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Abstract: In this paper, using a scaling symmetry, it is shown how to compute polynomial conserva-
tion laws, generalized symmetries, recursion operators, Lax pairs, and bilinear forms of polynomial
nonlinear partial differential equations, thereby establishing their complete integrability. The Gardner
equation is chosen as the key example, as it comprises both the Korteweg–de Vries and modified
Korteweg–de Vries equations. The Gardner and Miura transformations, which connect these equa-
tions, are also computed using the concept of scaling homogeneity. Exact solitary wave solutions
and solitons of the Gardner equation are derived using Hirota’s method and other direct methods.
The nature of these solutions depends on the sign of the cubic term in the Gardner equation and the
underlying mKdV equation. It is shown that flat (table-top) waves of large amplitude only occur
when the sign of the cubic nonlinearity is negative (defocusing case), whereas the focusing Gardner
equation has standard elastically colliding solitons. This paper’s aim is to provide a review of the
integrability properties and solutions of the Gardner equation and to illustrate the applicability of the
scaling symmetry approach. The methods and algorithms used in this paper have been implemented
in Mathematica, but can be adapted for major computer algebra systems.

Keywords: Gardner equation; scaling symmetry; integrability; solitary waves; solitons; symbolic
computation

PACS: Primary 35Q51, 35Q53; Secondary 37K10, 37K40

1. Introduction

Several physically important nonlinear partial differential equations (PDEs) are com-
pletely integrable by the inverse scattering transform (IST) method, which can be viewed
as the nonlinear analog of the Fourier transform method (see [1–3] and references therein).
Arguably, the most well-known completely integrable PDEs are the Korteweg–de Vries
(KdV), modified KdV (mKdV), nonlinear Schrödinger, and sine-Gordon equations. They
model wave phenomena in a wide range of applications in modern theoretical and mathe-
matical physics, including fluid dynamics, nonlinear optics, and plasma physics, to name
a few.

“Complete integrability” is an elusive term [4], but completely integrable equations
have remarkable properties and a rich mathematical structure. For instance, they possess
infinitely many conservation laws and high-order symmetries. They admit a Lax pair
where the nonlinear PDE is replaced by a pair of linear equations whose compatibility
only holds on solutions of the nonlinear PDE. They can be viewed as infinite dimensional
Hamiltonian systems with two or three different Hamiltonians. By applying a change of
dependent variable, completely integrable PDEs can be transformed into equations that are
homogeneous of degree (second or higher) in that new variable and be recast in bilinear
form in terms of Hirota operators [5,6]. Most importantly, completely integrable PDEs
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have solitary waves solutions that maintain their shape and speed while propagating at a
constant velocity, and soliton solutions made up of such solitary waves that collide elastically.
Nowadays, the terms solitary wave and soliton are used interchangeably, without reference
to the elastic scattering property.

To obtain an initial idea about the possible complete integrability of a PDE, one should
check if the equation has the Painlevé property [1,2], meaning that its solutions have no
worse singularities than movable poles. To do so, one runs the so-called Painlevé test [7],
which is algorithmic and can be performed with our Mathematica code PainleveTest.m [8].
If a PDE passes the Painlevé test, there is no guarantee that it is completely integrable, but
it is more likely than not to have special properties, viz., conservation laws, generalized
symmetries, and so on.

In this paper we use the concept of scaling homogeneity to symbolically compute
conserved densities, fluxes, higher-order symmetries, Lax pairs, bilinear forms, and Miura-
type transformations for polynomial systems of PDEs, thereby testing their complete
integrability in a variety of ways. To keep the paper accessible to non-experts, we only cover
PDEs in (1 + 1) dimensions, i.e., one space variable (x) in addition to time (t). To illustrate
the steps of the computations we focus on the Gardner equation, which comprises the KdV
and mKdV equations as special cases. Therefore, the results for these two important soliton
equations are obtained without extra effort. This paper’s purpose is to provide a review
of the integrability properties and solutions of the Gardner equation and illustrate the
applicability of the scaling symmetry approach for investigating the complete integrability
of polynomial nonlinear PDEs.

Scaling homogeneity is a feature common to many nonlinear PDEs, and it provides
an elegant way to find, e.g., densities and higher-order symmetries. Indeed, these scalar
quantities can be derived as linear combinations with undetermined (constant) coefficients
of scaling homogeneous polynomial terms in the dependent variables and their derivatives.
Since the defining equations for these quantities are linear, the method comes down to
solving linear systems for the undetermined coefficients.

For conservation laws, the time derivative of a candidate density must be the total
derivative of an unknown flux. To test this type of “exactness” we use the Euler operator
from the calculus of variations. An automated computation of the corresponding fluxes
requires integration by parts on the so-called jet space. In essence, one needs to integrate
expressions involving arbitrary functions. Unfortunately, computer algebra systems (CAS)
often fail at that task. To circumvent this shortcoming, we use the homotopy operator
from differential geometry, which reduces the problem to a one-dimensional integral with
respect to an auxiliary parameter.

The existence of a sufficiently large number of non-trivial densities suffices to establish
complete integrability of a given PDE. In most cases, the corresponding fluxes are not
needed. However, for some equations, e.g., the Kadomtsev–Petviashvili equation [1,2], it is
necessary to swap the independent variables to be able to rewrite the PDE as a system of
evolution equations. In doing so, the roles of density and flux become interchanged, and
that is why we also show the computation of the flux.

The computation of higher-order symmetries is performed with the same method-
ology without having to rely on the relationship between symmetries and conservation
laws, as expressed through Noether’s theorem. The scaling symmetry argument and the
method of undetermined coefficients also apply to recursion operators, which connect the
generalized symmetries. Of course, the recursion operator is hard to compute because it
involves total derivatives and anti-derivatives. Fortunately, the defining equation for the
recursion operator is linear, which again reduces the problem to solving a linear system. By
applying the recursion operator to a low-order generalized symmetry, one can generate all
higher-order symmetries one after another. Thus, the existence of a recursion operator pro-
vides proof that a nonlinear PDE is completely integrable. With the recursion operator, one
can build a hierarchy of completely integrable equations which have the same properties
as the original nonlinear PDE. For example, the well-known Lax equation [5,9], which is of
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fifth order in x, is the first higher-order generalized symmetry of the KdV equation [10].
When encountering a allegedly “new” nonlinear PDE of high-order in the literature, one
should verify that it does not belong to the hierarchy of symmetries of a well-studied PDE
of lower order.

The computation of Lax pairs based on scaling homogeneity is more challenging
because the defining equation is no longer linear, and thus the method of undetermined
coefficients leads to an algebraic system with quadratic terms. It is still quite straightforward
to solve; however, if parameters are present, finding the conditions of the parameters for
which solutions exist is substantially harder. The knowledge of a Lax pair is essential to
apply the IST, which allows one to solve the initial value problem for a nonlinear PDE and,
consequently, find solitary wave solutions and solitons. Obtaining a Lax pair is the first
step in the application of the IST and Riemann–Hilbert method to find soliton solutions.
Using the Lax pair one can also derive conservation laws and many other properties of the
nonlinear PDE.

The same thing happens when applying the scaling homogeneity method to compute
the Miura and Gardner transformations. Here, one has to solve quadratic systems for the
undetermined coefficients. The Miura transformation, which connects the KdV and mKdV
equations, had a profound impact on the discovery of conservation laws of both equations
and, in general, the early development of the notion of complete integrability of PDEs and
soliton theory.

To apply Hirota’s direct method for finding solitary waves and solitons, the given PDE
must be cast in bilinear form. Finding that bilinear representation is a non-trivial task which
requires some insight, experience, and often ingenuity as explained in [5], our scaling-
homogeneity approach is still helpful, but has its limitations— in particular, if finding a
bilinear representation requires splitting an expression into two parts in such a way that
each part can be written in bilinear form. This is exactly what must be conducted with
regard to the mKdV and Gardner equations and, as far as we know, there is no algorithmic
way to achieve this. Once the bilinear representation is found, special solutions, including
solitary waves and solitons, can be computed algorithmically.

As we will also show in Section 9, the Gardner equation can be transformed into
the mKdV equation via a Galilean transformation. Consequently, any time new solutions
of the mKdV equation are discovered, one obtains additional solutions to the Gardner
equation, and vice versa [11]. The search for new solutions, in particular for the defocusing
mKdV equation, is still an active area of research (see, e.g., refs. [12–15]). Over the last two
decades, our research team has designed and implemented fast algorithms [16–18] to test
the integrability of nonlinear PDEs based on the concept of scaling symmetry [9,10,19–23].
In addition, we have implemented a simplified version of Hirota’s method [5,24] and other
direct methods [25,26] to find exact solutions for nonlinear PDEs. As a matter of fact,
the computations in this paper have been largely performed with our software packages,
which are written in Mathematica syntax, but could be adapted for other computer algebra
systems such as Maple and REDUCE.

The paper is organized as follows. In Section 2 we introduce the Gardner equation
and mention some of its applications. As shown in Section 3, the Gardner equation passes
the Painlevé test, which indicates that the equation likely has many interesting properties.
In Section 4, we discuss the scaling symmetry of the Gardner equation, as well as the
KdV and mKdV equations. Section 5 is devoted to the computation of conservation
laws. Sections 6 and 7 cover the computation of generalized symmetries and the recursion
operator that connects them. In Section 8, we turn our attention to the computation of a
Lax pair for the Gardner equation. The derivation of a bilinear representation is covered
in Section 9. The computation of the Gardner transformation (connecting solutions of the
Gardner equation and KdV equations) is shown in Section 10.

With the important quantities of the Gardner equation being computed, we show in
Sections 11 and 12 how our results translate to the KdV and mKdV equations. Solitary
wave solutions and solitons are covered in Sections 13 and 14, where we show that the
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nature of the solutions of the Gardner and mKdV equations depends on the sign of the
cubic nonlinearity. A brief discussion of our software packages used in this study is given
in Section 15. Finally, in Section 16, we draw some conclusions and mention a few topics
for future work.

2. The Gardner Equation

The Gardner equation [27] is the nonlinear PDE

ut + αuux + βu2ux + u3x = 0, (1)

where u(x, t) is the dependent variable (or field) which is a function of space variable x and
time t. The subscripts denote partial derivatives, i.e., ut =

∂u
∂t , ux = ∂u

∂x , and u3x = ∂3u
∂x3 . The

parameters α and β are real numbers for which the values ±1 and ±6 are frequently used
in the literature.

The Gardner equation has the KdV and mKdV equations as special cases. There-
fore, (1) is sometimes called the combined or mixed KdV-mKdV equation. Indeed, for β = 0,
(1) reduces to the ubiquitous Korteweg–de Vries equation [28],

ut + αuux + u3x = 0, (2)

which models, e.g., shallow water waves [29], ion-acoustic waves in plasmas [1,2,30], and
many other nonlinear wave phenomena where solitons arise. When α = 0, (1) becomes the
mKdV equation [1,27],

ut + βu2ux + u3x = 0, (3)

which models internal ocean waves, electromagnetic surface waves, waves in plasmas, and
more [1].

Equation (1) appears for the first time in [31,32] in the context of the Miura transforma-
tion (see Section 10), which connects the mKdV and KdV equations. The Gardner equation
has a long history [27,33] and many applications [34] in fluid dynamics: in particular,
for modeling long internal water waves [35,36], the dynamics of undular bores [37], and
waves in multi-species plasma physics [38–41]. There is a wealth of information available
about the Gardner equation. The equation appears in most books about solitons and
integrability (see, e.g., ref. [29], which includes a list of soliton books).

Without loss of generality, we take α ≥ 0 in (1), because if α < 0, replacing u by −u
would make the coefficient of uux positive again. However, no discrete symmetries of x, t,
or u will flip the sign of the coefficient of u2ux, so the cases for positive and negative β will
have to be treated separately. Exact solutions of (1) with β > 0, called the focusing Gardner
equation, are quite different from these of the defocusing case, where β < 0.

We focus on (1) because it is a typical example of a scalar (1 + 1)-dimensional
evolution equation,

ut = F(x, t, u, ux, uxx, · · · , unx), (4)

of order n in x and first order in t, with n = 3 in (1). More importantly, many of the results
for (1) lead to the corresponding results for the KdV and mKdV equations by setting β = 0
or α = 0, respectively. Like the latter two equations, the Gardner equation is known to be
completely integrable for both signs of β, but the solutions are quite different for β > 0 and
β < 0. The latter case is the hardest to deal with. The solitary wave solutions and solitons
for the focusing Gardner equation follow from those of a focusing mKdV equation to
which the Gardner equation can be reduced. The so-called “table-top” or “flat-top” soliton,
corresponding to a large amplitude, only exists for the defocusing Gardner equation.

In some applications, the coefficients α and β are time dependent [35]. In that case,
(1) has only a couple of conservation laws (conservation of mass and wave action flux, see
Section 5) and is non-integrable. The treatment of (1) with varying coefficients is outside
the scope of this paper.
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3. Painlevé Analysis

In this Section we check if (1) has the Painlevé property. Performing the Painlevé test is
straightforward but usually involves lengthy computations best performed with a software
package such as PainleveTest.m [8]. In essence, one investigates a Laurent series solution
for (1),

u(x, t) = g(x, t)σ
∞

∑
k=0

uk(x, t)g(x, t)k, (5)

in which the coefficients uk(x, t) are analytic functions in a neighborhood of the singular
manifold g(x, t). Furthermore, g(x, t) = 0 determines the poles and g(x, t) is assumed to be
non-characteristic (i.e., gx(x, t) ̸= 0). The negative integer σ determines the leading order
term, u0 gσ, in (5). We summarize the main steps of the Painlevé test below; refer to [7]
for details.

Step 1: Compute the leading order term. To determine σ and u0, substitute u0 gσ into (1).
Balance the minimal power terms in g, namely, g3σ−1 and gσ−3, to get σ = −1. Next,
require that the leading terms (in g−4) vanish, yielding

u0 = ±
√
− 6

β gx if β < 0, or (6)

u0 = ±i
√

6
β gx if β > 0. (7)

Step 2: Compute the resonances. In this step, one determines which functions uk(x, t) in (5)
will remain arbitrary. That happens at specific values of k, called resonances, denoted by r.
To find the resonances, substitute u0 gσ + ur gσ+r, with σ = −1 and u0 given in (6) or (7)
into (1), and equate the coefficients of the dominant terms (in gr−4) that are linear in ur to
get the characteristic equation

(r − 4)(r − 3)(r + 1)urg3
x = 0. (8)

Since gx ̸= 0, the resonances are r1 = −1, r2 = 3, and r3 = 4. Resonance r1 = −1
corresponds to the arbitrariness of g.

Step 3: Check the compatibility conditions. To do so, substitute

u =
1
g

4

∑
k=0

uk gk, (9)

into (1) and verify that u1 and u2 can be unambiguously determined. Verify also that u3 and
u4 are indeed arbitrary functions, meaning that no compatibility conditions arise. For (1), one
readily determines the real functions,

u1 = − α

2β
± 1

2

√
− 6

β

(
gxx

gx

)
, (10)

u2 = ±
(

4βgxgt − α2g2
x − 6βg2

xx + 4βgxg3x

4β
√
−6β g3

x

)
, (11)

when β < 0 (and complex expressions when β > 0). At resonance r = 3, the compatibility
condition (arising as the coefficient of g−3),(

u2
0(α + 2βu1)− 6( (u0)xgx + u0gxx)

)
gx − βu2

0(u0)x = 0, (12)
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is identically satisfied upon substitution of (6) and (10). Likewise, a long but straightforward
computation shows that the compatibility condition at r = 4 (appearing at order g−2),(

u0u1(α + βu1) + βu2
0u2 + 3(u0)xx

)
gx + u0gt − u0(u0)x(α + 2βu1)

−βu2
0(u1)x + 3(u0)xgxx + u0g3x = 0, (13)

is identically satisfied upon substitution of (6), (10), and (11).
Thus, at least in the neighborhood of g(x, t) = 0, solution (9) is free of algebraic and

logarithmic movable branch points. Apart from possible essential singularities (which
the test is unable to detect), the movable singularities of its general solution are poles
determined by g(x, t) = 0. Note that (5) serves as a general solution because, as required by
the Cauchy–Kovalevskaya theorem, (1) is of order 3 in x and that number agrees with 3
arbitrary functions g(x, t), u3(x, t), and u4(x, t) in (5).

Moreover, notice that truncating the Laurent series at the constant level term yields an
auto-Bäcklund transformation,

u(x, t) = ±i
√

6
β

(
gx
g

)
+ u1(x, t) = ±i

√
6
β (ln g)x + u1(x, t), (14)

because for an arbitrary g(x, t), both u(x, t) and u1(x, t) must then be solutions of (1)
with β > 0. Setting u1(x, t) = 0 in (14) motivates the Hirota transformation discussed in
Section 9, where it is shown that only for β > 0 one can find soliton solutions of (1).

In conclusion, the Gardner equation passes the Painlevé test and, therefore, has the
Painlevé property, which is a good predictor that the equation has conservation laws,
generalized symmetries, and so on. The investigation and actual computation of these
quantities is based on a scaling symmetry of (1), which we will discuss next.

4. Scaling Symmetry

As stated, when β = 0, the Gardner equation reduces to the KdV Equation (2), which
is scaling homogeneous under the scaling (dilation) symmetry

(x, t, u) → (κ−1x, κ−3t, κ2u) = (x̃, t̃, ũ), (15)

where κ ̸= 0 is an arbitrary scaling parameter. Indeed, replacing (x, t, u) in the KdV
equation in terms of (x̃, t̃, ũ) yields

κ−5(ũt̃ + αũũx̃ + ũ3x̃) = 0. (16)

A fast way to compute (15) is to introduce the notions of weight, rank, and uniformity of
rank. The weight, W, of a variable is the exponent of κ that multiplies that variable. Thus,
based on (15), W(x) = −1, W(t) = −3, and W(u) = 2. Equivalently, W( ∂

∂x ) = 1 and
W( ∂

∂t ) = 3. The rank of a monomial is defined as the total weight of the monomial. For
example, αuux has rank 5 since the parameter α has no weight. An expression (or equation)
is uniform in rank if all its monomial terms have equal rank.

Now, if (15) were not known yet, it could quickly be found by requiring that the KdV
equation is uniform in rank, yielding

W(u) + W(
∂

∂t
) = 2W(u) + W(

∂

∂x
) = W(u) + 3W(

∂

∂x
). (17)

Solving (17) gives W( ∂
∂t ) = 3W( ∂

∂x ) and W(u) = 2W( ∂
∂x ). Since κ is arbitrary, without loss

of generality one can set W( ∂
∂x ) = 1, resulting in W( ∂

∂t ) = 3 and W(u) = 2. Thus, requiring
uniformity in rank of a PDE allows one to compute the weights of the variables (and, hence,
the scaling symmetry) with linear algebra.
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Setting α = 0, the Gardner equation becomes the mKdV equation. Requiring unifor-
mity in rank readily yields W( ∂

∂t ) = 3 and W(u) = 1. Hence, the mKdV equation is scaling
homogeneous under the transformation

(x, t, u) → (κ−1x, κ−3t, κu). (18)

Because W(u) is different for the KdV and mKdV equations, the Gardner equation (1) will
not be uniform in rank unless we use a trick. We will let the parameter α scale with some
power of κ. Doing so, we must solve

W(u) + W(
∂

∂t
) = W(α) + 2W(u) + W(

∂

∂x
) = 3W(u) + W(

∂

∂x
) = W(u) + 3W(

∂

∂x
), (19)

yielding

W(
∂

∂x
) = 1, W(

∂

∂t
) = 3, W(u) = 1, W(α) = 1, (20)

which expresses that (1) has the scaling symmetry

(x, t, u, α) → (κ−1x, κ−3t, κu, κα). (21)

Starting with conservation laws, in what follows, we will use scaling symmetry to compute
important quantities related to (1), thereby establishing its complete integrability.

5. Conservation Laws

A conservation law of (4) is an equation of the form

Dt ρ + Dx J =̇ 0, (22)

where the dot means that the equality should only hold on solutions u(x, t) of (4). ρ is
called a conserved density (or charge), and J is the corresponding flux (or current).

The scalar functions ρ and J are functions of u and its partial derivatives with respect
to x. All subsequent computations are performed on the jet space, which means that u and
its partial derivatives with respect to x are treated as independent, alongside all monomials
such as u3, u2

x, etc. The density and flux could also explicitly depend on x and t, but we
will not cover such exceptional cases.

In (22), Dt is the total derivative with respect to t, defined by

Dt ρ =
∂ρ

∂t
+ ρ′[ut] =

∂ρ

∂t
+

M

∑
k=0

∂ρ

∂ukx
Dk

xut, (23)

where ρ′[ut] is the Fréchet derivative of ρ in the direction of ut, and M is the highest order
of ρ in x. In practice, one simply applies the chain rule for differentiation with respect to t,
treating u, ux, uxx, etc., as independent functions.

Likewise, Dx is the total derivative with respect to x,

Dx J =
∂J
∂x

+
N

∑
k=0

∂J
∂ukx

Dx(ukx) =
∂J
∂x

+
N

∑
k=0

∂J
∂ukx

u(k+1)x, (24)

where N is the order of J.
Since (22) is linear in the densities (and fluxes), a linear combination of densities with

constant coefficients is still a density. The matching flux would, of course, be a linear
combination of the corresponding fluxes with the same constant coefficients.
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Returning to (1), one can readily verify that

Dt(u) + Dx(
1
2 αu2 + 1

3 βu3 + uxx) = 0, (25)

Dt(u2) + Dx(
2
3 αu3 + 1

2 βu4 − u2
x + 2uuxx) = 0, (26)

Dt(αu3 + 1
2 βu4 − 3u2

x) + Dx

(
3
4 α2u4 + αβu5 + 1

3 β2u6 − 6αuu2
x − 6βu2u2

x

+3αu2uxx + 2βu3uxx + 3u2
xx − 6uxu3x

)
= 0. (27)

Indeed, (25) is (1) written as a conservation law. Next, (26) straightforwardly follows
after multiplication of (1) by 2u and a bit of integration by parts. Clearly, (27) is far
less obvious and will require a computational strategy [9,23] and the use of codes like
InvariantsSymmetries.m [17] or ConservationLawsMD.m [18].

Notice that the above densities are uniform in rank. Indeed, ρ(1) = u has rank 1,
ρ(2) = u2 has rank 2, and ρ(3) is of rank 4. The corresponding fluxes are also uniform, with
ranks 3, 4, and 6. As a matter of fact, the entire conservation laws themselves are uniform
in rank, with ranks 4, 5, and 7, respectively. This comes as no surprise because the defining
Equation (22) is only non-trivial if evaluated on solutions of the PDE, and therefore the
densities, fluxes, and conservation laws “inherit” (or adopt) the scaling homogeneity of the
given PDE (and all its other continuous and discrete symmetries, for that matter).

It turns out that the list of conservation laws of (1) continues ad infinitum. The Gardner
equation has infinitely many conservation laws, which is a clear indication that the PDE is
completely integrable.

Using the scaling symmetry (21), we will now show how to compute (27), which is the
shortest possible density of rank 4, since it is free of any terms that could be moved into
the flux.

Step 1: Construct a candidate density of rank 4 as follows: Make a list of all monomials in u
and α of rank 4 or less, i.e., {{u4, αu3, α2u2, α3u, α4}, {u3, αu2, α2u, α3}, {u2, αu, α2}, {u, α},
{1}}. For the construction of candidate densities, the constant terms α4, α3, . . . , 1 can be
removed. Then, for each monomial in that list, apply the correct number of x-derivatives so
that the resulting term has exactly rank 4. The terms in the first sublist need no derivatives.
Those in the second sublist need a single derivative. The next set of terms need two
derivatives, etc. For example, for the first element in the third sublist, D2

xu2 = 2u2
x + 2uuxx.

Obviously, if we carry out partial integration, the highest derivative term uuxx only differs
from u2

x by the x-derivative of 1
2 u2 and therefore can be ignored. Likewise, terms like u2ux,

αuux, α2ux, αuxx, and u3x can be neglected because they are x-derivatives of single-term
monomials ( 1

3 u3, 1
2 αu2, etc.). There is no need to put terms like uuxx, u2ux in the density

because they can be moved to the flux.
Gather the resulting monomials after stripping off numerical factors and remov-

ing scalar multiples of single-term densities of lower rank (with regard to (25) and (26)
these are α3u and α2u2). Finally, linearly combine the remaining terms with constant
coefficients, yielding

ρ = c1u4 + c2αu3 + c3u2
x, (28)

which is of first order in x (M = 1).

Step 2: Compute the undetermined coefficients. Using (23), first compute

Dt ρ = (4c1u3I + 3αc2u2I + 2c3uxDx)[ut] = (4c1u3 + 3αc2u2)ut + 2c3uxuxt, (29)

where D0
x = I is the identity operator. Replace ut and uxt = utx from (1) to get
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E = −
(
(4c1u3 + 3αc2u2)(αuux + βu2ux + u3x) + (2c3ux)(αuux + βu2ux + u3x)x

)
= −

(
α(4c1 + 3βc2)u4ux + 4βc1u5ux + 4c1u3u3x + 3α2c2u3ux + 3αc2u2u3x

+2αc3u3
x + 2αc3uuxuxx + 4βc3uu3

x + 2βc3u2uxuxx + 2c3uxu4x

)
. (30)

Next, find the constants c1, c2, and c3 so that E = Dtρ matches −Dx J for some flux J
(to be computed in Step 3 below). Mathematically, this means that E must be exact. The
Euler operator (variational derivative),

Lu(x) =
K

∑
k=0

(−Dx)
k ∂

∂ukx
=

∂

∂u
− Dx

∂

∂ux
+ D2

x
∂

∂uxx
− D3

x
∂

∂u3x
+ D4

x
∂

∂u4x
+ . . . , (31)

allows one to test exactness [21–23,42], where K is the order of the expression the Euler
operator is applied to. Therefore, K = 4 for E in (30). Consequently, (31) will terminate after
five terms. E will be exact if Lu(x)E ≡ 0 on the jet space (treating u, ux, uxx, etc., and also
all monomials in such variables as independent). The computation of the terms in (31)
involves nothing more than partial differentiations followed by (total) differentiations with
respect to x. Of a total of 30 terms (not listed) generated, many terms are canceled, and one
is left with

Lu(x)E = −4(6c1 + βc3)(u3
x + 3uuxuxx)− 6α(3c2 + c3)uxuxx, (32)

which must vanish identically, yielding the linear system 6c1 + βc3 = 0 and 3c2 + c3 = 0
with solution c1 = 1

2 β, c2 = 1, c3 = −3. Substitute these constants into (28) to obtain

ρ(3) = αu3 + 1
2 βu4 − 3u2

x, (33)

the same expression as in (27). If one were only interested in the density, the computation
would finish here. To continue with the computation of the flux (in the next step), substitute
the constants into (30), yielding

E = −
(

5αβu4ux + 2β2u5ux + 2βu3u3x + 3α2u3ux + 3αu2u3x

−6αu3
x − 12βuu3

x − 6αuuxuxx − 6βu2uxuxx − 6uxu4x

)
. (34)

Step 3: Compute the flux. Since Dx J(3) = −Dtρ
(3) = −E, to get J(3) one must integrate E

with respect to x and reverse the sign. There is a tool from differential geometry, called the
homotopy operator [43] p. 372, to carry out integration by parts on the jet space. As will be
shown below, application of the homotopy operator reduces the integration on the jet space
to a standard one-dimensional integration with respect to an auxiliary variable which will
be denoted by λ.

The homotopy operator for variable u(x), acting on a exact expression E of order K, is
given [21–23,42,44] by

Hu(x)E =
∫ 1

0
(IuE)[λu]

dλ

λ
, (35)

with integrand
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IuE =
K

∑
k=1

(
k−1

∑
i=0

uix(−Dx)
k−(i+1)

)
∂E

∂ukx

= (uI)(
∂E
∂ux

) + (uxI − uDx)(
∂E

∂uxx
) + (uxxI − uxDx + uD2

x)(
∂E

∂u3x
)

+(u3xI − uxxDx + uxD2
x − uD3

x)(
∂E

∂u4x
) + . . . . (36)

In (35), (IuE)[λu] means that once IuE is computed one must replace u by λu, ux by λux,
uxx by λuxx, etc. Use (34), to get

IuE = (uI)(−5αβu4 − 2β2u5 − 3α2u3 + 18αu2
x + 36βuu2

x + 6αuuxx + 6βu2uxx + 6u4x)

+(uxI − uDx)(6αuux + 6βu2ux) + (uxxI − uxDx + uD2
x)(−3αu2 − 2βu3)

+(u3xI − uxxDx + uxD2
x − uD3

x)(6ux)

= −
(

3α2u4 + 5αβu5 + 2β2u6 − 18αuu2
x − 24βu2u2

x + 9αu2uxx + 8βu3uxx

+6u2
xx − 12uxu3x

)
, (37)

which already has the terms of J(3), but still with incorrect coefficients (and the opposite
sign). Finally, using (35),

J(3) = −Hu(x)(E) = −
∫ 1

0
(Iu(E))[λu]

dλ

λ

=
∫ 1

0

(
3α2λ3u4 + 5αβλ4u5 + 2β2λ5u6 − 18αλ2uu2

x − 24βλ3u2u2
x

+9αλ2u2uxx + 8βλ3u3uxx + 6λu2
xx − 12λuxu3x

)
dλ

= 3
4 α2u4 + αβu5 + 1

3 β2u6 − 6αuu2
x − 6βu2u2

x + 3αu2uxx + 2βu3uxx

+3u2
xx − 6uxu3x, (38)

which is exactly the flux in (27).
We close this section with a remark about the use of conserved densities and constants

of motion. If J vanishes at infinity (because u and its x-derivatives decay to zero), then
integration of (22) with respect to x yields

d
dt

∫ ∞

−∞
ρ dx = 0. (39)

Hence,

P =
∫ ∞

−∞
ρ dx (40)

is constant in time and often referred to as a conserved quantity or constant of motion.
Depending on the physical setting, the first few constants of motion express conservation
of mass, momentum, and energy. Preserving these types of quantities plays an important
role in testing the accuracy of numerical integrators. For example, some symmetric time-
stepping methods [45] and explicit finite-difference schemes [46,47] preserve two of these
three conserved quantities of low degree, while the more general symplectic integrators
preserve the Hamiltonian structure [48,49]. The reader is referred to, e.g., [50–53] for an
in-depth discussion of this subject.

6. Generalized Symmetries

A second criterion to establish the complete integrability of (1) is to show that the PDE
has infinitely many generalized (higher-order) symmetries. As we will see, the computation
of a hierarchy of such symmetries [10] is algorithmic and easier than for conservation laws.
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A scalar function G(x, t, u, ux, uxx, . . . , umx) is called a generalized symmetry of (4) if and
only if it leaves (4) invariant under the replacement u → u + ϵG within order ϵ, that is,

Dt(u + ϵG) =̇ F(u + ϵG) (41)

must hold up to order ϵ on the solutions of (4). Consequently, G must satisfy the
linearized equation

DtG =
∂G
∂t

+ F′[G], (42)

where F′ is the Fréchet derivative of F in the direction of G:

F′[G] =
∂

∂ϵ
F(u + ϵG)|ϵ=0 (43)

=
n

∑
k=0

∂F
∂ukx

Dk
xG =

∂F
∂u

I G +
∂F
∂ux

DxG +
∂F

∂uxx
D2

xG +
∂F

∂u3x
D3

xG + . . . , (44)

where n is the (highest) order of F. In (41) and (43), one must not only replace u by u + ϵG,
but also ux by ux + ϵDxG, uxx by uxx + ϵD2

xG, etc. As before, I is the identity operator. The
total derivative operators, Dt and Dx, were defined in (23) and (24), respectively. Since the
defining Equation (42) is evaluated on solutions of the PDE, the higher-order symmetries
inherit the scaling homogeneity of (4).

As we will show, (1) has infinitely many generalized symmetries, starting with

G(1) = ux, (45)

G(2) = αuux + βu2ux + u3x, (46)

G(3) = 5
6 α2u2ux +

5
3 αβu3ux +

5
6 β2u4ux +

5
3 βu3

x +
10
3 αuxuxx +

20
3 βuuxuxx

+ 5
3 αuu3x +

5
3 βu2u3x + u5x. (47)

With regard to the weights in (20), the above symmetries are of ranks 2, 4, and 6, respectively.
Except for G(1), each of these symmetries leads to a completely integrable nonlinear

PDE, ut + G(j) = 0, j = 2, 3, . . ., where the weight of t increases as j increases. Notice that
ut + G(2) = 0 corresponds to (1) itself.

Although the computation of symmetries is algorithmic [10] and technically simpler
than for densities, it still requires the computation of a plethora of terms, and is best handled
with symbolic software such as InvariantsSymmetries.m [10]. As an example, we show
how to compute G(3) of rank 6.

Step 1: Construct a candidate symmetry of rank 6 as follows: List all monomials in u
and α of rank 6 or less, i.e., {{u6, αu5, α2u4, α3u3, α4u2, α5u}, {u5, . . . , α4u}, {u4, . . . , α3u},
{u3, αu2, α2u}, {u2, αu}, {u}}, without the constant terms α6, α5, . . . , α, 1.

Then, apply the correct number of x-derivatives to the monomials in each of the six
sublists so that the resulting terms have exactly rank 6. The elements in the first sublist need
no derivatives. Those in the second sublist need a single derivative, etc. For example, for the
first element in the fourth sublist, compute ∂3u3

∂x3 = 6u3
x + 18uuxuxx + 3u2u3x. Do this for

each element in all sublists and gather the resulting monomials after stripping off numerical
factors. To avoid lower-rank symmetries being recomputed, remove scalar multiples of
single-term symmetries of lower rank, as well as scalar multiples of the highest-derivative
term in multiple-term symmetries of lower rank. Thus, with regard to (45) and (46), the
monomials α4ux and α2u3x can be removed. Finally, linearly combine the remaining terms
with constant coefficients, yielding
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G = c1u6 + αc2u5 + α2c3u4 + α3c4u3 + α4c5u2 + α5c6u + c7u4ux + αc8u3ux

+α2c9u2ux + α3c10uux + c11u2u2
x + c12u3uxx + αc13uu2

x + αc14u2uxx + α2c15u2
x

+α2c16uuxx + α3c17uxx + c18u3
x + c19uuxuxx + c20u2u3x + αc21uxuxx

+αc22uu3x + c23u2
xx + c24uxu3x + c25uu4x + αc26u4x + c27u5x (48)

which is of fifth order (m = 5).

Step 2: Find the undetermined coefficients. Compute DtG and use (4) to remove ut, uxt, etc.
This produces an expression with 176 terms (not listed). Next, compute (44) using

F = −(αuux + βu2ux + u3x) (49)

and G from (48), yielding 193 terms (not listed). Then, DtG − F′[G], which has 138 terms,
must vanish identically on the jet space, yielding a linear system of 20 equations for the
nine nonzero coefficients (c7, c8, c9, c18 through c22, and c27):

2(3c20 − 5βc27) = 0, α(3c22 − 5c27) = 0,
...

3α(12c8 − c19 − 2βc21 − 4βc22) = 0, 6(3c18 + 2c19 + c20 − 20βc27) = 0. (50)

For brevity, we have shown only a couple of the shortest equations (coming from uuxu5x and
uxu5x, respectively) and two of the longest equations (coming from uu2

xuxx and uxuxxu3x,
respectively). The 18 coefficients c1 through c6, c10 through c17, and c23 through c26 are all
zero. Solving the system yields

c7 = 5
6 β2c27, c8 = 5

3 βc27, c9 = 5
6 c27, c18 = 5

3 βc27, c19 = 20
3 βc27,

c20 = 5
3 βc27, c21 = 10

3 c27, c22 = 5
3 c27. (51)

Set c27 = 1 and substitute (51) into (48) to obtain

G = 5
6 α2u2ux +

5
3 αβu3ux +

5
6 β2u4ux +

5
3 βu3

x +
10
3 αuxuxx +

20
3 βuuxuxx

+ 5
3 αuu3x +

5
3 βu2u3x + u5x. (52)

which matches G(3) in (47).
The code InvariantsSymmetries.m can also be used to verify if an evolution equation,

e.g., ut + G(3) = 0, with G(3) of rank 6, belongs to the hierarchy of completely integrable
equations of a PDE of lower order. When asked to compute a symmetry of rank 4 for
ut + G(3) = 0, the software returns G(2) in (46), confirming that ut + G(3) = 0 corresponds
to a generalized symmetry of ut + G(2) = 0.

7. Recursion Operator

To prove that there are infinitely many higher-order symmetries, we will compute
the recursion operator, which generates those symmetries sequentially, starting from the
lowest order symmetry G(1) in (45).

As expected, the recursion operator for the Gardner equation is a combination of
the well-known recursion operators for the KdV and mKdV equations (see p. 312 of [43]
and [54]):

R = D2
x +

2
3

(
αu + βu2

)
I + 1

3 αuxD−1
x + 2

3 βuxD−1
x (uI), (53)
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where D−1
x denotes the anti-derivative (or integral) operator. R connects the symmetries

sequentially (without gaps in this case; for examples with gaps, we refer to [55]):

G(j+1) = RG(j), j = 1, 2, . . . . (54)

For example,

Rux =
(

D2
x +

2
3

(
αu + βu2

)
I + 1

3 αuxD−1
x + 2

3 βuxD−1
x (uI)

)
ux

= u3x +
2
3

(
αu + βu2

)
ux +

1
3 αuxD−1

x (ux) +
2
3 βuxD−1

x ( 1
2 u2)x

= αuux + βu2ux + u3x, (55)

which is G(2), and

RG(2) =
(

D2
x+

2
3

(
αu+βu2

)
I+ 1

3 αuxD−1
x + 2

3 βuxD−1
x (uI)

)(
αuux+βu2ux+u3x

)
= u5x +

5
3 αuu3x +

5
3 βu2u3x + . . . + α

3 uxD−1
x

(
1
2 αu2 + 1

3 βu3 + uxx

)
x

+ 2
3 βuxD−1

x

(
1
3 αu3 + 1

4 βu4 + uuxx − 1
2 u2

x

)
x

= 5
6 α2u2ux +

5
3 αβu3ux +

5
6 β2u4ux +

5
3 βu3

x +
10
3 αuxuxx +

20
3 βuuxuxx

+ 5
3 αuu3x +

5
3 βu2u3x + u5x, (56)

which is G(3).
Even for scalar equations like (1), the computation of recursion operators [55] is lengthy,

but can be performed with specialized software such as PDERecursionOperator.m [16].
One can also use computer algebra to verify that R is a hereditary operator [56].

If R is a recursion operator for (4), then the Lie derivative [19,43,57,58] of R is zero,
yielding

DtR+ [R, F′] =
∂R
∂t

+R′[F] +R ◦ F′ − F′ ◦ R =̇ 0, (57)

where [ , ] and ◦ denote the commutator and composition of operators, respectively. F′ is
the Fréchet derivative operator, defined as

F′ =
n

∑
k=0

∂F
∂ukx

Dk
x, (58)

where n is the order of F in (4). R′[F] is the Fréchet derivative of R in the direction of F.
For recursion operators of the form

R =
T

∑
j=1

Uj(u, ux, uxx, . . . , um1 x) Sj(Dx, D2
x, . . . , D−1

x ) (Vj(u, ux, uxx, . . . , um2 x) I), (59)

where T is the total number of terms in R, and m1 and m2 are the orders of U and V,
respectively, one has

R′[F] =
m1

∑
j=0

(Dj
xF)

∂Uj

∂ujx
Sj (Vj I) +

m2

∑
j=0

Uj Sj

(
(Dj

xF)
∂Vj

∂ujx
I

)
. (60)

With regard to (53), R is a linear integro-differential operator [59,60] which naturally splits
into two pieces [55,58,61],

R = R0 +R1, (61)

where R0 is a local differential operator and R1 is a non-local integral operator. R0
is a linear combination of monomials involving Dx, u, and parameters with weight (if
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applicable) so that each monomial has the correct rank. Note also that Dx will always be
“propagated” to the right in R0. For example,

D2
x(uI) = Dx(uxI + uDx) = uxxI + 2uxDx + uD2

x. (62)

Based on the theory of recursion operators, R1 is a linear combination with constant
coefficients of terms of the form

G(i)D−1
x Lu(ρ

(j)), (63)

where G(i) is a symmetry and Lu(ρ(j)) is a cosymmetry (Euler operator applied to a density
ρ(j)), selected such that R1 has the correct rank [58,62]. To standardize the form of R1, one
propagates Dx to the left. For example, D−1

x uxDx = uxI − D−1
x uxxI. The local and non-local

operators are then added to obtain a candidate recursion operator.
We will now show how (53) is computed. Since the ranks G(1) and G(2) (as well as

G(2) and G(3)) differ by 2, R must have rank 2. Based on (20), W(D−1
x ) = −1, and one can

readily verify that all the terms in (53) have rank 2.

Step 1: Compute the candidate recursion operator. Using (20), list all monomials in
Dx, u, and α of rank 2 or less, i.e., {{D2

x, uDx, αDx, u2I, αuI}, {Dx, uI}}, where the trivial
terms αI and α2I have been removed. Apply the correct number of x-derivatives to the
monomials in each of the two sublists to assure that each term has rank 2. No action is
needed on the first sublist. The elements in the second sublist need a single derivative,
yielding {D2

x, uxI, uDx}. After stripping off numerical factors and removing duplicates,
linearly combine the resulting monomials with constant coefficients to obtain a candidate
local operator

R0 = c1D2
x + c2uDx + αc3Dx + c4u2I + αc5uI + c6uxI. (64)

Using symmetry G(1) = ux and densities ρ(1) = u and ρ(2) = u2 (all of low rank), compute
Luρ(1) = 1 and Luρ(2) = 2u. Then, with terms of type (63), make the candidate non-local
operator

R1 = αc7uxD−1
x + c8uxD−1

x (uI), (65)

so that each term has rank 2. Add both pieces to get the candidate recursion operator

R = c1D2
x + (c2u + αc3)Dx + (c4u2 + αc5u + c6ux)I + αc7uxD−1

x + c8uxD−1
x (uI). (66)

Step 2: Compute the undetermined coefficients. Separately compute all the pieces in (57),
beginning with

DtR = c2utDx + (2c4uut + αc5ut + c6uxt)I + αc7uxtD−1
x

+c8uxtD−1
x (uI) + c8uxD−1

x (ut I)

= c2FDx + (2c4uF + αc5F + c6DxF)I + αc7(DxF)D−1
x

+c8(DxF)D−1
x (uI) + c8uxD−1

x (F I), (67)

which can also be computed using (60). With F given in (49), insert

DxF = Fx = −(αu2
x + αuuxx + 2βuu2

x + βu2uxx + u4x) (68)

into (67), expand, and simplify. This yields an expression of 27 terms (not listed). Some
of the terms have Dx and I; others involve D−1

x , D−1
x (uI), D−1

x (uuxI), D−1
x (u2uxI), and

D−1
x (u3xI). Next, using (58), compute

F′ = −
(

D3
x + (α + βu)uDx + (α + 2βu)uxI

)
. (69)
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With (66) and (69), then compute

R ◦ F′ = −
((

c1D2
x + (c2u + αc3)Dx + (c4u2 + αc5u + c6ux)I + αc7uxD−1

x

+c8uxD−1
x (uI)

)
◦
(

D3
x + (α + βu)uDx + (α + 2βu)uxI

))
, (70)

using, for example,

D2
x(u

2Dx) = Dx(2uuxDx + u2D2
x)

= 2u2
xDx + 2uuxxDx + 4uuxD2

x + u2D3
x, (71)

to consistently move the operator Dx from the left to the right. To be able to match the
integral terms in (67) which are mentioned below (68), repeated integration by parts is
needed [55]. For example,

D−1
x (uD3

x) = uD2
x − D−1

x (uxD2
x)

= uD2
x − uxDx + D−1

x (uxxDx)

= uD2
x − uxDx + uxxI − D−1

x (u3xI), (72)

converts the integral D−1
x (uD3

x) into D−1
x (u3xI) by moving the Dx operator under the D−1

x
operator from the right to the left. After integration by parts, R ◦ F′ has 58 terms (not
listed). Next, compute

F′ ◦ R = −
((

D3
x + (α + βu)uDx + (α + 2βu)uxI

)
◦
(

c1D2
x + (c2u + αc3)Dx

+(c4u2 + αc5u + c6ux)I + αc7uxD−1
x + c8uxD−1

x (uI)
))

. (73)

To move the operator Dx to the right, use, for example,

D3
x

(
uxD−1

x (uI)
)

= D2
x

(
uxxD−1

x (uI) + uuxI
)

= Dx

(
u3xD−1

x (uI) + 2uuxxI + u2
xI + uuxDx

)
= u4xD−1

x (uI) +4uxuxxI +3uu3xI +3uuxxDx +2u2
xDx +uuxD2

x, (74)

and similar formulas (expressed in a more general form in [55]). The expanded expression
for F′ ◦ R has 73 terms. Substitute the simplified expressions for (67), (70), and (73)
into (57) and require that the resulting expression (which has 36 terms) vanishes identically,
i.e., all monomials in u, ux, . . . , I, Dx, D2

x, . . . , should be treated as independent. This yields
c2 = c3 = c6 = 0 and a linear system,

2(3c4 − 2βc1) = 0, α(3c5 − 2c1) = 0, α(3c7 − c1) = 0, 3c8 − 2βc1 = 0,

3α(c7 + c5 − c1) = 0, 3(c8 + 2c4 − 2βc1) = 0, (75)

involving the remaining nonzero constants. Solve the system to get

c4 = 2
3 βc1, c5 = 2

3 c1, c7 = 1
3 c1, c8 = 2

3 βc1. (76)

Finally, set c1 = 1 and substitute (76) into (66), yielding

R = D2
x +

2
3

(
αu + βu2

)
I + 1

3 αuxD−1
x + 2

3 βuxD−1
x (uI), (77)

which matches R in (53).
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8. Lax Pair

Another way to prove the complete integrability of a nonlinear PDE of type (4) is to
construct a Lax pair consisting of two linear PDEs in an auxiliary function whose compati-
bility requires that the original PDE is satisfied.

There are two flavors of Lax pairs. One is an operator formulation where the Lax pair
consists of a pair of differential operators which leads to a higher order linear equation
involving an auxiliary function. Alternatively, in the matrix formulation, the Lax pair is a
set of two matrices satisfying a system of equations of first order in x and t, respectively.
Only Lax pairs in operator form will be covered in this section. The reader is referred to the
literature [1,2,63] for the matrix formalism (also called the zero curvature representation).

Finding a Lax pair in operator form is a nontrivial task and requires an educated guess
about the order of the differential operators. But once the order is selected, one can take
advantage of the scaling symmetry of the given PDE to construct a candidate for each
operator because they inherit that scaling symmetry. Here again, the defining equation for
a Lax pair is evaluated on solutions of the given PDE which supports that claim.

Using the KdV equation as prime example, Lax [64] showed that a completely inte-
grable nonlinear PDE has an associated system of linear PDEs involving a pair of linear
differential operators (L, M) and an auxiliary function ψ(x, t),

Lψ = λψ, ψt = Mψ, (78)

where L and M are expressed in powers of Dx with coefficients depending on u, ux, etc.,
and ψ is an eigenfunction of L corresponding to eigenvalue λ. To guarantee complete
integrability of (4), at least one non-trivial Lax pair (L, M) should exist, and the eigenvalue
should not change in time which makes the problem isospectral.

We will show below that a one-parameter family of Lax pairs of (1) is given by

L = D2
x + 2ϵu Dx +

1
6

(
(6ϵ2 + β)u2 + αu + (6ϵ ±

√
−6β)ux

)
I, (79)

M = −4D3
x − 12ϵu D2

x −
(
(12ϵ2 + β)u2 + αu + (12ϵ ±

√
−6β)ux

)
Dx

−
(

1
3 ϵ(12ϵ2 + 2β)u3 + 1

2 αϵu2 + (12ϵ2 + β ± ϵ
√
−6β)uux

+ 1
2 αux +

1
2 (6ϵ ±

√
−6β)uxx

)
I, (80)

where ϵ is any real or complex number (not necessarily small). Substituting L and M
into (78) yields

D2
xψ = −2ϵu Dxψ +

(
λ − (ϵ2 + 1

6 β)u2 − 1
6 αu − (ϵ ± 1

6

√
−6β)ux

)
ψ, (81)

Dtψ = −4D3
xψ − 12ϵu D2

xψ −
(
(12ϵ2 + β)u2 + αu + (12ϵ ±

√
−6β)ux

)
Dxψ

−
(

1
3 ϵ(12ϵ2 + 2β)u3 + 1

2 αϵu2 + (12ϵ2 + β ± ϵ
√
−6β)uux

+ 1
2 αux +

1
2 (6ϵ ±

√
−6β)uxx

)
ψ. (82)

The first equation is a Schrödinger-type equation for the arbitrary eigenfunction ψ with
eigenvalue λ and potential (ϵ2 + 1

6 β)u2 + 1
6 αu +(ϵ ± 1

6

√
−6β)ux. The second equation

describes the time evolution of the eigenfunction.
A lengthy computation shows that the compatibility condition for (81) and (82) can be

written as

DtD2
xψ − D2

xDtψ = 1
6

(
(6ϵ ±

√
−6β)Dx(ut + αuux + βu2ux + u3x)

+(α + 2(6ϵ2 + β)u)(ut + αuux + βu2ux + u3x)
)

ψ

+ 2ϵ(ut + αuux + βu2ux + u3x)Dxψ, (83)
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where (81) and (82) were used repeatedly to eliminate Dxtψ, Dtψ, D5
xψ, D4

xψ, D3
xψ, and

D2
xψ, in that order. From (83), it is clear that (81) and (82) will only be compatible on

solutions of (1).
The compatibility of the equations in (78) may be expressed directly in terms of the

operators L and M as follows

Dt(Lψ) = Ltψ + L(Dtψ) = λDtψ, (84)

where
Ltψ ≡ Dt(Lψ)−L(Dtψ). (85)

With (78), one has

Ltψ + L(Mψ) = λMψ = M(λψ) = M(Lψ). (86)

For a non-trivial Lax pair for (4) to exist, (86) should vanish only on solutions of (4). If (88) is
satisfied identically, i.e., without evaluation on solutions of the PDE, then the Lax operators
L and M are considered trivial). Rearranging the terms yields

(Lt + L ◦M−M◦L)ψ = (Lt + [L,M])ψ =̇ 0, (87)

or, expressed in operator form by suppressing the ψ,

Lt + [L,M] =̇O, (88)

where =̇ means that equality holds only on solutions of the original PDE (4). As before, [ , ]
is the commutator of the operators, and O is the zero operator. Equation (88) is called the
Lax equation. We now show how the Lax pair (L, M) can be computed using the method
discussed in [65].

Step 1: Construct a candidate for L and M. Since the KdV and mKdV equations are special
cases of (1), it makes sense to search for L of rank 2 and M of rank 3. To construct L, list
all monomials in Dx, u, and α of rank 2 or less, i.e., {{D2

x, uDx, αDx, u2I, αuI}, {Dx, uI}},
where the trivial terms αI and α2I have been removed. As explained in Section 7, apply Dx
to the elements in the second sublist and, as in (62), propagate Dx to the right, yielding
{D2

x, uxI, uDx}. After removing duplicates, linearly combine the monomials from both
sublists with constant coefficients to get a candidate for L:

L = D2
x + (c1u + αc2)Dx + (c3u2 + αc4u + c5ux) I, (89)

where the coefficient of D2
x has been set to one (for normalization).

To make a candidate for M, list all monomials in Dx, u, and α of rank 3 or less,
i.e., {{D3

x, uD2
x, αD2

x, u2Dx, αuDx, α2Dx, uxDx, u3I, αu2I, α2uI}, {D2
x, uDx, αDx, u2I, αuI},

{Dx, uI}}, where the trivial terms αI, α2I, and α3I have been removed. Apply Dx to the
elements in the second sublist, yielding {D3

x, uxDx, uD2
x, αD2

x, 2uuxI, u2Dx, αuxI, αuDx}.
Apply D2

x to the elements in the third sublist and use (62) to obtain {D3
x, uxxI, 2uxDx,

uD2
x}. After stripping off numerical factors and removing duplicates, linearly combine the

resulting monomials with constant coefficients to obtain a candidate for M:

M = c6D3
x + (c7u + αc8)D2

x + (c9u2 + αc10u + α2c11 + c12ux)Dx

+(c13u3 + αc14u2 + α2c15u + c16uux + αc17ux + c18uxx) I. (90)

Step 2: Compute the undetermined coefficients. First, compute

Lt = c1utDx + (2c3uut + αc4ut + c5uxt) I

= c1FDx + (2c3uF + αc4F + c5DxF) I, (91)
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which, after substituting F from (49) to replace ut and uxt, yields 14 terms. Next, compute

L ◦M =
(

D2
x + (c1u + αc2)Dx + (c3u2 + αc4u + c5ux) I

)
◦(

c6D3
x + (c7u + αc8)D2

x + (c9u2 + αc10u + α2c11 + c12ux)Dx

+(c13u3 + αc14u2 + α2c15u + c16uux + αc17ux + c18uxx) I
)

, (92)

which upon expansion has 125 terms, and

M◦L =
(

c6D3
x + (c7u + αc8)D2

x + (c9u2 + αc10u + α2c11 + c12ux)Dx

+(c13u3 + αc14u2 + α2c15u + c16uux + αc17ux + c18uxx) I
)
◦(

D2
x + (c1u + αc2)Dx + (c3u2 + αc4u + c5ux) I

)
, (93)

which after expansion has 126 terms.
Substitute (91)–(93) into (88). The resulting expression (with 105 terms) should be

identically equal to zero for any function ψ(x, t). Set the coefficients of ψ, ψx, and ψxx
equal to zero, and then set the coefficients of all monomials in u and its x-derivatives
separately equal to zero. This yields a nonlinear system of 24 equations for the undetermined
coefficients:

2c7 − 3c1c6 = 0, 4c9 − 6c3c6 − c1c7 = 0,
...

c12 + 2c18 − c1 − c1c6 − 3c5c6 = 0, α(c17 − c4 + c2c18 − c4c6 − c5c8) = 0. (94)

For brevity, we have shown only a couple of the shortest equations (coming from uxD3
x

and uuxD2
x, respectively), and two of the longest equations (coming from u3xDx and u3xI,

respectively). Since each equation has a mixture of linear and and nonlinear terms, several
solution branches occur. Mathematica’s Solve function returns five non-trivial solutions.
Three of these solutions lead to Lax pairs of lower order or degenerate Lax pairs which will
not be discussed. Instead, we focus on the two solutions that lead to Lax pairs that are useful
in, e.g., the application of the inverse scattering transform (IST) and the Riemann–Hilbert
methods to solve the Gardner equation. They have coefficients

c2 =
6c4 − 1

3c1
, c3 = 1

12 (3c2
1 + 2β), c5 = 1

6 (3c1 ±
√
−6β), c6 = −4, c7 = −6c1,

c9 = −(3c2
1 + β), c10 = c1c8 − 1, c11 =

(1 − 6c4)(1 − 6c4 − c1c8)

3c2
1

,

c12 = −(6c1 ±
√
−6β), c13 = − 1

6 c1(3c2
1 + 2β),

c14 = −
3c2

1 + 2β(1 − 6c4)− c1c8(3c2
1 + 2β)

12c1
,

c15 =
c4(c1c8 + 6c4 − 1)

c1
, c16 = − 1

2 (6c2
1 + 2β ± c1

√
−6β),

c17 =
3c1(c1c8 − 1)± (c1c8 + 6c4 − 1)

√
−6β

6c1
, c18 = − 1

2 (3c1 ±
√
−6β), (95)

where c1, c4, and c8 are arbitrary constants. To be able to obtain the Lax pair for the KdV
equation where c1 = 0, one should require that c4 = 1

6 and c8 = 0, otherwise c2, c11, c14,
and c17 would become infinite. Notice that both requirements allow one to clear c1 from all
denominators. Furthermore, the coefficients then simplify into
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c2 = 0, c3 = 1
12 (3c2

1 + 2β), c4 = 1
6 , c5 = 1

6 (3c1 ±
√
−6β), c6 = −4, c7 = −6c1,

c8 = 0, c9 = −(3c2
1 + β), c10 = −1, c11 = 0, c12 = −(6c1 ±

√
−6β),

c13 = − 1
6 c1(3c2

1 + 2β), c14 = − 1
4 c1, c15 = 0, c16 = − 1

2 (6c2
1 + 2β ± c1

√
−6β),

c17 = − 1
2 , c18 = − 1

2 (3c1 ±
√
−6β). (96)

Finally, substitute the coefficients into (89) and (90) to get

L = D2
x + c1u Dx +

1
6

(
1
2 (3c2

1 + 2β)u2 + αu + (3c1 ±
√
−6β)ux

)
I, (97)

M = −4D3
x − 6c1u D2

x −
(
(3c2

1 + β)u2 + αu + (6c1 ±
√
−6β)ux

)
Dx

−
(

1
6 c1(3c2

1 + 2β)u3 + 1
4 αc1u2 + 1

2 (6c2
1 + 2β ± c1

√
−6β)uux

+ 1
2 αux +

1
2 (3c1 ±

√
−6β)uxx

)
I, (98)

where the constant c1 is arbitrary. Hence, this is a one-parameter family of Lax pairs. Set
c1 = 2ϵ to get (79) and (80). With (97) and (98)

Lt + [L,M] = 1
6

(
(3c1 ±

√
−6β)Dx(ut + αuux + βu2ux + u3x)

+(α + (3c2
1 + 2β)u)(ut + αuux + βu2ux + u3x)

)
I

+c1(ut + αuux + βu2ux + u3x)Dx, (99)

which, after setting c1 = 2ϵ, is equivalent to (83).

9. Bilinear Form

In this section we show how the Gardner equation (1) can be transformed into the
mKdV Equation (3) and how that helps with deriving Hirota’s bilinear representation [6]
and, eventually, solitary wave and soliton solutions of (1). The existence of multi-soliton
solutions (i.e., soliton solutions of any order) is yet another proof that the Gardner equation
is completely integrable.

A simple shift of u allows one to remove the quadratic term αuux. Indeed, set
u = ũ − α

2β to replace (1) by

ũt −
α2

4β
ũx + βũ2ũx + ũ3x = 0, (100)

which is still in the original independent variables x and t. As will be shown below,
the linear term in ũx can also be removed by a change of independent variables.

Step 1: Construct a bilinear form as follows: first, integrate (100) with respect to x,

∂t

(∫ x
ũ dx

)
− α2

4β
ũ + 1

3 βũ3 + ũxx = 0, (101)

setting the integration “constant” c(t) equal to zero. As with the mKdV equation [5],
substitute the Hirota transformation

ũ = i

√
6
β

(
ln
(

f + ig
f − ig

))
x

= 2

√
6
β

(
Arctan

(
f
g

))
x

= 2

√
6
β

(
fxg − f gx

f 2 + g2

)
(102)

into (101). Then, divide by −2
√

6
β and regroup the terms, yielding
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(
f 2 + g2

)(
g ft − f gt + 3 fxgxx − 3gx fxx − f g3x + g f3x −

α2

4β
( f gx − g fx)

)
−6
(

g fx − f gx)( f fxx + ggxx − f 2
x − g2

x

)
= 0. (103)

Next, set the factors multiplying f 2 + g2 and g fx − f gx separately equal to zero, to obtain

g ft − f gt + 3 fxgxx − 3gx fxx − f g3x + g f3x −
α2

4β
( f gx − g fx) = 0, (104)

f fxx + ggxx − f 2
x − g2

x = 0. (105)

Based on the scaling symmetry of (1) with weights (20) and the structure of the bilinear
form of the mKdV equation [5], recast the above equations in bilinear form,

(c1Dt + c2D3
x + α2c3Dx)( f ·g) = 0, (106)

c4D2
x( f · f + g·g) = 0, (107)

with undetermined coefficients c1, c2, c3, and c4. Notice that with W( f ) = W(g) = 0, all
terms in (104) and (106) have weights of three, whereas the terms in (105) and (107) have
weights of two.

The bilinear operators Dx and Dt (not to be confused with total derivatives used in
earlier sections) are defined as

Dm
x ( f ·g) = (∂x − ∂x′)

m f (x, t)g(x′, t)
∣∣∣∣
x′=x

=
m

∑
j=0

(−1)m−jm!
j!(m − j)!

(
∂j f
∂xj

)(
∂m−jg
∂xm−j

)
, (108)

Dn
t ( f ·g) = (∂t − ∂t′)

n f (x, t)g(x, t′)
∣∣∣∣
t′=t

=
n

∑
j=0

(−1)n−jn!
j!(n − j)!

(
∂j f
∂tj

)(
∂n−jg
∂tn−j

)
, (109)

which represent the Leibniz rule for x-derivatives (and t-derivatives, respectively) of
products of functions with every other sign flipped. Explicitly,

(c1Dt + c2D3
x + α2c3Dx)( f ·g) = c1(g ft − f gt) + c2(3 fxgxx − 3gx fxx + g f3x − f g3x)

+α2c3(g fx − f gx), (110)

c4D2
x( f · f + g·g) = 2c4( f fxx + ggxx − f 2

x − g2
x). (111)

Step 2: Compute the undetermined coefficients. Equate (106) and (110) and treat all
monomials in f and g and their derivatives as independent to get c1 = c2 = 1, and c3 = 1

4β .

Perform the same with (107) and (111) to get c4 = 1
2 . Finally, substitute the constants

into (106) and (107) and clear common factors to get a bilinear representation of (100):

(Dt + D3
x +

α2

4β
Dx)( f ·g) = 0, D2

x( f · f + g·g) = 0, (112)

which, in light of (102), will only lead to real solutions for the focusing Gardner equation
(β > 0).

The above bilinear formulation is expressed in the original variables x and t. Of
course, the term α2

4β Dx in (112) can be removed at the cost of introducing a new variable
X. Indeed, using the chain rule for differentiation, one can readily verify that the Galilean
transformation (x, t, u(x, t)) −→ (X, T, U(X, T)) where

X = x +
α2

4β
t, T = t, u(x, t) = U(X, T)− α

2β
, (113)
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takes (1) into
UT + β U2UX + U3X = 0, (114)

with bilinear representation [5]

(DT + D3
X)(F·G) = 0, D2

X(F·F + G·G) = 0. (115)

Once particular solutions F(X, T) and G(X, T) of

GFt − FGt + 3FxGxx − 3GxFxx − FG3x + GF3x = 0, (116)

FFxx + GGxx − F2
x − G2

x = 0, (117)

are computed,

U(X, T) = 2

√
6
β

(
FXG − FGX

F2 + G2

)
(118)

will solve (114). Solutions u(x, t) of (1) then follow from

u(x, t) = 2

√
6
β

(
FXG − FGX

F2 + G2

)
− α

2β
, (119)

after using (113) to return to the original variables u, x, and t.

10. Gardner Transformation

In this section we discuss a slight generalization of the Miura transformation [31],
sometimes called the Gardner transformation or Gardner transform [32,66–68],

u =
β

γ

(
v2 ±

√
− 6

β vx +
α

β
v
)

, (120)

which connects solutions v(x, t) of the Gardner equation,

vt + αvvx + βv2vx + v3x = 0, (121)

with β ̸= 0, to solutions u(x, t) of the KdV equation,

ut + γuux + u3x = 0, (122)

with arbitrary coefficient γ ̸= 0. The use of γ will avoid confusion with α in (121) and, more
importantly, allow us to set α = 0 to get the standard Miura transformation (see Section 12).

Substituting (120) into (122), it is straightforward to verify that

ut + γuux + u3x =̇ β
γ

(
(2v + α

β ) I ±
√
− 6

β Dx

)(
vt + αvvx + βv2vx + v3x

)
, (123)

where =̇ means that the left hand side is evaluated on solutions of (121). As before, I
is the identity operator and Dx is the total derivative operator defined in (24). Clearly,
the Gardner transformation will only be real for the defocusing Gardner equation.

We will show how (120) can be computed using the scaling symmetries of the KdV
and Gardner equations discussed in Section 4. Recall that W(u) = 2, W(v) = W(α) = 1,
and W(γ) = W(β) = 0. Therefore, (120) is uniform in rank of rank two.

Step 1: Construct a candidate for the Gardner transformation. Make the list {{v2, αv, α2},
{v, α}} of monomials in v and α of rank 2 or less. By differentiating its elements, replace
the second sublist by {vx}. Linearly combine the resulting elements with undetermined
coefficients,

u = c1v2 + αc2v + α2c3 + c4vx, (124)
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to generate a candidate for the Gardner transformation.

Step 2: Compute the undetermined coefficients. Substitute (124) into (122) and, using (121),
replace vt and vtx. The resulting expression must vanish on the jet space, leading to
c2c3 = c3c4 = 0 and half a dozen more complicated equations. For c4 = 0, (124) would
become an algebraic transformation. Hence, c3 = 0 and, after simplification of the more
complicated equations, one is left with the following nonlinear system

γc1 − β = 0, γc2 − 1 = 0, 6c1 + γc2
4 = 0, 3γc1c2 − βc2 − 2c1 = 0. (125)

Substitute the solution, c1 = β
γ , c2 = 1

γ , c4 = ± 1
γ

√
−6β, and c3 = 0, into (124) to get (120).

Of course, the “uniformity-in-rank” argument also applies to (123), and therefore can
be used to derive that equation. Observe that the ranks of the left and right hand sides
of (123) match. Since the terms of the KdV equation (left) and Gardner equation (right)
have ranks five and four, respectively, the operator that connects them must have rank one.
Thus, only vI, αI, and Dx can occur in that operator. Apply the candidate for the operator,

(C1v + αC2) I + C3 Dx, (126)

to (121), and equate the resulting expression to (122) after substitution of (120) but without
evaluation on solutions of (121). After simplification, this yields the linear system

γC1 − 2β = 0, γC2 − 1 = 0, γC3 ±
√
−6β = 0, γC1 + βγC2 − 3β = 0. (127)

Solve the system to obtain C1 = 2β
γ , C2 = 1

γ , and C3 = ± 1
γ

√
−6β. Substitute the solution

into (126) to get (123).
Using (120), some solutions for the KdV equation could be obtained from those of the

Gardner equation (see, e.g., [11]). For α = 0, (120) reduces to the Miura transformation,
allowing one to generate solutions of the KdV equation from those of the mKdV equation.
Although this is worthy of investigation, it is beyond the scope of this article. For an
in-depth discussion of connections between the KdV, mKdV, and Gardner equations and
additional applications of the Gardner and Miura transformations, we refer to [11,66,68].

11. The Korteweg–de Vries Equation

Since the KdV equation is a special case of the Gardner equation, its conservation laws,
higher-order symmetries, and recursion operator immediately follow from those of (1) by
setting β = 0 in (25)–(27), (45)–(47), and (53), respectively. The conservation laws for the
KdV equation have been known since the 1970s [32,69] and have played an important role
in the development of the concept of complete integrability. Its symmetries and recursion
operator have been studied in, e.g., [54].

The well-known Lax pair [64] for the KdV equation,

L = D2
x +

1
6 αu I, M = −4D3

x − αu Dx − 1
2 αux I, (128)

follows from (79) and (80) by setting β = ϵ = 0.
The bilinear form for the KdV equation is much simpler than the one for the mKdV

equation, and so are its soliton solutions. The interested reader is referred to [1,5,6,30] for
the bilinear formulation and explicit formulas for the two-, three-, and N-soliton solutions.

For completeness, we only include the solitary wave and cnoidal wave solutions,
which were first derived in [28],

u(x, t) =
12k2

α
sech2(kx − 4k3t + δ) =

12k2

α

(
1 − tanh2(kx − 4k3t + δ)

)
, (129)

u(x, t) =
8k2

α
(1 − m) +

12k2

α
m cn2(kx − 4k3t + δ; m), (130)
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where m ∈ (0, 1) is the modulus of the Jacobi elliptic cosine (cn) function. Both solutions
are depicted in Figure 1. When m approaches 1, the peaks of the cn-squared solution
become a bit taller, and the valleys become lower and flatter before they spread out
horizontally to become the sech-squared solution. Both solutions (129) and (130) satisfy
lim|x|→∞ u(x, t) = 0 for all t. The more general expressions corresponding to a nonzero
boundary condition can be found in, e.g., refs. [1,2,29].

The soliton solutions of (2) can be computed with our code PDESolitonSolutions.m [24].
A discussion of their properties is outside the scope of this paper. Instead, we refer
to [1,2,5,30] and the references given in [29].

Figure 1. Graphs of the solitary wave (solid line) and cnoidal wave (dashed line) solutions for
α = 6, k = 2, m = 9

10 , and δ = 0.

12. The Modified Korteweg–de Vries Equation

Without extra work, we have the first three conservation laws [32] and higher-order
symmetries [54] for the mKdV equation by setting α = 0 in (25)–(27) and (45)–(47), respec-
tively. The recursion operator [54] connecting those symmetries follows from (53) with
α = 0.

Likewise, a one parameter Lax pair for the mKdV equation follows from (79) and (80)
by setting α = 0:

L = D2
x + 2ϵu Dx +

1
6

(
(6ϵ2 + β)u2 + (6ϵ ±

√
−6β)ux

)
I, (131)

M = −4D3
x − 12ϵu D2

x −
(
(12ϵ2 + β)u2 + (12ϵ ±

√
−6β)ux

)
Dx

−
(

1
3 ϵ(12ϵ2 + 2β)u3 + (12ϵ2 + β ± ϵ

√
−6β)uux +

1
2 (6ϵ ±

√
−6β)uxx

)
I, (132)

which for ϵ = 0 simplify into

L = D2
x +

1
6

(
βu2 ±

√
−6βux

)
I, (133)

M = −4D3
x − (βu2 ±

√
−6βux)Dx − (βuux ± 1

2

√
−6βuxx) I. (134)

To our knowledge, this Lax pair first appeared in [70,71]. A further discussion of other
Lax pairs for the mKdV equation can be found in [63,72]. In the latter paper, a more
comprehensive algorithm to compute Lax pairs in operator form is presented, with the
mKdV equation among its examples.

The Miura transformation [31,32,67],

u =
β

γ

(
v2 ±

√
− 6

β vx

)
, (135)
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which connects solutions of the mKdV Equation (3) (with dependent variable v(x, t)) to
solutions u(x, t) of the KdV Equation (122) readily follows from (120) by setting α = 0.
Likewise, (123) reduces to

ut + γuux + u3x =̇ β
γ

(
2v I ±

√
− 6

β Dx

)(
vt + βv2vx + v3x

)
. (136)

Various types of solutions for both the focusing and defocusing mKdV equations have been
reported in the literature [14,15,34], including bright and dark solitons, breathers, rational
solutions, kinks, etc. In this paper we mainly focus on solitary wave and soliton solutions
of the mKdV equation. The nature of the solutions of (114) depends on the sign of β. Two
cases have to be considered.

Case I: The focusing mKdV equation (β > 0).
The mKdV Equation (114) has solutions involving a cosh-function,

U(X, T) = U0 +
3k2

β
(

U0 ±
√

U2
0 +

3k2

2β cosh Θ
) , (137)

with Θ = kX − (βU2
0 + k2)kT + δ, where the boundary value U0, wave number k, and phase

δ are arbitrary constants. To prevent blow-up in finite time we will only consider the plus
sign in (137). The solution satisfying lim|X|→∞ U(X, T) = U0 has been computed with
Hirota’s method in [73], where only the case β > 0 was considered. Solution (137) is
also valid for β < 0 with a caveat (see below). For U0 = 0 the solution reduces to the
well-known sech-solution,

U(X, T) = ±
√

6
β k sech

(
kX − k3T + δ

)
, (138)

where the ± sign is due to the invariance of (114) under the discrete symmetry U → −U.
The soliton solutions of the focusing mKdV equation have been known for a long time

and can be computed with a variety of methods. Adhering to Hirota’s method [5,6], the
one-soliton solution readily follows from substitution of

F = eΘ = ekX−ωT+δ and G = 1 (139)

into (116), yielding ω = k3 and (117), which is identically satisfied. From (118), one
then obtains

U(X, T) = 2

√
6
β

(
Fx

1 + F2

)
= 2

√
6
β

k
(

eΘ

1 + e2Θ

)
=
√

6
β k sech Θ

=
√

6
β k sech (kX − k3T + δ) = 2

√
6
β K sech

(
2KX − 8K3T + δ

)
, (140)

where K = k
2 , which matches (138). The two-soliton solution [5] follows from

F = eΘ1 + eΘ2 and G = 1 − a12eΘ1+Θ2 , (141)

with Θi = kiX − k3
i T + δi and a12 =

(
k1−k2
k1+k2

)2
. Then, from (118)

U(X, T) = 2

√
6
β

 k1eΘ1 + k2eΘ2 + a12 (k1eΘ2 + k2eΘ1)eΘ1+Θ2

1 + e2Θ1 + e2Θ2 +
8k1k2

(k1 + k2)2 eΘ1+Θ2 + a2
12 e2Θ1+2Θ2

. (142)

Details of the derivation are given in [5] and [6], where formulas for the three- and N-soliton
solutions can also be found.
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Case II: The defocusing mKdV equation (β < 0).
Using the Zakharov–Shabat method, the defocusing mKdV equation was solved in [74].
Solution (137) with X replaced by −X corresponds to the case N = 1 in [74]. Notice that
when β < 0, solution (137) will only exist if k2 < 2|β|

3 U2
0 . This will be discussed in greater

detail in the next section.
A new exact two-soliton solution of (114) with β < 0 is presented in [12]:

u(X, T)=

√
− 6

β

(
sinh(Φ+2δ)e−2Ψ+sinh(Φ−2δ)e2Ψ+2 sinh(Φ)(1−sinh2(2δ))sech(2δ)

cosh(Φ+2δ)e−2Ψ+cosh(Φ−2δ)e2Ψ+2 cosh(Φ) cosh(2δ)

)
(143)

with Φ = X + 2T, and Ψ =
(

X + 2(1 + 2sech2(2δ))T + X0

)
tanh(2δ), with δ > 0 and X0

arbitrary real parameters. This solution is obtained as the limit for the modulus going to
one of a dark breather solution (involving Jacobi elliptic functions and elliptic integrals) of
the defocusing mKdV equation.

Solutions (137) and (138) will be used in the next section to find table-top and hump-
shaped solutions of (1). In turn, solution (143) will lead to a two-soliton solution of the
defocusing Gardner equation.

13. Solitary Wave and Periodic Solutions

As pointed out in [37], the fact that (1) is invariant under the transformation

u → −
(

u + α
β

)
(144)

makes it possible to have solutions of different polarity for that equation, most notably,
“bright” as well as “dark” solitons, depending on the initial conditions. However, a solution
that vanishes at x = ±∞ will be transformed by (144) into one that goes to − α

β as x → ±∞.
In this section we only cover a subset of the many types of solutions that (1) admits [75].

Depending on the sign of β in (1), it is straightforward [76] to find kink- and hump-
type solitary waves solutions as well as periodic solutions in terms of the Jacobi elliptic
sine and cosine functions. Indeed, using our symbolic code PDESpecialSolutions.m [26]
for the tanh, sech, and Jacobi elliptic function methods, at a click of a button, one obtains
simple exact solutions, which we cover first.

Case I: The focusing Gardner equation (β > 0).
The most well-known solutions are

u(x, t) = −
(

α
2β ±

√
6
β k sech θ

)
, (145)

with θ = kx − (k2 − α2

4β )kt + δ, and

u(x, t) = −
(

α
2β ±

√
6
β k
√

m cn(θ; m)
)

, (146)

with θ = kx +
(
(1 − 2m)k2 + α2

4β

)
kt + δ. Both solutions for the minus sign (in front of

the square root) are shown in Figure 2. Observe that as the value of m gets closer to 1,
the cn-function starts taking the shape of a sech-profile.
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Figure 2. Graphs of (145) (left) and (146) (right) both with the minus signs in front of the square roots,
and both for α = 12, β = 6, δ = 0, and k = 2. The curves on the right correspond to m = 0.25 (dashed
line) and m = 0.9 (solid line).

Of course, (145) also follows directly from (138) upon application of the transformation
(113). Using (137) in the same way yields

u(x, t) = U0 −
α

2β
+

3k2

β
(

U0 +
√

U2
0 +

3k2

2β cosh θ
) , (147)

with θ = kx − (k2 + βU2
0 −

α2

4β )kt + δ and where U0 is arbitrary. Setting U0 = α
2β yields

u(x, t) =
6k2

α(1 +
√

1 + 6β

α2 k2 cosh θ)
, (148)

with θ = kx − k3t + δ = k(x − Vt) + δ, where V = k2 denotes the speed of the wave and
k−1 is the effective width of the solitary wave. This special solution is frequently used in
the literature [35,66,76–79] and could also be computed via a Darboux transformation (see,
e.g., [78]). For β > 0, (148) is valid for all values of V, and since V > 0 the wave is travelling
to the right.

Case II: The defocusing Gardner equation (β < 0).
The simplest exact solutions are

u(x, t) = −
(

α
2β ±

√
− 6

β k tanh θ
)

, (149)

with θ = kx + (2k2 + α2

4β )kt + δ, and

u(x, t) = −
(

α
2β ±

√
− 6

β k
√

m sn(θ; m)
)

, (150)

with θ = kx +
(
(1 + m)k2 + α2

4β

)
kt + δ. In each of these solutions, δ is an arbitrary con-

stant phase. The shock wave solution (149) and periodic solution (150) can be found in,
e.g., ref. [74]. Both solutions for the minus sign (in front of the square root) are shown in
Figure 3. As the value of m draws closer to 1, the sn-function starts taking the shape of a
tanh-profile.
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Figure 3. Graphs of (149) (left) and (150) (right), both for α = 12, β = −6, δ = 0, and k = 2. The
curves on the right correspond to m = 0.25 (dashed line) and m = 0.9 (solid line).

With respect to (148) where V = k2, note that when β < 0, the argument of the square
root, 1 + 6β

α2 k2, will be zero when V = Vcrit =
α2

6|β| . Thus, (148) is only valid when the speed
is below that critical value (V < Vcrit). Thus, when dealing with the defocusing Gardner
equation, if V ≥ Vcrit, there is no solution of type (148). Turning the argument around,
solutions for (148) of large amplitude (which is proportional to k2

α ) or fast traveling waves
(since V = k2) can only occur if |β| is relatively small in comparison with α. For example,
for k = 2, one must require that |β| < α2

24 .
The graphs in Figure 4 are for α = 6, β = −6, and δ = 0 (i.e., V < Vcrit is equivalent to

k2 < 1), for which (148) simplifies into

u(x, t) =
k2

1 +
√

1 − k2 cosh(kx − k3t)
. (151)

As the value of k increases, the solitary wave get taller and narrower. At t = 0 and
values of k very close to 1, the waves become flat at the top, hence the name table-top (or
flat-top) waves. For the critical value k = 1, the wave degenerates into a horizontal line
corresponding to

lim
k→1

( k2

1 +
√

1 − k2 cosh(kx)

)
= 1. (152)

For values of k near 1, solution (151) can be very well approximated by a kink–antikink
pair [79],

u(x, t) = 1
2

(
tanh

(
k
2 (x − k2t + ∆)

)
− tanh

(
k
2 (x − k2t − ∆)

))
, (153)

where ∆ = 2k−1Arctanh(1 −
√

1 − k2) serves as a measure for the width of the table-top
wave. These kink and anti-kink solutions, which correspond to the left and right flanks of
the table-top solutions, are clearly visible in Figure 4 where k approaches 1. Although the
expressions do not match analytically, Figure 5 shows that the graphs of (151) and (153) for
t = 0 nearly overlap even when k is not close to 1.

Parenthetically, Grosse [80] (Equation (24)) computed a two-soliton solution of the
defocusing mKdV equation. His analytic solution supposedly describes the interaction of
two kink-solutions. It does not satisfy the equation exactly, but appears to be an excellent
approximation to a solution, and therefore warrants further investigation.
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Figure 4. Graphs of (151) for k = 0.5, k = 0.625, and k = 0.75 (left), and k = 0.9999, k = 0.999995,
k = 0.9999995, and k = 1 (right). The solitary wave becomes taller and narrower as the value of
k increases.

Figure 5. Graphs of (151) (full line) and (153) (dashed line) for four different values of k.

Notice that all the above solutions follow the scaling homogeneity (21). Functions
like cosh, tanh, cn, etc., have no weights. With regard to the weights (20), W( α

2β ) = 1, as it
should, because W(u) = 1. Furthermore, W(k) = 1 because W(x) = −1 and W(kx) = 0.
All terms in any θ must have weight zero, in particular, W(δ) = 0, and W(m) = 0, where
m is the modulus of any of the Jacobi elliptic functions. From W(t) = −3, it follows that
W(V) = 2 and W(ω) = 3, where ω is the angular frequency in θ = kx − ωt + δ = k(x −
Vt) + δ. Hence, if ω and V are polynomials in k, then ω can only have terms proportional
to k3, αk2, and α2k, and V can only have terms in k2, αk, and α2. The proportionality factors
could have any powers of β since W(β) = 0.

14. Soliton Solutions

When considering solitons we again must make the distinction between the focusing
and defocusing Gardner equations.
Case I: The focusing Gardner equation (β > 0).
Using (113), solutions u(x, t) of the focusing version of (1) are given by

u(x, t) = U(X(x, t), T(t))− α
2β , (154)
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where U(X, T) is any soliton solution of the focusing mKdV equation and X(x, t) = x+ α2

4β t
and T = t. For example, the two-soliton solution of (1) reads

u(x, t) = − α

2β
+ 2

√
6
β

 k1eθ1 + k2eθ2 + a12 (k1eθ2 + k2eθ1)eθ1+θ2

1 + e2θ1 + e2θ2 +
8k1k2

(k1 + k2)2 eθ1+θ2 + a2
12 e2θ1+2θ2

, (155)

where θi = kix − (k2
i −

α2

4β )kit + δi and a12 =
(

k1−k2
k1+k2

)2
. The elastic scattering of two solitons

for the focusing Gardner equation is shown in Figures 6 and 7, which have 2D and 3D
graphs of (155) for α = β = 6 with k1 = 3

2 , k2 = 1
2 , and δ1 = δ2 = 0.

Figure 6. Graph of the two-soliton solution (155) of the focusing Gardner equation at three different
moments in time.

Figure 7. Bird’s eye view of a two-soliton collision for the focusing Gardner equation. Notice the
phase shift after collision: the taller (faster) soliton is shifted forward and the shorter (slower) soliton
backward relative to where they would have been if they had not collided.

The Gardner equation has solitons of all orders N, which confirms once more that it is
a completely integrable PDE.

In general, the existence of a two-soliton solution is no guarantee that the given PDE
is completely integrable, but the existence of three-soliton solutions is a good indicator that
the PDE is completely integrable. Indeed, as shown in [5], there are PDEs that have at most
two-soliton solutions but no three-soliton solutions.
Case II: The defocusing Gardner equation (β < 0).
Based on (143), one obtains a two-soliton solution

u(x, t) = − α

2β

+

√
− 6

β

(
sinh(θ+2δ)e−2η+sinh(θ−2δ)e2η+2 sinh(θ)(1−sinh2(2δ))sech(2δ)

cosh(θ+2δ)e−2η+cosh(θ−2δ)e2η+2 cosh(θ) cosh(2δ)

)
, (156)
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with θ = x +
(

2 + α2

4β

)
t, and η =

(
x +

(
2 + α2

4β + 4sech2(2δ)
)

t + x0

)
tanh(2δ), with δ > 0

and x0 arbitrary real parameters. Solution (156), which describes the coalescence of two
wave fronts, is pictured in 2D and 3D in Figures 8 and 9 for two different values of δ.
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Figure 8. 2D and 3D graphs of solution (156) for α = 6, β = −6, δ = 0.65 and x0 = 0.
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Figure 9. 2D and 3D graphs of solution (156) for α = 6, β = −6, δ = 3 and x0 = 0.

15. Symbolic Software

Using the concept of scaling homogeneity, we have been able to create powerful
algorithms to investigate the complete integrability of systems of polynomial nonlinear
PDEs. In this section, we give a brief summary of the available codes.

Our Mathematica code PainleveTest.m [8] automates the Painlevé test, which allows
one to verify if a nonlinear PDE has the Painlevé property [7] as discussed in Section 3.

The Mathematica code InvariantsSymmetries.m [17] computes polynomial conserved
densities and higher-order symmetries of nonlinear (1 + 1)-dimensional PDEs that can be
written as a polynomial system of evolution equations. If a PDE has arbitrary parameters,
the code allows one to derive conditions on these parameters so that the PDE admits
conserved quantities or generalized symmetries. An example of such a “classification”
problem is given in [9]. A discussion of the scope and limitations of the code can be found
in [9,10].

To cover conservation laws of nonlinear PDEs in more than one space variable [23,44,81],
we developed ConservationLawsMD.m [18], a Mathematica package to compute polynomial
conservation laws of polynomial systems of nonlinear PDEs in space variables (x, y, z) and
time t.

In [55], the authors show details of the algorithm to compute recursion operators for
systems of nonlinear PDEs of type (4), including formulas for handling integro-differential
operators used in Section 7. The Mathematica package PDERecursionOperator.m [16] per-
forms the symbolic computation of recursion operators of systems of polynomial nonlinear
evolution equations.
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In Appendix B of [65], Larue presents LaxpairTester.m, a Mathematica code to verify
Lax pairs in operator and matrix form. In [63], an algorithm is presented to compute Lax
pairs in operator form, but that algorithm has not been implemented yet.

In addition, we developed the Mathematica package PDESpecialSolutions.m [25] to
compute solitary wave solutions based on the tanh-method and generalizations for the
sech, sn, and cn functions [26].

Recently, we added the Mathematica code PDESolitonSolutions.m [24] to compute
soliton solutions of polynomial PDEs based on a simplified version of Hirota’s method
described in [5].

Since our codes only use tools from calculus, linear algebra, the calculus of variations,
and differential geometry, these algorithms are fairly straightforward to implement in the
syntax of computer algebra systems such as Mathematica, Maple, and REDUCE. Our software
is open source and available in the public domain. All our Mathematica packages and
notebooks are available on the Internet at https://people.mines.edu/whereman/ (accessed
on 1 October 2024). A summary of the codes used in this paper can also be found at https:
//community.wolfram.com/groups/-/m/t/3275116 (accessed on 23 September 2024).

16. Conclusions and Future Work

The approach described in this paper and related software is applicable to large classes
of nonlinear PDEs, which can be expressed as polynomial systems of evolution equations.
As a prototypical example, we gave a detailed integrability analysis of the Gardner equation
by computing its densities (and fluxes), higher-order symmetries, recursion operator, Lax
pair, Hirota’s bilinear representation, and soliton solutions. The corresponding results for
the KdV and mKdV equations were obtained by setting the coefficient of the cubic and
quadratic term equal to zero, respectively.

We also showed how to compute the Gardner (Miura, resp.) transformation, which
connects solutions of the Gardner (mKdV, resp.) equation to those of the KdV equation.
With the Gardner transformation, some solutions of the KdV equation could be obtained
from those of the Gardner equation shown in this paper. Likewise, applying the Miura
transformation to solutions of the mKdV equation will lead to solutions of the KdV equation.
When new solutions of the Gardner and mKdV equations are discovered, it would be
worthwhile to investigate which solutions of the KdV equation they correspond to and,
more importantly, if new solutions of the KdV equation could be computed that way (see,
e.g., ref. [11]).

The crux of our computational strategy is a skillful use of the scaling symmetry of
the PDE and relies on the observation that the defining equations for conservation laws,
generalized symmetries, recursion operator, Lax pair, bilinear representation, and Gardner
transformation should only hold on solutions of the given PDE. Consequently, the quantities
(or operators) one computes inherit the scaling symmetry of the given PDE.

Since their defining equations are similar, it would also be possible to use this approach
to compute symplectic and Hamiltonian (co-symplectic) operators of PDEs. In doing so, it
would be possible to verify whether or not a PDE has a bi-Hamiltonian (or tri-Hamiltonian)
structure, which is yet another criterion for its complete integrability. Further exploration
of this idea, as well as the design of algorithms and codes for the computation of symplectic
and Hamiltonian operators, is left for future work.

The methodology discussed in this paper might also apply to the Gardner equation
in (2 + 1) dimensions [82,83], which is a combination of the Kadomtsev–Petviashvili (KP)
and the modified KP equations.

The algorithms used in this paper are coded in Mathematica syntax, but can be adapted
for major computer algebra systems such as Maple and REDUCE.

https://people.mines.edu/whereman/
https://community.wolfram.com/groups/-/m/t/3275116
https://community.wolfram.com/groups/-/m/t/3275116
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