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Abstract: This paper proposes a high-performing, hybrid method for Maximum Power Point Tracking
(MPPT) in photovoltaic (PV) systems. The approach is based on an intelligent Nonlinear Discrete
Proportional–Integral–Derivative (N-DPID) controller with the Perturb and Observe (P&O) method.
The feedback gains derived are optimized by a metaheuristic algorithm called Particle Swarm
Optimization (PSO). The proposed methods appear to present adequate solutions to overcome
the drawbacks of existing methods despite various weather conditions considered in the analysis,
providing a robust solution for dynamic environmental conditions. The results showed better
performance and accuracy compared to those encountered in the literature. We also recall that this
technique provides a systematic design procedure in the search for the MPPT in photovoltaic (PV)
systems that has not yet been documented in the literature to the best of our knowledge.

Keywords: photovoltaic system; perturb and observe; discrete nonlinear PID; particle swarm optimization;
maximum power point tracking

1. Introduction

Energy has been the main driver of human life for a long time and plays a vital role
in countries’ daily activity and development. Energy production is essential to all human
activities, and the need for energy in developing countries has increased dramatically
in recent years. Most of the energy produced around the globe is derived from fossil
fuels, including uranium, natural gas, coal, and oil [1,2]. These fuels produce greenhouse
gas emissions that contribute to increased pollution [3–5]. Moreover, these fuels are in
perpetual depletion, which dangerously reduces the reserves of these types of energy for
future generations. Faced with all these grievances, countries with enormous energy need
to resort to renewable energy such as solar, hydro, wind, and geothermal energy [6,7]. These
sources are up-and-coming solutions to compete with other energy sources. Their main
advantages are that they are inexhaustible and non-polluting. Their exploitations allow
humans to ensure their energy needs in the case of countries with high energy expectations,
and their strategic position makes them an ideal candidate for electrical installations using
solar energy.

Solar energy is readily available due to the advancement of research and is currently
among the most significant sources of environmentally friendly renewable energy [8–10].
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A photovoltaic system is used to exploit this energy, but it depends on climatic condi-
tions such as solar irradiation and temperature [11,12]. These climatic variations cause
fluctuations around the maximum power point. Therefore, researchers have established
and used several methods for tracking the maximum power point of photovoltaic (PV)
systems. These schemes consist of associating a controller called Maximum Power Point
Tracking (MPPT) to the inverter, which performs a permanent search for the maximum
power point (MPP) [13]. The Perturb and Observe (P and O) method is the simplest and
most widely used method in the world, and it does not require prior knowledge of the
PV system characteristics and is easy to implement with analog and digital circuits [14,15].
However, this technique suffers from oscillations around the MPP due to its fixed variation
step during the search process. Moreover, it offers low efficiency and slow response and
does not track the MPP well in varying environmental conditions [16–18]. The conductance
increment method offers better performance than the P&O scheme but also experiences
oscillations around the MPP. Moreover, this method has a complex MPP search process
because it requires a variation of the current and voltage of the PV panel [19,20]. Several
researchers have mobilized to search for techniques to improve the P&O method, which
allows for obtaining good performance with hybrid systems based on artificial intelligence
(AI) such as artificial neural networks (ANN) [21] and fuzzy logic [22,23]. However, their
implementation is difficult because of their high computational complexity, so finding a
balance between accuracy and simplicity is essential.

In the control engineering area, developing a controller that is easy to implement and
performs well is desired, which can adapt to changing environmental conditions, provide
quality service, and effectively track the MPP [24,25]. It is worth noting that accuracy, speed,
efficiency, and simplicity are necessary conditions for implementing an MPPT algorithm
in photovoltaic systems [26,27], especially when the weather conditions vary. The P&O
algorithm is simple but presents more disadvantages, such as weak accuracy and a long
transient time of reaching the MPP, which confer poor performance to the strategy. The
discrete nonlinear proportional–integral–derivative controller (N-DPID) is a unique controller
that has the same simple structure as a linear PID controller. The use of this device for
controlling and maintaining the simplicity of the system while addressing the limitations
of conventional P&O methods stands as one of the significant contributions of this paper.
This combination aims to improve the efficiency, robustness and easiest of implementation of
Maximum Power Point Tracking in photovoltaic systems, which has not yet been considered
in the literature. One of the difficulties of this method is the parameterization of the gains
N-DPID controller to obtain optimal performance [28]. For this purpose, intelligent techniques
such as Particle Swarm Optimization (PSO), genetic algorithm (GA), and many others are
used. The robustness of the nonlinear PID has been proven in several engineering problems
and has shown its effectiveness in tracking the MPP of photovoltaic systems [29]. In this work,
a method for improving the performance of the P&O methods of a solar PV system has been
proposed, based on the use of an N-DPID controller, so the gains are obtained by an intelligent
approach called Particle Swarm Optimization (PSO), which has been designed and simulated
in MATLAB/SIMULINK software.

The rest of this paper is planned as follows: Section 2 describes the photovoltaic
cells. Section 3 gives a block diagram of the completely controlled PV system and the
electrical circuit of the converter considered in the analysis. Section 4 covers the problem
formulation. Section 5 presents the simulation and the results of the suggested scheme.
Section 6 provides the conclusions.

2. Modeling of the Photovoltaic Cell

The corresponding circuit of the PV cell is illustrated in Figure 1. It is a single-diode
model that is simple and efficient. It is generally used for modeling and implementation of
strategic controls. This model has a diode and a current source connected antiparallel to
the diode [30,31]. A series resistor and a parallel resistor are included in the schematic to
account for parasitic effects.
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The following is an expression for the PV cell’s output current:

I = Iph − Id − Ish (1)

Respectively, the diode and parallel resistor currents are given by the following relations:

Id = Io

[
exp

(
V + RS I

nVth

)
− 1

]
(2)

Ish =
V + RS I

Rsh
(3)

So, the general equation of the output current is given by

I = Iph − Io

[
exp

(
V + RS I

nVth

)
− 1

]
− V + RS I

Rsh
(4)

The output voltage and current of the PV cell are denoted by I and V, respectively.
The reverse saturation current is denoted by Io, the series resistance by RS, the parallel
resistance by Rsh, the thermal voltage by Vth, and n is the constant of the diode.

3. Modeling and Description of the PV System

The system given by the circuit in Figure 2 consists of a PV panel, a DC-DC power boost
converter, a load, and an MPPT controller. In this case, the boost converter is controlled by
a discrete nonlinear PID controller based on the MPPT control, which receives inputs from
the MPPT reference voltage generated by the P&O algorithm and the instantaneous PV
voltage VPV .
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Figure 2. Block diagram for MPPT with PV.

To ensure the power transfer between the load and photovoltaic generator, we insert
between the two blocks a matching stage, also called a converter; in our case, we have
chosen a static DC-DC boost converter, allowing a rise in the PV generator’s output voltage.
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This converter has shown good performance for MPP tracking in photovoltaic systems,
and its primary application is to regulate the power supply [32]. Its equivalent circuit is
depicted in Figure 3 and includes an inductor (L), a capacitor (C), a power switch MOSFET
(Q), a diode D, and the load (R).
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The following relationships between the i/o voltage and i/o current of the converter
are given as

Vout

Vin
=

1
1 − d

(5)

Iout

Iin
= 1 − d (6)

where d is the duty cycle of the converter.

4. Problem Formulation
4.1. Perturb and Observe Method

This technique is among the most frequently utilized in the literature [33]. It depends
on the photovoltaic generator voltage (VPV), the disturbance of the photovoltaic generator
voltage dV, and the power variation dP; a disturbance can be detected, so a positive
disturbance of VPV leads to an increase in power. Otherwise, it will tend to return to the
initial disturbance. Since the search process is periodic, the step size variation also keeps
the exact nature, which lightly reduces the error. It is important to recall that a very weak
step size may cause the MPP to track slowly. The variation of this step leads to oscillations
around the MPP, and the MPP cannot be followed efficiently in unstable environmental
conditions. The P&O algorithm is given in the flowchart in Figure 4:
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4.2. Nonlinear PID Control Scheme

Significant advancements have been made in the design of nonlinear systems for
various practical applications in recent decades. Numerous innovative approaches have
emerged, including optimal control, nonlinear feedback control, adaptive control, sliding
mode control, nonlinear dynamics, chaos control, chaos synchronization control, fuzzy
logic control, fuzzy adaptive control, fractional order control, robust control, and their
integrations [35,36].

The nonlinear PID is a modified form of the conventional PID [37]. Azar and Serrano
stated that the selection of the nonlinear function depends upon the application’s specific
demands [38]. In order to minimize overshoot and oscillations around the MPP, and to
reduce substantial errors that contribute to the lowering of system stabilization time, the
nonlinear hyperbolic cosine equation has been used [24]. Depending on the error value,
the nonlinear PID scheme generates the following control signal:

u(t) = kpe(t) + ki

t∫
0

f (v)e(t)dt + kd
d
dt
[e(t)] (7)

where kp is the proportional gain, ki is integral gain, kd is derivative gain, and f (v) is the
nonlinear function.

To set up the control algorithm using numerical tools, the discretization was performed
by the forward Euler method [28]. The Laplace transformation applied to Equation (7)
allows us to obtain an N-DPID controller presented as follows:

u(z) = kpe + kiTS
1

z − 1
f (v)e + kd

z − 1
TSz

e (8)

The nonlinear function is given by Equation (9):

f (v) = cosh(µv) =
exp(µv) + exp(−µv)

2
(9)

where

v =

{
e ; |e| ≤ emax

emaxsign(e) ; |e| ≻ emax
(10)

where µ and emax are positive constants and TS is the sampling period.

4.3. Particle Swarm Optimization

In the control architecture, using fixed gains to control complex and nonlinear dynam-
ical systems leads to large overshoots in the transient state and low robustness. To find the
gains of the N-DPID controller to enhance the efficiency of the P&O scheme, the Particle
Swarm Optimization (PSO) algorithm was used. This method was proposed by Kennedy
and Eberhart in 1995 [39], and it is a metaheuristic approach based on the behavior of
animals in swarms. It is an optimization algorithm based on random solutions known
as populations that evolve in the problem space in order to find the most optimum solu-
tion corresponding to the lowest value of the cost function. Each particle alters its route
according to its own best prior position and the best previous position achieved in the
entire population, namely, Pbest and Gbest. At each iteration, the population is updated for
i = (1, 2, . . . , n), and “n” is the size of the population by the following process:

xi
k+1 = xi

k + vi
k+1 (11)

vi
k+1 = wvi

k + c1r1(Pbest − xi
k) + c2r2(Gbest − xi

k) (12)

Equations (11) and (12) represent successively the position and velocity of each particle
in the swarm, with w being the inertia factor, c1 and c2 the acceleration coefficients, Pbest the
best position of the particle obtained during the current iteration, and Gbest the best position
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obtained in the whole swarm at the current iteration. r1 and r2 are random numbers
uniformly distributed in the interval [0,1]. The flowchart in Figure 5 describes its algorithm.
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4.4. Proposed Method: P&O Based on Discrete Nonlinear PSO PID Controller (P&O PSO N-DPID)

A properly tuned discrete nonlinear PID (N-DPID) controller is essential to attaining
the system’s intended output response. The PSO algorithm is used in this study to optimally
tune the four critical parameters of the N-DPID controller, such as proportional gain (kp),
integral gain (kisss), derivative gain (kd), and the nonlinear factor (µ). In this instance, the
search space is four dimensions, and a particle represents each potential set of values for
the controller parameters, the values of which are changed by minimizing the Integral
Absolute Error (IAE) between the reference MPPT voltage (VPV) and the actual output
(Vre f ). The optimization process halts once the algorithm reaches a predefined maximum
number of iterations, ensuring the N-DPID controller operates at peak efficiency. As an
objective function, we use the integral absolute error (IAE) to minimize the error to zero,
which is defined by Equation (13):

IAE =
∫
|e(t)|dt (13)

The algorithm’s iteration stops once it reaches a predefined maximum number. The steps
for optimizing the parameters of the N-DPID controller using the PSO algorithm are explained
in the flowchart in Figure 6. The flowchart begins with the initialization of particles repre-
senting different parameter sets in a four-dimensional space. These particles then iteratively
move towards the optimal solution based on their position and velocity updates. The figure
highlights critical stages, including the evaluation of the cost function (IAE) and the selection
of the best particle position, leading to the optimal tuning of the N-DPID controller parameters.
To improve clarity, the figure now includes labels and numerical values at each step to better
illustrate the algorithm’s progression.
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5. Results

The simulations, achieved using Matlab/Simulink software, demonstrate a significant
enhancement in MPPT performance when applying the proposed P&O PSO N-DPID
controller compared to conventional methods. Table 1 provides the nomenclature of the
standard PV system associated with ERA SOLAR ESPMC-205.

Table 1. Keys parameters of the PV system.

Photovoltaic Generator (ERA SOLAR ESPMC-205) Boost Converter

Impp 14.34 A Cin 100 µF
Vmpp 57.2 V L 2 mH
Vmpp 820.2 W Cout 500 µF

R 25 Ω

5.1. Convergence of PSO with DPID and N-DPID

The optimal gains parameters obtained for the different controllers are reported in Table 2.

Table 2. Optimal controller gains.

Algorithm kp ki kd µ

P&O PSO DPID 5.2742 2.7383 0.4963 -
P&O PSO N-DPID 7. 9703 3.899 0.4977 0.1656

Figures 7 and 8 show the convergences of two cost functions of the P&O PSO DPID
and P&O PSO N-DPID, respectively. One can observe that the error becomes too small and
close to zero from the fiftieth iteration for the DPID controller corresponding to the fiftieth
generation with a cost function value of 0.1, compared to the N-DPID controller, which
achieves a cost function value of 0.0494 by the forty-third iteration. These annotations
clearly illustrate the superior convergence speed and accuracy of the N-DPID controller,
respectively. This result highlights the great interest and the importance of the nonlinearity
in the discrete PID controllers.
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5.2. Effect of Varying Environmental Conditions on PPM

Figures 9 and 10 show, respectively, the irradiation variation at constant temperature
(T = 25 ◦C) and the temperature variation at constant irradiation (1000 W\m2).
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5.2.1. Case of Irradiation

Figure 11a represents, respectively, the increase in the irradiation and, consequently,
the MPP of the three methods used and depicts the evolution of power according to
irradiation. We can observe that the power curve follows the irradiation curve, which is
due to the effect of sunlight on the solar panel’s output current. It may also determine
how the nonlinear controller affects the performance of the MPPT P&O algorithm. More
specifically, the three sections, A, B, and C, depict the diverse responses of the system when
exposed to temperature fluctuation.
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Figure 11b–d show the time evolution of the MPP in the A, B, and C areas. Figure 11b shows
a response time of 0.016 s with the P&O N-DPID controller, compared to 0.04 s with the traditional
P&O method, clearly annotating the quantitative improvements achieved by the proposed
method. Figure 11c demonstrates better stability with the P&O N-DPID controller than with
the traditional P&O method. Figure 11d compares the power output during varying irradiation
levels across different methods, where the P&O N-DPID method achieves a steady power output
of 820.2 W with minimal fluctuations, in contrast to the significant oscillations observed with
the traditional P&O method. It is worth underlining it because, briefly, we can notice the impact
and interest of nonlinearity on improving P&O performances. This is shown in the oscillations
around the MPP, which are significantly decreased when utilizing the ideal gains. At first look,
one could believe there is no significant difference between the P&O PSO DPID and the P&O
PSO N-DPID. Still, when we consider the impact of the degradation of oscillations around the
MPP on commonly used loads, we notice that the designed method P&O PSO N-DPID allows
us to significantly reduce its oscillations, highlighting the efficiency and accuracy of the latter,
which is one of our objectives.

5.2.2. Case of the Temperature

Figure 12 shows power development as a function of temperature variation and
highlights the importance of the optimal gains for the PID and the efficiency of the designed
scheme. Similar behaviors are observed, just like in the previous case. The developed
scheme shows a superior convergence speed and a decrease in the oscillations concerning
the P&O and the P&O PSO DPID. Given these findings, we may conclude that the suggested
strategy considerably enhances the efficacy of the P&O method.
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5.3. Performance Comparisons with Other Standard Algorithms

The performance of a good search for the maximum power point is characterized
by the overshoot, the response time, the ripples around it, and the efficiency. These
performances are calculated for an irradiation level of 1000 W/m2. Table 3 shows the
performance of the P&O, P&O PSO N-DPID, and P&O PSO DPID MPPT controllers.

Table 3. Performance of P&O, P&O PSO N-DPID, and P&O PSO DPID.

Performance P&O P&O DPID Proposed Method

Response time (s) 0.04 0.025 0.016
ripples 0.024 0.0076 0.007

Performance (%) 96.45 98.75 99.03
Cost function - 0.1 0.0494

The N-DPID controller shows more advantages by including a reduced response
time of 0.016 s, a ripple magnitude of 0.0071, and an overall efficiency of 99.03%. These
quantitative improvements are clearly marked, highlighting the superior performance of
the proposed method. It is clearly observed that the proposed method outperforms the
P&O and P&O PSO DPID methods. As demonstrated in Table 3, the proposed controller
significantly reduces oscillations around the MPP, achieves a faster response time, and
improves overall efficiency. These enhancements confirm the effectiveness of the N-DPID
controller, particularly in adapting to rapid changes in environmental conditions. The im-
provements in response time and oscillation reduction are more substantial than those
observed with the traditional methods, making the proposed approach highly effective for
power transmission.

Table 4 presents a summary of performance comparison between the proposed method
and other state-of-the-art techniques in the literature that have been interested in improving
the performance of the MPPT P&O controller.

Table 4. Comparison of the different MPPT techniques.

Authors MPPP Methods Response Time (s) Efficiency (%) Ripples Overshoot (s)

De Brito et al., 2012 [41] P&O-PI 0.0220 98.55 high -
Zainuri et al., 2014 [23] P&O-Fuzzy 0.02 95 0.02 -

Anto et al., 2016 [33] P&O-PID 0.38 100 0.0181 0.51
Bouselham et al., 2017 [42] P&O-global scanning 0.05 99.1 - -

Proposed method P&O PSO N-DPID 0.016 99.03 0.0071 0

It can also be seen that the method proposed in this work presents better performances
than the methods encountered in the literature, such as the Refs. [17,23,42] and the refer-
ences therein. It is worth noting that some perform better compared to our strategy, but
their response times are still critical. A similar observation is made for the ripple rate and
the overshoot [41], which clearly shows that the proposed method presents a compromise
between speed, accuracy, and performance.

6. Conclusions

This study introduced a novel approach for MPP tracking based on the improved P&O
performance in photovoltaic systems. The main contribution pertains to using a discrete
nonlinear intelligent PID controller optimized by a simple and well-known algorithm, the
PSO. The results obtained with varying weather conditions based on the PSO N-DPID
and P&O PSO DPID show that these strategies are accurate, efficient, fast, and easy to
implement. The role and importance of nonlinearity in discrete PID controllers for accuracy
and speed in finding the maximum power point are explicitly pointed out. Although the
proposed method is a compromise between accuracy, speed, and simplicity, it should be
noted that some conditions have not been taken into account in this work, such as partially
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shaded plates, which remain a problem of concern; other optimization algorithms could be
used other than the PSO to compare them to see the best result.
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