data. These models have found widespread use in prediction and
classification across a wide range of fields [19,20]. These models traditionally require large
networks to function accurately.

Recent innovations in LVMS include lightweight deep LVMs (LDLVMs). These aim to
combine the robustness of deep LVMs while mitigating drawbacks. Deep LVMs such as
autoencoders (AEs), variational autoencoders (VAEs), and deep belief networks (DBNs)
apply industrial modelling tasks, including fault diagnosis, prognostics health management,
and soft sensor development. LDLVMs aim to perform these tasks with significantly smaller
network sizes, which require less intensive training [21]. Other LVMs investigated are
singular spectrum analysis (SSA), a model analogous to PCA but designed to be applied
to time-series data. The primary aim of SSA is to decompose a given time series into
a small number of easily understandable components, such as slowly changing trends,
oscillatory components, and noise. These models are increasingly used across various
fields, including financial time-series analysis. Methods like filter-adjusted oblique SSA
(FOSSA) and iterative oblique SSA (IOSSA) have been introduced to aid automatic trend
identification [22,23].

Unsupervised LVM methods such as ICA have been extended to non-linear data to
perform non-linear blind source separation (BSS). These problems are particularly challeng-
ing due to their non-unique solutions without additional constraints or regularisation, often
addressed through Bayesian inference methods. Extensions to FastICA allow for better
modelling of higher dimensional latent systems, including independent subspaces with
decoupled dynamics, canonical correlation analysis, and projective non-negative matrix
factorisation (P-NMF). These approaches have been applied in telecommunications and
climate data analysis, illustrating their practical utility [24].

Other approaches have been explored to extend latent models to higher dimensional,
multi-variable arrays. This includes Tucker3 or N-Way PCA and PARAFAC (parallel
factor analysis). Tucker3 is a basic multi-way model originating from psychometrics and
commonly used in chemometric analysis. Proposed as a model for three-mode factor
analysis it acts as extension of PCA [25], it has since found application in the fields of
chromatography, environmental analysis, and perception analysis. This widespread use has
meant that the need for efficient algorithms for large data sets is of the utmost importance
and several algorithms have been described based on least squares regression, singular
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value decomposition, Gram–Schmidt orthogonalization, or a modified Bauer–Rutishauer
BR estimation [26]. It has also been applied to compositional data such as final energy
consumption over 29 European countries. It is applied to such compositional data in order
to avoid the generation of spurious correlation [27].

PARAFAC is another generalisation of PCA to higher-order arrays, also applied
to multi-way data, characterised by variables measured in a crossed fashion such as
fluorescence emission spectra measured as several excitation wavelengths for several
samples [28]. PARAFAC acts as a constrained version of Tucker3, which is, in turn, a
constrained version of two-way PCA. This means that PARAFAC and Tucker3 generate
far more compact models than two-way PCA. This approach decomposes the input into
one score and two loading vectors, which can be treated interchangeably. The advantage of
PARAFAC constraints is that they solve unique solutions, an improvement over bilinear
PCA. They are commonly applied to three types of data: PCA-like data, analysis of variance
(ANOVA) data, and multidimensional scaling data, with the approach especially applied
on PCA-like data such as spectral data [29].

This paper focuses on linear methods, which can be implemented without a large
network architecture, using PCA and FastICA as the exemplar LVMs on which to demon-
strate the applicability and usefulness of LS-PIE. The paper considers scikit-learn’s PCA
as a representative reconstruction-centred LVM, and considers ICA using FastICA as an
interpretation-centred LVM.

Principle component analysis (PCA) is a linear dimensionality reduction technique/
statistical method that seeks to compress original data to a lower dimensional representa-
tion that still explains the maximum variance of all input variables. This model aims to
maximise the variance of the solved components, using the covariance matrix to construct
the “principle components”. This is done by finding the eigenvalues of the covariance
matrix, which correspond to the maximally informative components of a dataset. As this is
a closed-form problem, the components can be solved quickly and consistently, allowing
for their use in a dimensionality reduction method or preliminary data processing step.
Due to its use of the eigenvalue decomposition, it returns its components naturally sorted
and ranked by their explained variance, allowing for a clearer and more interpretable
latent space.

Independent component analysis (ICA) is a commonly used source separation algo-
rithm, in addition to our exemplar inference-centred LVM. The FastICA implementation,
proposed by Hyvarinen et al. [11], separates a multivariate signal into additive sources
by maximising a measure of independence of the resulting components, with Gaussianity
serving as the usual metric. While disentangled sources are often clearer, the latent repre-
sentations generated are not. The returned components are unsorted and randomly arrayed
in latent space. This means they can often be hard to make inferences from for a given latent
representation. Independent component analysis (ICA) is a linear dimensionality reduc-
tion technique/statistical method capable of separating a multivariate signal into additive
components, aiming to maximise the independence or non-Gaussianity of the resulting com-
ponents. While commonly used as a method of signal separation in cases of mixed signals
from multiple sensors, it is also capable of more traditional dimensionality reduction.

The most commonly known implementation of ICA is the aptly named FastICA,
an iterative algorithm to minimize Gaussianity. The drawback of FastICA is that, as a
reconstruction-driven LVM, the latent space is returned unordered with the components
unranked. This makes it much harder to examine the underlying latent processes of
a system.

Common variants of these approaches have been widely applied: a popular variant of
PCA is canonical correlation analysis (CCA). While PCA maximises variance using a single
random vector, CCA instead utilises m random vectors. This allows for the solution of a
generalised eigenvector problem [30]. Other approaches aim to improve the interpretation
of PCA or to model oblique components or factors with hierarchical structures. These
include bi-factor and higher-order factor analysis. Recently, extensions to these approaches
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have been proposed such as hierarchical disjoint principle component analysis (HierDPCA),
which aims to create a hierarchy of disjoint principle components to explain the variance
of disjoint groups of observed variables. Other approaches to improve the interpretation
of components have aimed to generate sparse structures within the component-loading
matrix [31]. This sparsity allows for analysis utilising only small subsets of the original
features. This allows for the selection of optimal principle components from sets with 100s
of variables. By enforcing sparsity, models can recover a handful of covariates to explain
the variance in the data.

This is commonly done by formulating it as a quadratically constrained value problem
and solving it to force the variance to be explained in a compelling fashion [32]. This
approach is commonly used in subset selection, natural language processing, compressed
sensing, and clustering, all fields wherein the compression of large datasets is essential [33].
Disjoint PCA itself is a statistical method that is useful for identifying unknown classes
in classification problems. By fitting a set of disjoint PC models, one to each known class,
measurements on unknown specimens are fit to these models, and F-statistics are used to
determine which class the unknowns should be assigned to. This has been successfully
applied in botanical studies to discover unknown plant species [34]. ICA also has several
proposed improvements. These include methods such as group ICA, an approach to model
three-way data. It has been proposed to solve the problem of establishing subject corre-
spondence in multi-subject studies. This involves performing ICA on group data, usually
compiled with temporal concatenation. Extensions of this approach using time-frequency
data have been proposed utilising autocorrelation and non-Gaussianity to analyse time
structures. Approaches to derive these transforms have been proposed using short time
Fourier transforms on the input data (STFTs) [35]. Other proposed improvements include
kernel ICA. CCA is similar to PCA, utilising multiple random vectors to maximise the
correlation kernel, ICA utilises F-correlation to optimise a generalised variance contrast
function, which is based on representations in a reproducing kernel Hilbert space [30].

2.2. Data Sources and Channels

In data science, data analysts and scientists process various data sources to gain
insights and make informed decisions.

Time-series data refer to observations or measurements taken at specific time inter-
vals. Time-series data are often collected from sensors installed in various devices or
environments. This can include temperature readings, air quality measurements, pres-
sure recordings, vibration data, and more. Manufacturing, energy, and environmental
monitoring heavily rely on sensor-generated time-series data. The internet of things (IoT)
has introduced a wide range of devices now equipped with sensors and connected to
the Internet. These devices generate time-series data that can be used for applications in
smart homes, smart cities, and industrial monitoring. Medical devices, wearable devices,
and health monitoring systems sense heart rates, blood pressure, glucose levels, sleep
patterns, and other physiological measurements, which aid healthcare analysis, disease
detection, and personalised medicine.

Datasets can be single- or multi-channel sensor measurements of single- or multiple-
observation data. These multi-channel or multiple observations of data can be homogenous
or heterogeneous. A single observation of single-channel time-series data x ∈ Rm+n−2 can
be transformed to enable LVMs to operate on the data. These include Hankelisation [36]:

H =


x0 x1 x2 · · · xn−1
x1 x2 x3 · · · xn
x2 x3 x4 · · · xn+1
...

...
...

. . .
...

xm−1 xm xm+1 · · · xm+n−2,
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while multi-observation or multi-channel sources can be isolated or transformed to enhance
latent inferencing.

3. Materials and Methods

The data generated for the numerical analysis can be found in the GitHub repository,
which is available at https://github.com/Greeen16/SoftwareX-Paper (accessed on 31 May
2024). This shows the basic implementation of the module and its application method.
ECG data analysis is also included to showcase the software’s application to multi-channel
data further. These ECG data were found on Kaggle. See the data availability statement
for more information. The current version of the LS-PIE module utilises the following
Python modules: NumPy Version: 1.24.3, SciPy Version: 1.10.1, and scikit-learn Version:
1.5.post5. However, the framework can be applied using alternative modules.

A discussion of the SAFE data can be found in [37]. This shows the application of the
analysis of spectrogram data.

4. Related Work

Clustering methods have been proposed to improve the efficacy of ICA [38] using
tree-dependant component analysis (TCA). TCA combines graphical models and the Gaus-
sian stationary contrast function to derive richer dependency classes. ICA and clustering
have mainly focused on using ICA in pattern recognition and image classification anal-
ysis. At the same time, expectation maximisation (EM), K-means, and fuzzy C-means
have shown satisfactory results when applied to imaging [39–41]. In contrast, our pro-
posed LS-PIE framework introduces a generic framework for the enhancement of LVMs
through latent ranking (LR), latent scaling (LS), latent clustering (LC), and latent condens-
ing (LCON), the latter two of which utilise clustering methods as a way to group similar
latent components to form more interpretable latent components.

5. Software Description

LS-PIE makes latent ranking (LR), latent scaling (LS), latent clustering (LC), and latent
condensing (LCON) accessible for reconstruction-centred or interpretation-centred LVMs.
The methods presented here are designed to allow user control of the outputs by choosing
the number of components, LVM, metric, and clustering algorithm. An outline of LR, LS,
LC, and LCON is given, with conceptualising approaches presented for each.

These proposed algorithms were designed to be applied to input data transformed
into a matrix representation. In this paper, we utilise the Hankel transformation of single-
dimensional time-series data to obtain a matrix representation:

H = H(x̄(t)).

In cases where we utilise multi-dimensional input data, we can treat the inputs as a
pre-existing matrix, allowing us to set

H = X.

We then process these data utilising our choice of LVM to derive a matrix of M latent
components:

L = LVM(H, M).

The proposed methods are then used to post-process the latent variables generated
by the models, increasing their interpretability by ranking/scaling or clustering them into
fewer components.

5.1. Latent Scaling (LS)

Latent scaling (LS) allows the user to specify a metric to scale the length of latent
vectors, e.g., variance. This enhances the visual interpretation of latent vectors when

https://github.com/Greeen16/SoftwareX-Paper
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plotted to interrogate them critically. The framework supports several metrics but allows
for metrics expressed as user-defined Python functions. The LS algorithm is outlined in
Algorithm 1.

Algorithm 1 Latent scaling (LS)

Require: Hankelised or multi-channel time-series data matrix H, user-specified number

of components m, latent variable model LVM, scaling metric with associated scaling

function S(L, s)

Ensure: Returns scaled latent components Lscaled.

1: L← LVM(H, m) ▷ Decompose H into m latent vectors

2: Lscaled ← {S(Lj, sj) | j = 1, 2, . . . , m} = {s1L1, s2L2, ..., smLm} ▷ Scale each latent

component

return Lscaled

Scaling Function S(L, si(L)):

0. Identity: s0(L) = I = L ▷ Keeps original vector unchanged

1. Variance: s1(L) =
[
Var(Lj)

]
, j = 1, . . . , k

2. Kurtosis: s2(L) =
[
Kurt(Lj)

]
, j = 1, . . . , k

3. Spectral centroid: s3(L) =
∑N/2

j=0 (j· fs
N )·|FFT(L)j |

∑N/2
j=0 |FFT(L)j |

4. Entropy: s4(Lj) = −∑k pk log pk, with pk the probability of the k-th element in Lj

This allows for the scaling of each latent direction based on the scaling score. Scaling
scores include variance and kurtosis. Variance allows us to highlight latent directions
that are prominent in reconstruction while hiding latent directions that do not contribute
significantly to reconstruction, while kurtosis is a proxy for identifying potential variance
sources [4].

5.2. Latent Ranking (LR)

Latent ranking (LR) allows the user to specify a feature metric and then rank the latent
variables according to the selected feature metric. Although several feature metrics are
readily available, the framework allows for a feature metric specified as a user-defined
Python function. The LR algorithm is outlined in Algorithm 2.

Algorithm 2 Latent ranking (LR)

Require: Hankelised or multi-channel time-series data matrix H, latent variable model

LVM, user-specified number of latent components m, user-selected or user-specified

feature mapping function f .

Ensure: Returns ranked latent components Lranked and the ranked feature scores franked.

1: L← LVM(H, m) ▷ Decompose H into m latent vectors

2: f← f (L) ▷ Map latent vectors to a feature space

3: Lranked, franked ← sort(L, f) ▷ sort the latent vectors according to their features scores

return Lranked, franked
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Algorithm 2 Cont.

Feature mapping function f :
1. Variance: f1(L) =

[
Var(Lj)

]
, j = 1, . . . , k

2. Kurtosis: f2(L) =
[
Kurt(Lj)

]
, j = 1, . . . , k

3. Spectral centroid: f3(L) =
∑N/2

j=0 (j· fs
N )·|FFT(L)j |

∑N/2
j=0 |FFT(L)j |

4. Entropy: f4(Lj) = −∑k pk log pk, where pk is the probability of the k-th element in Lj

Latent ranking allows for exploring latent variables that have already been identified
by optimising some regularised optimisation problem. It also enables unordered latent vari-
ables to be ordered or allows us to order latent variables according to some other metric than
what the LVM used to extract latent components, which could enhance the interpretation
of the current latent variables, exploring some of their underlying characteristics.

5.3. Latent Clustering (LC)

We also need to counter an additional common problem in some LVMs. Unlike
PCA, where the number of components increases, existing components remain unchanged,
and new components explain less and less variance. Some LVMs split the same information
over more and more components as the number of latent directions increases, e.g., ICA.
Latent clustering combines similar latent directions according to a user-defined metric into
a single latent direction through clustering.

For linear models, the maximum number of latent dimensions is dictated by the rank
of the data matrix X after standardisation. Latent clustering (LC) enables the user to
specify the number of latent clusters to be identified from the specified number of latent
variables, i.e., LC clusters latent directions into a pre-selected number of clusters. LC
can be performed by selecting available similarity or dissimilarity metrics or as a user-
specified Python function, and the clustering approach with BIRCH is the default for LC.
The algorithmic implementation of this approach is given in Algorithm 3.

Algorithm 3 Latent clustering (LC)

Require: Hankelised or multi-channel time-series data matrix H, latent variable model
LVM, clustering algorithm C, feature mapping function f , distance metric d, cluster
scoring function s, specified or maximum number of latent vectors m, specified number
of latent clusters k.

Ensure: For k clusters find the feature clustering Rk, cluster score Sk and latent cluster
components Lk

1: L← LVM(H, m) ▷ Decompose H into m latent vectors
2: F̃← f (L) ▷ Map latent vectors to feature space
3: F← scale(F̃) ▷ User-specified feature space scaling
4: Rk, Lk ← C(F, d, L, k) ▷ Cluster into k clusters using distance metric d
5: Sk ← s(Rk, Lk, H) ▷ Cluster scoring

return Rk, Lk, Sk

Feature Mapping Function f :
f (L) = [ fi], where fi are selected individual feature functions that could include:
0. Identity: IL = L ▷ Keeps original vector unchanged
1. Variance: f1(L) =

[
Var(Lj)

]
, j = 1, . . . , k

2. Kurtosis: f2(L) =
[
Kurt(Lj)

]
, j = 1, . . . , k

3. Spectral centroid: f3(L) =
∑N/2

j=0 (j· fs
N )·|FFT(L)j |

∑N/2
j=0 |FFT(L)j |

4. Entropy: f4(Lj) = −∑k pk log pk, with pk the probability of the k-th element in Lj
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Distance metrics d for clustering:
- Euclidean distance: d(x, y) = ∥x− y∥2 [42]
- Manhattan distance: d(x, y) = ∥x− y∥1 [43]
- Cosine distance: d(x, y) = 1− x·y

∥x∥2∥y∥2
[44]

- Mahalanobis distance: d(x, y) =
√
(x− y)TS−1(x− y), where S is the covariance

matrix [45]

Cluster scoring functions s:
1. Silhouette score: s(R, L, H) = 1

|L| ∑Lj∈L
b(Lj)−a(Lj)

max(a(Lj),b(Lj))

a(Lj) is the mean intra-cluster distance, and b(Lj) is the mean nearest-cluster distance

2. Variance-based: s(R, L, H) = 1
|L|

tr(LTHTHL)
tr(HTH)

3. Kurtosis-based: s(R, L, H) = 1
|L| ∑

|L|
j=1 |Kurt(LT

j HT)|

4. Frequency-based: s(R, L, H) = 1
|L| ∑

|L|
j=1

∑k( fk−µj)
2|FFT((LT

j HT))k |
∑k |FFT((LT

j HT))k |

5.4. Latent Condensing (LCON)

Latent condensing allows optimal latent discovery by extending LC to automatically
estimate the optimal latent dimensions and directions using selected clustering algorithms
and approaches. While LC finds a user-prescribed number of components/clusters, LCON
aims to automate dimensionality reduction utilising two main strategies:

1. Systematically reducing the latent dimensions solved by the algorithm and minimising
or maximising a selected clustering index to find the optimal number of clusters.

2. Utilising algorithmic clustering to find the optimal number of latent clusters such as
balanced iterative reducing and clustering using hierarchies (BIRCH) [46] or density-
based spatial clustering of applications with noise (DBSCAN) [47,48].

From Algorithm 4, we can see that for both cases, we first transform the input data
into the maximal number of components using an LVM, in this case, FastICA. We then
utilise a feature-mapping function to map these components to a features space, in these
examples, explained variance. We then manually reduce the number of components to
be solved and repeat the process in regular increments, with the most thorough being
to decrease by 1 component each time. Alternatively, we utilise an automated approach,
such as clustering algorithms, to compress the latent space. In this case, we use a selective
clustering algorithm to automatically identify the optimal number of latent components
within the feature space. Unlike other methods, LCON takes the raw input matrix, in our
case, Hankelised time data, as its input and utilises the choice of LVM at each step in the
process. The algorithmic implementation is shown in Algorithm 4. In this paper, we use
DBSCAN as the default for LCON. This shows the potential to fully automate the algorithm,
as with PCA, to allow for simpler application of analytical tools. In this case, the ability
of algorithms such as DBSCAN to automatically find the number of clusters removes the
need for user-specified component numbers instead of relying on the user to specify them.

Algorithm 4 Latent condensing (LCON) for Hankelised time-series data

Require: Hankelised or multi-channel time-series data matrix H, latent variable model
LVM, clustering algorithm C, feature mapping function f , distance metric d, clus-
ter scoring function s, specified or maximum number of latent vectors m, clustering
approach Automatic or not

Ensure: Best feature clustering Rbest, cluster score Sbest and latent cluster components Lbest
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Algorithm 4 Cont.

1: Sbest ← −∞
2: Rbest ← ∅
3: for k← m to 1 do
4: L← LVM(H, k) ▷ Decompose H into k latent vectors
5: F̃← f (L) ▷ Map latent vectors to feature space
6: F← scale(F̃) ▷ User-specified feature space scaling
7: if Automatic then
8: Rauto, Lauto ← C(F, d, L) ▷ Automatic feature clustering Rauto using

user-specified distance metric d to find protype latent vectors Lauto

9: Sauto ← s(Rauto, Lauto) ▷ Cluster scoring
10: if Sauto > Sbest then
11: Sbest ← Sauto

12: Rbest ← Rauto

13: Lbest ← Lauto

14: end if
15: else
16: for j← k to 1 do
17: Rj, Lj ← C(F, d, L, j) ▷ Cluster into j clusters using distance metric d
18: Sj ← s(Rj, Lj, H) ▷ Cluster scoring
19: if Sj > Sbest then
20: Sbest ← Sj

21: Rbest ← Rj

22: Lbest ← Lj

23: end if
24: end for
25: end if
26: end for

return Rbest, Lbest, Sbest

Feature mapping function f :
f (L) = [ fi], where fi are selected individual feature functions that could include:
0. Identity: IL = L ▷ Keeps original vector unchanged
1. Variance: f1(L) =

[
Var(Lj)

]
, j = 1, . . . , k

2. Kurtosis: f2(L) =
[
Kurt(Lj)

]
, j = 1, . . . , k

3. Spectral centroid: f3(L) =
∑N/2

j=0 (j· fs
N )·|FFT(L)j |

∑N/2
j=0 |FFT(L)j |

4. Entropy: f4(Lj) = −∑k pk log pk, with pk the probability of the k-th element in Lj

Distance metrics d for clustering:
1. Euclidean distance: d(x, y) = ∥x− y∥2 [42]
2. Manhattan distance: d(x, y) = ∥x− y∥1 [43]
3. Cosine distance: d(x, y) = 1− x·y

∥x∥2∥y∥2
[44]

4. Mahalanobis distance: d(x, y) =
√
(x− y)TS−1(x− y), where S is the covariance

matrix [45]
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Cluster scoring functions s:
1. Silhouette score: s(R, L, H) = 1

|L| ∑Lj∈L
b(Lj)−a(Lj)

max(a(Lj),b(Lj))

a(Lj) is the mean intra-cluster distance, and b(Lj) is the mean nearest-cluster distance

2. Variance-based: s(R, L, H) = 1
|L|

tr(LTHTHL)
tr(HTH)

3. Kurtosis-based: s(R, L, H) = 1
|L| ∑

|L|
j=1 |Kurt(LT

j HT)|

4. Frequency-based: s(R, L, H) = 1
|L| ∑

|L|
j=1

∑k( fk−µj)
2|FFT((LT

j HT))k |
∑k |FFT((LT

j HT))k |
µj is the mean frequency for the j-th latent component

6. Numerical Investigation

The effectiveness of LR, LS, and LCON is showcased using two crafted foundational
problems using single-channel data. In both cases, Hankelisation is employed before
applying two latent variable models: PCA and ICA.

6.1. Single Channel: Latent Ranking (LR), Latent Scaling (LS), and Latent Condensing (LCON)

To show the effects of the LS-PIE module on the generated latent spaces, we consider
a foundational example

f (t) = sin(2πt)

uniformly sampled at 4000
12π samples per second using Hankelisation with a window length

of 300. The results for extracting eight latent variables using PCA and ICA are shown in Fig-
ure 4. Here, we expect identical results for PCA and ICA, merely a single-frequency Fourier
sin-cosine decomposition, as shown in Figure 5. Note the improvement in informativeness
as latent scaling (LS) is applied. In turn, note the improvement in the informativeness of
the latent directions of latent ranking (LR) and enhancement of latent condensing (LC) for
ICA. For ICA, LC combines the second- and third-ranked ICs.

In turn, Figure 4 is a signal with decreasing frequency over time, expressed by
f (t) = sin(2πt0.85). Here, we expect to see some differentiation in the latent directions
between PCA and ICA, as shown in Figure 6. The improvement in interpretation and
informativeness of the latent directions using LS-PIE is evident. LS-PIE isolates and en-
hances the essential latent directions that allow time for the critical interpretation of latent
directions and the comparison between LVMs.
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Figure 4. Two example signals, (left) f (t) = sin(2πt) and (right) f (t) = sin(2πt0.85), to illustrate
some of the functionality of LS-PIE.
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Figure 5. For the time-series signal f (t) = sin(2πt), depicting (top row) normalised latent directions
for PCA (left) and ICA (right) without applying latent ranking (LR) or latent scaling (LS). (middle
row) Variance-explained ranked and variance-explained scaled latent directions with PCA (left) and
ICA (right). (bottom row) Variance-explained ranked and variance-explained scaled latent directions
with latent condensing (LC) for PCA (left) and ICA (right).

0 50 100 150 200 250 300
Signal length

0.2

0.1

0.0

0.1

0.2

M
ag

ni
tu

de

PC 1
PC 2
PC 3
PC 4
PC 5
PC 6
PC 7
PC 8

0 50 100 150 200 250 300
Signal length

0.4

0.3

0.2

0.1

0.0

0.1

M
ag

ni
tu

de

IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8

Figure 6. Cont.
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Figure 6. For the time-series signal f (t) = sin(2πt0.85), depicting (top row) normalised latent direc-
tions for PCA and ICA without applying latent ranking (LR) or latent scaling (LS). (middle row)
Variance-explained ranked and variance-explained scaled latent directions for PCA and ICA.
(bottom row) Variance-explained ranked and variance-explained scaled latent directions with latent
condensing (LC) for PCA and ICA.

6.2. Multi-Channel Real World Data
6.2.1. Background

To showcase the application of the module on real-world, multi-channel data, we
apply the module on a compiled ECG Heartbeat Categorisation Dataset. This dataset
consists of 14552 samples at 125Hz, all falling within two categories: healthy and unhealthy.
We can treat the total system as an input matrix because we have multiple examples of
vector signals. This means we do not need to transform the input data before analysing it.

This dataset is used to train deep neural networks [49]. However, each of these samples
is of a very high dimension, consisting of 188 data points requiring larger deep neural
networks to analyse.

The data are available through PhysioNet as a combination of the MIT-BIH Arrhythmia
Database and the PTB Diagnostic ECG Database.

6.2.2. Analysis

We apply LS, LR, LC, and LCON. In this case, we do not have to re-shape our input
data before applying the LVM to the data, thereby investigating FastICA before and after
applying LR, LS, LC, and LCON.

By comparing Figures 7 and 8 we can see that the two approaches condense the
input data differently. In this case the ranking approach showcased in Figure 7 allows for
clear differentiation between classes whereas from Figure 8, we can see that the clustering
functionality overly compensates for noise in the data, gathering all meaningful information
into a single signal while returning two noise signals. This means the statistically significant
distribution generated by the ranked LS-PIE functionality is absent in the clustered signals.
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Figure 7. Comparison of normal and abnormal multi-channel datasets using fast ICA augmented
with LR and LS of the normal (left) and abnormal (right) heartbeat datasets showing a clear difference
in the independent component (IC) distributions. The bottom row compares the same two datasets
using unranked ICs, showing a distinct lack of interpretability. The transformed signal magnitudes
represent the unscored component multiplied by the normalised scoring of the signal.
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Figure 8. Comparison of normal and abnormal multi-channel datasets using FastICA augmented
with LCON and LC of the normal (left) and abnormal (right) heartbeat datasets showing a clear
difference in the IC distributions. The bottom row compares the same two datasets using unranked
ICs, showing a distinct lack of interpretability. The transformed signal magnitudes represent the
unscored component multiplied by the normalised scoring of the signal.

6.2.3. Comparison of Results

This section clearly shows the improvements added using the LS-PIE functionality
to improve the analysis of large datasets. From Figure 9, we can see an even clearer
representation of the difference between the two data classes. In the case of noisy, less linear
data, the ranking functionality separated clear differences in magnitude between the two
data types, whereas the clustered method overcompensated, forcing all the information into
one meaningless vector. However, both contain more information than undirected FastICA
decomposition; in this case, the components were over-decomposed, and the information
was lost to random noise.
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Figure 9. Comparison of the fast Fourier transformed latent components of the normal heartbeat
data (left) and the abnormal heartbeat data (right). The top row showcases the LR components that
are scaled using LS, the middle row showcases the CL components, and the bottom row showcases
normal FastICA. The transformed signal magnitude represents the unscored component multiplied
by the normalised scoring of the signal

6.3. Discussion

These two experimental analyses show the improvements of the latent representations
generated using FastICA. For simple sinusoidal problems, we can see that the ranked and
scaled FastICA results more closely resemble the recovered PCA results. Additionally, we
can see that before applying LR and LS, the components seemingly showed random noise.
This noise complicates the informed analysis of the datasets.

These results are clearer when we examine the ranked and scaled decomposition of
the ECG dataset provided in Figure 7. In this case, clear differences in the distributions of
the latent variables can be seen. This would allow this method to be used to pre-process
data for categorisation. However, this example also highlights the specific applicability
of the two approaches. For this dataset, the LC and LCON methods could not recover
significantly different results when applied to the normal and abnormal heartbeat datasets.

6.4. Discussion of Use Cases

From these two example datasets, we can see that the latent ranking, latent scaling,
latent clustering, and latent condensing methods described within this paper function
best when applied in tandem, allowing for maximally interpretable latent spaces. Figure 7
shows that we recover far more interpretable data when latent components are ranked and
scaled. Applying these two approaches allows us to organise latent components for ICA in
a way that is similar to PCA.

7. Impact

The role of LS-PIE in interrogating LVMs and enhancing latent directions is demon-
strated in two foundational example problems. LS-PIE ensures that the user can focus their
time and energy on interpreting the latent space for latent inference instead of first defining
an informative latent space. The potential impact of LS-PIE is an improved adoption of
interpretation-centred LVMs in signal processing, vibration-based condition monitoring,



Math. Comput. Appl. 2024, 29, 85 19 of 22

actuarial sciences, finances, and social and physical sciences, as well as the enhanced
interpretation of reconstruction-centred LVMs.

The application of ranking, scaling, clustering, and condensing is showcased for
artificially generated and real-world ECG data. In these cases, we can see that the clustering
approach allows the number of components to be extracted from larger datasets. In contrast,
the ranking approach works well to generate interpretable latent spaces, as shown in the
clear difference in results in the multi-channel section.

These approaches allow for the use of a wider array of LVMs as pre-processing
methods for further data analysis

This initial LS-PIE framework is a latent variable ecosystem to enhance the prac-
tical application of LVMs, centring research activity of LVMs around latent inference
for interpretation.

8. Conclusions

LS-PIE improves the interpretability of reconstruction- and interpretation-centred
LVMs through latent ranking and scaling while enhancing the information spread over
latent directions through latent condensing. Two foundational datasets highlight the
benefit of utilising LS-PIE to improve the informativeness for reconstruction-centred and
interpretation-centred LVMs. Additionally, the ECG dataset shows that the methods can be
applied in tandem to allow for more meaningful analysis of real-world datasets.

From the two foundational examples we can see a reduction of noise and improve-
ment of latent clarity in the two example problems analysed. We can see that for simple
linear problems, the LS-PIE approach is able to direct the undirected latent space of the
FastICA algorithm and extract more interpretable components. This can be seen in Figure 5.
The experimental analysis in Section 6.2 further showcases the improvements derived from
the application of LS-PIE. From Figures 7 and 9, it can be seen that simple LVMs augmented
with LS-PIE are capable of compressing higher dimensional, complex data into far more
compact linear representations while still retaining informative characteristics and allowing
for more educated further analysis.

The LS-PIE framework is the first step towards an LVM ecosystem that benefits the
practical application and research opportunities of LVMs. Future research will develop
additional functionality that benefits LVM research and the practical deployment of LVM
for industrial applications.

The main conclusions and innovations presented in this paper can be summarised
as follows:

1. LS-PIE is applicable to source- and reconstruction-focused LVMs;
2. It returns interpretable components;

(a) Ranking and scaling help to organize latent spaces;
(b) Clustering and condensing help solve for optimal representations;

3. The approach is applicable to both artificial and real-world data;

(a) In both cases, it improves the latent interpretability;
(b) The real-world data showcase their applicability as pre-processing metrics;

4. The algorithm is designed to be fully customisable to a users requirements.

9. Future Work

The LS-PIE algorithm can further be improved by automating the extraction of com-
ponents. Many LVMs, such as PCAs, extract maximal components in descending order
of variance. This means that as the number of components increases, a point is reached
where nearly all of the variance has been explained. Beyond this, further components
have a magnitude of zero. However, others, such as FastICA, split sources to create more
components, slowly reducing the information in any given component.

To counteract this, we can find the optimal number of latent clusters using LCON.
LCON achieves this by selective clustering algorithms that identify the optimal number of
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clusters or by iterating from two to the maximum number of clusters until a user-specified
metric is met, e.g., the maximum variance per component.

Further research is required in order to evaluate the scalability of these methods as well
as the impact of choice of analysis metrics and LVM on the generated results. The authors
hope to conduct a more in depth study comparing the results of further classes of latent
variable models on a wider range of data. Additionally, further work will aim to apply
the LS-PIE algorithms to a wider range of models, such as PCA and ICA variants, e.g.,
CCA and disjoint PCA, as well as approaches such as Group ICA or kernal ICA and more
complex N-Way models such as PARAFAC and Tucker3.
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LS-PIE Latent Space Perspicacity and Interpretation Enhancement
ICA Independent Component Analysis
PCA Principal Component Analysis
CCA Canonical correlation analysis
SVD Singular Value Decomposition
FA Factor Analysis
LR Latent Ranking
LS Latent Scaling
LC Latent Clustering
LCON Latent Condensing
LVM Latent Variable model
LDLVM Lightweight Deep Latent Variable Model
AE Autoencoder
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