Application of Bispectral Analysis to Assess the Effect of Drought on the Photosynthetic Activity of Lettuce Plants Lactuca sativa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Object
2.2. Experimental Design
2.3. Bispectral Analysis Method
- the signal must simultaneously contain non-zero moduli of wavelet coefficients at frequencies ω1, ω2 and ω1 + ω2,
- the phase shift of these wavelet coefficients must also be constant.
2.4. Modeling of Analog Nonlinear Transformation of a Harmonic Signal
2.5. Data Analysis
3. Results
Analysis of Fluorescence Recordings of Plant Pigments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schreiber, U. Pulse-Amplitude-Modulation (PAM) Fluorometry and Saturation Pulse Method: An Overview. In Chlorophyll a Fluorescence; Advances in Photosynthesis and Respiration; Springer: Berlin/Heidelberg, Germany, 2004; pp. 279–319. [Google Scholar]
- Shurygin, B.; Chivkunova, O.; Solovchenko, O.; Solovchenko, A.; Dorokhov, A.; Smirnov, I.; Astashev, M.E.; Khort, D. Comparison of the Non-Invasive Monitoring of Fresh-Cut Lettuce Condition with Imaging Reflectance Hyperspectrometer and Imaging PAM-Fluorimeter. Photonics 2021, 8, 425. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Sarimov, R.M.; Astashev, M.E.; Pishchalnikov, R.Y.; Yanykin, D.V.; Simakin, A.V.; Shkirin, A.V.; Serov, D.A.; Konchekov, E.M.; Gusein-zade, N.G.; et al. Modern physical methods and technologies in agriculture. Phys.-Uspekhi 2024, 67, 194–210. [Google Scholar] [CrossRef]
- Müller, P.; Li, X.-P.; Niyogi, K.K. Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol. 2001, 125, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.; Aiken, R.M.; Feng, N.; Zheng, D.; Zhao, H.; Avenson, T.J.; Lin, X. Fresh perspectives on an established technique: Pulsed amplitude modulation chlorophyll a fluorescence. Plant-Environ. Interact. 2022, 3, 41–59. [Google Scholar] [CrossRef]
- Paskhin, M.O.; Aiyyzhy, K.O.; Pobedonostsev, R.V.; Kazantseva, D.V.; Rakov, I.I.; Barmina, E.V.; Yanykin, D.V.; Gudkov, S.V. Ruby Nanoparticles for Greenhouse Farming: Synthesis, Features and Application. J. Compos. Sci. 2023, 8, 7. [Google Scholar] [CrossRef]
- Yanykin, D.V.; Kazantseva, D.V.; Khorobrykh, A.A. Effect of Osmolytes on Photoassembly of Functionally Active Mn4CaO5 Cluster in Mn-Depleted Photosystem II Preparations Isolated from Spinach Leaves. Horticulturae 2023, 9, 1339. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Y.; Tan, J. Wavelet analysis of pulse-amplitude-modulated chlorophyll fluorescence for differentiation of plant samples. J. Theor. Biol. 2015, 370, 116–120. [Google Scholar] [CrossRef]
- Astasheva, E.; Astashev, M.; Kitchigina, V. Analysis of Oscillations in the Brain During Sensory Stimulation: Cross-Frequency Relations. In Advances in Neural Networks—ISNN 2016; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 673–680. [Google Scholar]
- Astasheva, E.V.; Astashev, M.E.; Kichigina, V.F. Oscillatory Activity and Cross-Frequency Interactions in the Hippocampus and Connected Brain Structures during Sensory Information Processing. Neurosci. Behav. Physiol. 2018, 48, 758–763. [Google Scholar] [CrossRef]
- Gudkov, S.; Astashev, M.; Bruskov, V.; Kozlov, V.; Zakharov, S.; Bunkin, N. Self-oscillating Water Chemiluminescence Modes and Reactive Oxygen Species Generation Induced by Laser Irradiation; Effect of the Exclusion Zone Created by Nafion. Entropy 2014, 16, 6166–6185. [Google Scholar] [CrossRef]
- Astashev, M.E.; Serov, D.A.; Tankanag, A.V. A Study of the Oscillatory Components of the Skin Microhemodynamics in Mice by Laser Doppler Flowmetry. Biophysics 2018, 63, 122–125. [Google Scholar] [CrossRef]
- Tankanag, A.; Chemeris, N. Application of the adaptive wavelet transform for analysis of blood flow oscillations in the human skin. Phys. Med. Biol. 2008, 53, 5967–5976. [Google Scholar] [CrossRef] [PubMed]
- Bandrivskyy, A.; Bernjak, A.; McClintock, P.; Stefanovska, A. Wavelet Phase Coherence Analysis: Application to Skin Temperature and Blood Flow. Cardiovasc. Eng. 2004, 4, 89–93. [Google Scholar] [CrossRef]
- Newman, J.; Pidde, A.; Stefanovska, A. Defining the wavelet bispectrum. Appl. Comput. Harmon. Anal. 2021, 51, 171–224. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Pfündel, E.; Korhonen, J.F.J.; Juurola, E. A new monitoring PAM fluorometer (MONI-PAM) to study the short- and long-term acclimation of photosystem II in field conditions. Photosynth. Res. 2008, 96, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Shurygin, B.; Konyukhov, I.; Khruschev, S.; Solovchenko, A. Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple (Malus × domestica Borkh.). Plants 2022, 11, 2811. [Google Scholar] [CrossRef]
- Zhao, R.; An, L.; Song, D.; Li, M.; Qiao, L.; Liu, N.; Sun, H. Detection of chlorophyll fluorescence parameters of potato leaves based on continuous wavelet transform and spectral analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 259, 119768. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Zhang, P.; Zhang, K.; Xu, Y. Motor Current Time-Varying Quadratic Phase Coupling Analysis and Its Application in Traction Motor Fault Detection Under Varying-Speed Condition. IEEE Sens. J. 2024, 24, 12877–12886. [Google Scholar] [CrossRef]
- El Yacoubi, I.; Samuel, S. Frequency Coupling Analysis in Spark Ignition Engine Using Bispectral Method and Ensemble Empirical Mode Decomposition; SAE Technical Paper Series; SAE: Warrendale, PA, USA, 2022. [Google Scholar]
- Cao, X.; Shi, J.; Zhang, C.; Zheng, J. Inter-comparison of wave skewness and asymmetry estimation using wavelet, Fourier and statistical methods. Ocean Eng. 2023, 268, 113382. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, H.; You, T.; Sun, Y.; Fu, C.; Liao, W.; Cai, F. Experimental study on the effect of an oyster reef on the nonlinear characteristics of irregular waves. Front. Mar. Sci. 2022, 9, 1096497. [Google Scholar] [CrossRef]
- Koukiou, G. Identifying System Non-Linearities by Fusing Signal Bispectral Signatures. Electronics 2024, 13, 1287. [Google Scholar] [CrossRef]
- Astashev, M.E.; Serov, D.A.; Gudkov, S.V. Application of Spectral Methods of Analysis for Description of Ultradian Biorhythms at the Levels of Physiological Systems, Cells and Molecules (Review). Mathematics 2023, 11, 3307. [Google Scholar] [CrossRef]
- Astashev, M.E.; Serov, D.A.; Tankanag, A.V.; Knyazeva, I.V.; Dorokhov, A.A.; Simakin, A.V.; Gudkov, S.V. Study of the Synchronization and Transmission of Intracellular Signaling Oscillations in Cells Using Bispectral Analysis. Biology 2024, 13, 685. [Google Scholar] [CrossRef] [PubMed]
- Cornish-Bowden, A. Fundamentals of Enzyme Kinetics, 4th ed.; Completely Revised and Greatly Enlarged edition; Wiley-Blackwell: Weinheim, Germany, 2012; p. xviii. 498p. [Google Scholar]
- Heathcote, D.G. A New Type of Rhythmic Plant Movement: Micronutation. J. Exp. Bot. 1966, 17, 690–695. [Google Scholar] [CrossRef]
- Mancuso, S.; Shabala, S. Rhythms in Plants: Phenomenology, Mechanisms, and Adaptive Significance; Springer: Berlin, Germany; New York, NY, USA, 2007. [Google Scholar]
Nonlinearity Level (A/B) | ||||
---|---|---|---|---|
0 | 0.1 | 0.3 | 1.0 | |
ω, Hz | 2.778 × 10−4 | 2.778 × 10−4 | 2.778 × 10−4 | 2.778 × 10−4 |
A | 0 | 0.140 | 0.397 | 0.743 |
B | 1.411 | 1.409 | 1.325 | 0.743 |
C | −0.002 | -0.072 | −0.269 | −0.605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astashev, M.E.; Burmistrov, D.E.; Yanykin, D.V.; Grishin, A.A.; Knyazeva, I.V.; Dorokhov, A.S.; Gudkov, S.V. Application of Bispectral Analysis to Assess the Effect of Drought on the Photosynthetic Activity of Lettuce Plants Lactuca sativa L. Math. Comput. Appl. 2024, 29, 93. https://doi.org/10.3390/mca29050093
Astashev ME, Burmistrov DE, Yanykin DV, Grishin AA, Knyazeva IV, Dorokhov AS, Gudkov SV. Application of Bispectral Analysis to Assess the Effect of Drought on the Photosynthetic Activity of Lettuce Plants Lactuca sativa L. Mathematical and Computational Applications. 2024; 29(5):93. https://doi.org/10.3390/mca29050093
Chicago/Turabian StyleAstashev, Maxim E., Dmitriy E. Burmistrov, Denis V. Yanykin, Andrey A. Grishin, Inna V. Knyazeva, Alexey S. Dorokhov, and Sergey V. Gudkov. 2024. "Application of Bispectral Analysis to Assess the Effect of Drought on the Photosynthetic Activity of Lettuce Plants Lactuca sativa L." Mathematical and Computational Applications 29, no. 5: 93. https://doi.org/10.3390/mca29050093
APA StyleAstashev, M. E., Burmistrov, D. E., Yanykin, D. V., Grishin, A. A., Knyazeva, I. V., Dorokhov, A. S., & Gudkov, S. V. (2024). Application of Bispectral Analysis to Assess the Effect of Drought on the Photosynthetic Activity of Lettuce Plants Lactuca sativa L. Mathematical and Computational Applications, 29(5), 93. https://doi.org/10.3390/mca29050093