Mathematical Modeling and Analysis of Ebola Virus Disease Dynamics: Implications for Intervention Strategies and Healthcare Resource Optimization
Abstract
:1. Introduction
2. Model Formulation
3. Well-Posedness of the Proposed Model
3.1. Invariant Region
3.2. Positivity of the Solutions
4. Equilibrium Points
4.1. Disease-Free Equilibrium Point (DFE)
4.2. Endemic Equilibrium Point (EE)
5. Basic Reproduction Number
6. Local Stability Analysis of the Disease-Free Equilibrium (DFE) Point
7. Global Stability Analysis
7.1. Global Stability at DFE Point
7.2. Global Stability Analysis of Endemic Equilibrium Point
8. Bifurcation Existence in EVD Epidemic Model
Identifying the Nature of Bifurcation
9. Sensitivity Analysis of
10. Numerical Simulations
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leroy, E.M.; Kumulungui, B.; Pourrut, X. Fruit bats as reservoirs of Ebola virus. Nature 2015, 438, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Shah, S.I.A.; Zaman, G.; Muhammad, S. Ebola virus epidemic disease its modelling and stability analysis required abstain strategies. Cogent Biol. 2018, 4, 1488511. [Google Scholar] [CrossRef]
- Ahmad, W.; Rafiq, M.; Abbas, M. Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination. Eur. Phys. J. Plus 2020, 135, 775. [Google Scholar] [CrossRef]
- Yazdani, N.; Abbas, A. Pakistan adopts defensive strategies against Ebola contagion. Arch. Pharm. Pract. 2015, 6, 13–15. [Google Scholar] [CrossRef]
- Zhou, L.; Fan, M. Dynamics of an SIR model with limited medical resources revisited. Nonlinear Anal. Real World Appl. 2012, 13, 312–324. [Google Scholar] [CrossRef]
- Nouvellet, P.; Garske, T.; Mills, H.L.; Gilani, G.N.; Hinsley, W.; Blake, I.M.; Ferguson, N.M. The role of rapid diagnostics in managing Ebola epidemics. Nature 2015, 528, 109–116. [Google Scholar] [CrossRef]
- Lewnard, J.A.; Mbah, M.L.N.; Murillo, J.A.; Altice, F.L.; Bawo, L.; Nyenswah, T.G.; Galvani, A.P. Dynamics and control of Ebola virus transmission in Montserrado, Liberia: A mathematical modelling analysis. Lancet Infect. Dis. 2014, 14, 1189–1195. [Google Scholar] [CrossRef]
- Fatima, B.; Yavuz, M.; ur Rahman, M.; Althobaiti, A.; Althobaiti, S. Predictive Modeling and Control Strategies for the Transmission of Middle East Respiratory Syndrome Coronavirus. Math. Comput. Appl. 2023, 28, 98. [Google Scholar] [CrossRef]
- Kamrujjaman, M.; Sinje, S.S.; Nandi, T.R.; Islam, F.; Rahman, M.A.; Akhi, A.A.; Alam, M.S. The impact of the COVID-19 pandemic on education in Bangladesh and its mitigation. Bull. Biomath. 2024, 2, 57–84. [Google Scholar] [CrossRef]
- Rachah, A.; Torres, D.F.M. Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa. Discret. Dyn. Nat. Soc. 2015, 2015, 842792. [Google Scholar] [CrossRef]
- Njankou, S.D.; Nyabadza, F. An optimal control model for Ebola virus disease. J. Biol. Syst. 2016, 24, 29–49. [Google Scholar] [CrossRef]
- Haq, I.U.; Yavuz, M.; Ali, N.; Akgül, A. A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method. Math. Comput. Appl. 2022, 27, 82. [Google Scholar] [CrossRef]
- Yavuz, M.; Akyüz, K.; Bayraktar, N.B.; Ozdemir, F.N. Hepatitis-B disease modelling of fractional order and parameter calibration using real data from the USA. AIMS Biophy. 2024, 11, 378–402. [Google Scholar] [CrossRef]
- Rafiq, M.; Ahmad, W.; Abbas, M.; Baleanu, D. A reliable and competitive mathematical analysis of Ebola epidemic model. Adv. Differ. Equ. 2020, 2020, 540. [Google Scholar] [CrossRef]
- Joshi, H.; Yavuz, M.; Özdemir, N. Analysis of novel fractional order plastic waste model and its effects on air pollution with treatment mechanism. J. Appl. Anal. Comput. 2024, 14, 3078–3098. [Google Scholar]
- Adu, I.K.; Wireko, F.A.; Adarkwa, S.A.; Agyekum, G.O. Mathematical analysis of Ebola considering transmission at treatment centres and survivor relapse using fractal-fractional Caputo derivatives in Uganda. Math. Model. Numer. Simul. Appl. 2024, 4, 296–334. [Google Scholar] [CrossRef]
- Berge, T.; Bowong, S.; Lubuma, J.M.S.; Manyombe, M.L.M. Modeling Ebola Virus Disease Transmissions with Reservoir in a Complex Virus Life Ecology. Math. Biosci. Eng. 2018, 15, 21–56. [Google Scholar] [CrossRef]
- Ali, N.; Zaman, G.; Chohan, M.I. Global stability of a delayed HIV-1 model with saturations response. Appl. Math. Inf. Sci. 2017, 11, 189–194. [Google Scholar] [CrossRef]
- Tang, Y.; Yuan, R.; Ma, Y. Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems. Phys. Rev. E 2013, 87, 012708. [Google Scholar] [CrossRef]
- Berge, T.; Lubuma, J.S.; Moremedi, G.M.; Morris, N.; Kondera-Shava, R. A simple mathematical model for Ebola in Africa. J. Biol. Dyn. 2017, 11, 42–74. [Google Scholar] [CrossRef]
- Espinoza, B.; Moreno, V.; Bichara, D.; Chavez, C.C. Assessing the Efficiency of Cordon Sanitaire as a Control Strategy of Ebola. arXiv 2015, arXiv:1510.07415. [Google Scholar]
- Fasina, F.O.; Shittu, A.; Lazarus, D.; Tomori, O.; Simonsen, L.; Viboud, C.; Chowell, G. Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014. Eurosurveillance 2014, 19, 20920. [Google Scholar] [CrossRef] [PubMed]
- Routh, E. Advanced Dynamics of a System of Rigid Bodies; MacMillan: London, UK, 1905. [Google Scholar]
- Vanderbauwhede, A.; Iooss, G. Center Manifold Theory in Infinite Dimensions; Springer: Berlin/Heidelberg, Germany, 1992; pp. 125–163. [Google Scholar]
- Rakkiyappan, R.; Balasubramaniam, P. Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays. Appl. Math. Comput. 2008, 198, 526–533. [Google Scholar] [CrossRef]
- Edward, S.; Lusekelo, E.M.; Ndidi, D.M.; Simanjilo, E. Mathematical modelling of the transmission dynamics of Ebola virus disease with control strategies. Int. J. Sci. Basic Appl. Res. 2017, 33, 112–130. [Google Scholar]
Parameter | Description |
---|---|
New recruitment rate | |
Natural mortality rate | |
Death rate due to disease for exposed individuals | |
Mortality rate due to disease for unaware individuals | |
Mortality rate due to disease for aware individuals | |
Mortality rate due to disease for hospitalized individuals | |
Rate of infection from susceptible to exposed humans | |
Transmission rate from exposed to unaware persons | |
Rate of transmission from exposed to aware peoples | |
Transmission rate from individuals in the unaware state to those in the hospitalized state | |
Transmission rate from individuals in the aware state to those in the hospitalized state | |
Transmission rate from individuals in the unaware state to those in the recovered state | |
Transmission rate from individuals in the aware state to those in the recovered state | |
Transmission rate from individuals in the hospitalized state to those in the recovered state | |
Infection rate from wild animals to individuals in the exposed state | |
Infection rate from wildlife to individuals in the unaware state | |
Infection rate from wildlife to individuals in the aware state | |
Infection rate from domestic animals to individuals in the exposed state | |
Infection rate from domestic animals to individuals in the unaware state | |
Infection rate from domestic animals to individuals in the aware state |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, I.; Ahmad, I.; Ali, N.; Haq, I.U.; Idrees, M.; Albalwi, M.D.; Yavuz, M. Mathematical Modeling and Analysis of Ebola Virus Disease Dynamics: Implications for Intervention Strategies and Healthcare Resource Optimization. Math. Comput. Appl. 2024, 29, 94. https://doi.org/10.3390/mca29050094
Ullah I, Ahmad I, Ali N, Haq IU, Idrees M, Albalwi MD, Yavuz M. Mathematical Modeling and Analysis of Ebola Virus Disease Dynamics: Implications for Intervention Strategies and Healthcare Resource Optimization. Mathematical and Computational Applications. 2024; 29(5):94. https://doi.org/10.3390/mca29050094
Chicago/Turabian StyleUllah, Ikram, Imtiaz Ahmad, Nigar Ali, Ihtisham Ul Haq, Mohammad Idrees, Mohammed Daher Albalwi, and Mehmet Yavuz. 2024. "Mathematical Modeling and Analysis of Ebola Virus Disease Dynamics: Implications for Intervention Strategies and Healthcare Resource Optimization" Mathematical and Computational Applications 29, no. 5: 94. https://doi.org/10.3390/mca29050094
APA StyleUllah, I., Ahmad, I., Ali, N., Haq, I. U., Idrees, M., Albalwi, M. D., & Yavuz, M. (2024). Mathematical Modeling and Analysis of Ebola Virus Disease Dynamics: Implications for Intervention Strategies and Healthcare Resource Optimization. Mathematical and Computational Applications, 29(5), 94. https://doi.org/10.3390/mca29050094