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Abstract: Muscle ultrasound quantification is a valuable complementary diagnostic tool for diabetic
peripheral neuropathy (DPN), enhancing physicians’ diagnostic capabilities. Quantitative assessment
is generally regarded as more reliable and sensitive than visual evaluation, which often necessitates
specialized expertise. This work develops a computer-aided diagnostic (CAD) system based on mus-
cle ultrasound that integrates the bag of features (BOF) and an ensemble subspace k-nearest neighbor
(KNN) algorithm for DPN detection. The BOF creates a histogram of visual word occurrences to
represent the muscle ultrasound images and trains an ensemble classifier through cross-validation,
determining optimal parameters to improve classification accuracy for the ensemble diagnosis system.
The dataset includes ultrasound images of six muscles from 53 subjects, consisting of 27 control and
26 patient cases. An empirical analysis was conducted for each binary classifier based on muscle type
to select the best vocabulary tree properties or K values for BOF. The result indicates that ensemble
subspace KNN classification, based on the bag of features, achieved an accuracy of 97.23%. CAD
systems can effectively diagnose muscle pathology, thereby addressing limitations and identifying
issues in individuals with diabetes. This research underscores muscle ultrasound as a promising di-
agnostic tool to aid physicians in making accurate diagnoses, streamlining workflow, and uncovering
muscle-related complications in DPN patients.

Keywords: bag of features; ensemble subspace KNN; muscle ultrasound; diabetic peripheral neuropathy;
speeded up robust features; computer-aided diagnostic

1. Introduction

Diabetic peripheral neuropathy (DPN) is a neuromuscular disorder that impacts
individuals with diabetes mellitus, affecting approximately 28% of adults with diabetes
in the United States [1]. Major risk factors for DPN include neuropathic pain, reduced
sensation, ulcers, amputations, diminished quality of life, limitations in daily activities,
and depressive symptoms [2,3]. The diagnosis of DPN is confirmed through quantitative
testing and clinical signs, with nerve conduction studies being one of the most dependable
methods. These studies assess the ability of peripheral nerves to transmit electrical signals
in diabetic neuropathy patients and help identify the occurrence and progression of DPN.
The expertise of trained medical professionals is necessary to carry out these studies [4].
Muscle ultrasound, a quantitative tool for diagnosing muscle conditions, has become
essential due to its reliability, sensitivity, affordability, and ease of use with high-frequency
ultrasound transducers. Computer vision and artificial intelligence (AI) advancements
have greatly influenced computer-aided diagnostic (CAD) systems, particularly in medical
imaging research. AI methods are used to interpret imaging data for potential diagnosis
improvements, especially muscle ultrasonography, for better clinical performance [5,6].

The bag of features (BOF) methodology, also referred to as bag of words (BOW),
is a valuable tool in various domains, such as texture recognition and computer vision
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applications. It revolves around the utilization of an organized set of image features. In
image analysis, the BOF model employs a visual depiction of a word created through vector
quantization achieved by clustering low-level visual attributes like color and texture [7,8].
Classifying medical images can be challenging due to the large number of extracted fea-
tures, making it difficult for machine learning algorithms. Using BOF and clustering can
help reduce the number of features for more efficient classification. However, selecting
the correct number of clusters is crucial [9]. The BOF work is based on a sped-up robust
features (SURF) detector–descriptor approach. It uses integral images to decrease compu-
tation time through a fast-Hessian detector (it is based on the Hessian matrix because of
its good performance in computation time and accuracy) and characterizes Haar wavelet
responses around the point of interest [10]. Ensemble techniques combine multiple clas-
sifiers and are popular for enhancing classification performance. They show significant
error reductions across real-life applications and handle non-informative features better
than individual models [11]. In ensemble learning, several approaches exist as follows:
(i) Random subspace, which involves randomizing the learning algorithm by selecting
a subset of features before training and combining the models’ outputs using a majority
vote; (ii) bagging or bootstrap aggregation creates models trained on random data, and the
predictions are aggregated for the final prediction using averaging; (iii) boosting involves
averaging or voting on multiple models and weights the constructed models based on their
performance [12].

The current study introduces a new integration of a bag of features and ensemble
subspace KNN algorithms, which have demonstrated promising outcomes in enhancing
the diagnostic accuracy of DPN. This represents a significant advancement in muscle ultra-
sound research. Moreover, the study includes a comparative analysis of the performances
of classification algorithms, support vector machine (SVM), and conventional k-nearest
neighbor (KNN) and their impact on model accuracy and diagnostic tasks. In addition, it
provides insights into utilizing comprehensive performance analysis, reliable evaluation,
and innovative approaches for diagnosing DPN using muscle ultrasound.

We have organized the content in this paper into the following sections. Section 2
provides a literature review of related work. Section 3 explains our research method-
ology, including the dataset used, the experimental setup, and performance evaluation.
In Section 4, we thoroughly analyze the results to assess the reliability of our proposed
approach. Section 5 discusses the significance of the results achieved and the limitations of
this study. Section 6 presents concluding remarks and future work.

2. Related Work

Researchers have used muscle ultrasound as a supplementary diagnostic tool for
DPN, integrating it with clinical data [13,14]. They have also employed ensemble classi-
fiers for medical data classification [15] and utilized ensemble-based BOF algorithms for
medical image classification to enhance the performance and accuracy of the diagnosis
system [16,17]. Recently, different feature extraction approaches have been conducted;
Konig et al. [18] extracted first-order statistics, wavelet-based, and Haralick’s features from
ultrasound images and used feature selection and reduction to identify a stable combi-
nation. Then, they explored Fisher’s, SVM, and KNN classifiers for myositis detection
and achieved a classification accuracy of 87%. Nodera et al. [19] quantitatively analyzed
lower leg ultrasound images using texture features extracted by calculating the histogram,
grey-level co-occurrence matrix, neighborhood grey-level different matrix, grey-level run
length matrix, and grey-level zone length matrix. The classification was performed by
simple logistic, SVM, and random forest, with the random forest algorithm achieving a
classification accuracy of 78.4%. On the other hand, many researchers utilized deep learning
capabilities to classify muscle ultrasound images, such as Ahmed et al. [20] who proposed
a modified lightweight YOLOv5 architecture, convolutional block attention module, spatial
pyramid pooling-fast plus, and exponential linear unit activation function to detect and
classify inflammatory myopathies automatically. This model achieved an accuracy of 98%
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for binary and multiclass classification. In a recent study, Noda et al. [21] developed a
real-time automatic texture analysis of muscle ultrasound for diagnosing neuromuscular
disorders. They extracted texture features (dissimilarity and homogeneity) from the re-
gion of interest based on a random selection of size and location for classification using
a random forest algorithm. The results achieved an accuracy of 81% in distinguishing
patients. Recent research has emphasized the importance of employing advanced tech-
niques like feature extraction, machine learning, and deep learning models to analyze
muscle ultrasound. Further exploration in this area has the potential to enhance patient
care and provide more accurate diagnoses for DPNs. Table 1 summarizes works operated
on different methodologies.

Table 1. Comparison of the latest studies on muscle ultrasound diagnosis.

Study Algorithm Model No. of
Subjects/Images Accuracy

Konig et al. [18] Machine learning 2D-DWT + PCA + SVM 18/60 87%

Nodera et al. [19] Machine learning Texture features + (simple logistic,
SVM, and random forest) 51/51 78.4%

Ahmed et al. [20] Deep learning YOLO-CSE + SPPF+ ELU 80/3214 98%

Noda et al. [21] Machine learning Texture features + random forest 75/17,021 81%

3. Materials and Methods

The methodology employed in this study is focused on developing and evaluating an
integration of BOF with the ensemble subspace KNN classification models for detecting
DPN using muscle ultrasound, improving the accuracy and dependability of the DPN
diagnostic system, as illustrated in Figure 1. This section details our step-by-step process
to create and assess the proposed system for the DPN classification system. It starts with
collecting muscle ultrasound images, extracting the BOF dataset, classifying through 5-
fold cross-validation, and performance evaluation based on metric measurements. The
muscle ultrasound images were divided into training and testing sets using five-fold
cross-validation. This cross-validation splits the dataset into five equal parts to assess the
classifier’s performance by averaging the results from five separate runs.
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Figure 1. Proposed BOF-based ensemble subspace KNN classification system for DPN diagnosis.

3.1. Dataset

A case–control study comprising 26 DPN patients with type 2 diabetic mellites and
27 healthy controls (CTR) was conducted. Table 2 presents the demographics of the data
set, including 53 subjects. Our work was carried out in academic collaboration with the
Ghazi Al Hariri Surgical Hospital’s Neurophysiology Clinical Center at the Medical City
Complex in Baghdad, Iraq. The study complied with the Declaration of Helsinki’s ethical
guidelines for human experimentation and was authorized by the local health ethics council.
An electrodiagnostic study confirmed the presence of DPN, and an HbA1c test assessing
average blood glucose levels was part of the exclusion criteria. The exclusion criteria of
all groups considered all kinds of other neuromuscular disorders and other diseases like
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kidney failure and cancer and included only diabetic peripheral neuropathy patients and
normal subjects without any disorders and other diseases.

Table 2. Demographic of the study group dataset.

Variable DPN (26) Control (27)

Age (years) 51.5 ± 9.3 42.5 ± 9.6

Gender Male/Female Ratio 20/6 20/7

This study involved ultrasound images of six muscles; as the disease under study was
length-dependent, the investigation was required for each leg, from the proximal to distal
muscles. Three of the muscles were in the upper limb: biceps brachii (BB), brachioradialis
(BR), and abductor digiti minimi (ADM). The other three muscles were in the lower limb:
rectus femoris (RF), tibialis anterior (TA), and abductor hallucis brevis (AHB). The total
number of images per muscle with the distribution among classes is in Table 3.

Table 3. Ultrasound image distribution among muscles and classes.

Muscle DPN Control Total Number of Images

BB 228 179 407

BR 238 228 466

ADM 308 297 605

RF 281 233 514

TA 258 248 506

AHB 359 364 723

The ultrasonographic examination was performed using a Philips iU22, 2012 ultra-
sound machine equipped with a linear probe set to a 5–12 MHz frequency. A particular
preset for musculoskeletal examination was used to examine all the subjects. The subject
was lying prone and relaxed to film the muscles while at rest and in a static position.
A skilled physician performed the muscle ultrasound filming, considering the anatomical
position of the muscle and referring to a previously published paper that serves as a guide
for researchers conducting ultrasound scans of the upper and lower limb muscles [22–27].
Based on the manufacturer’s studies, a particular preset (already saved setting in the ul-
trasound machine) was used for filming muscle ultrasound. The musculoskeletal general
preset was used with a setting of 50% gain, compression of 62, medium pressure, and a
depth of 3 cm. Ultrasound images of the muscle belly were taken, and the best image
displaying muscle fibers in a cross-sectional view with the bone labeled in the background
was saved. The images were saved in digital imaging and communications in medicine
(DICOM) format on the ultrasound machine, labeled with the patient code number and
muscle name for reference and further analysis. In our study, we concentrated on muscle
ultrasound images. We cropped the images to display only the muscle area, removing
irrelevant information like annotation and subject data. The image size for all ultrasound
data sets was 521 × 721 pixels for each of the six muscles.

3.2. Bag of Feature

Muscle ultrasound images are represented as compact descriptions through the BOF
model, and images are concisely described by creating histograms of local descriptors. This
approach involves quantizing the local descriptors of images into visual words based on a
visual vocabulary. This vocabulary is generated by clustering a large set of local descriptors
using K-means algorithms. The output is a set of clusters, where each cluster represents
a visual word. As a result, an image can be described as a bag of visual words, and a
histogram can be constructed with a dimension equal to the size of the visual vocabulary.
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Each bin in the histogram contains the frequency of occurrence of a visual word within
the image [28], as shown in Figure 2. The BOF method is effective for image classification
because it resists object orientation changes and eliminates the need for segmentation
before classification. It creates a codebook representing all possible visual features in a
dataset [16]. A visual codebook maps low-level features into a fixed-length feature vector
within a histogram space, allowing for direct application to the classifiers. A discriminative
codebook is created by selecting representative key points, while a compact codebook is
obtained by eliminating indistinct codewords, reducing computational complexity, and
improving categorization precision [29].
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3.2.1. Feature Extraction

In classifying muscle ultrasound images, feature extraction is a crucial initial step,
categorized into three types: low-level (color and texture), middle-level (shape), and
high-level (semantic interpretation). Color is often used for easy extraction from muscle
ultrasound images. Low-level local features are popular in action recognition for handling
background noise and being independent in detection and tracking. These local features
involve identifying a local area (detector) and describing the identified area (descriptor).
We employed the grid method and the SURF descriptor algorithm to meticulously pinpoint
key features and extract their unique characteristic vectors. By superimposing a precise,
uniform 8 × 8 grid onto the image, we identified the specific points of interest. The process
of extracting features from muscle ultrasound images involves a comprehensive analysis
of low-level, middle-level, and high-level attributes. The SURF descriptor operates by
summing the Haar wavelet response around the point of interest, leveraging the integral
image to minimize the computational load. In detecting interest points, the SURF algorithm
utilizes an integer approximation of the determinant of the Hessian blob detector, which
can be computed with just three integer operations using a precomputed integral image,
ensuring efficient processing. Additionally, for orientation assignment, the SURF algorithm
incorporates wavelet responses in both horizontal and vertical directions, meticulously
factoring in appropriate Gaussian weights. The dominant orientation is determined by
summing all responses within a sliding orientation window of sixty degrees. Additionally,
SURF offers a feature known as upright-SURF or U-SURF, which enhances speed and
demonstrates robustness within a range of ±15 degrees. We used square patches or regions
around key points to extract features at multiple scales. These regions of various sizes
(32 × 32, 64 × 64, 96 × 96, and 128 × 128) were divided into sub-regions (8 × 8 square),
and the vertical and horizontal Haar wavelet responses were calculated to create a four-
dimensional sub-region feature vector. This vector captured the intensity changes’ polarity
at each scale.
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3.2.2. Quantization and Clustering

Multiple features are generated during the key points feature extraction process, re-
sulting in a 64-dimensional feature vector for each region at every scale. Before creating the
codebook, these features are initially reduced to the top 80% of the most robust descriptors
based on their scores. After identifying the strongest key points and extracting their features
using the SURF descriptor, the next step is to extract the BOF from the muscle ultrasound
images through vector quantization. The features are then quantized using the K-means
clustering algorithm to create a vocabulary of K visual words. This involves grouping the
descriptors into K clusters, with the cluster centers representing the K visual words. The
initial cluster centers are randomly selected based on the inputted descriptors, and the
descriptors are assigned to the nearest cluster center based on the Euclidean distance. The
process then iteratively calculates new cluster centers to reduce the sum of the squared Eu-
clidean distances until the cluster centers become stable. The K-means clustering algorithm
typically generates K visual words based on the BOF codebook’s number of K clusters, also
known as codewords.

3.2.3. Encoding

The ultrasound images are represented using visual words obtained from clustering.
Histograms are created from the distribution of visual words in each image, forming a
feature vector showing how often the K visual words appear. The histograms are generated
using a greyscale framework of the muscle ultrasound images. As a result, the input
images’ histograms represent the visual content distribution using the created codebook. A
machine learning algorithm then analyses these histograms and classifies the input muscle
ultrasound images as normal or DPN cases. The BOF model is defined by processing a
muscle ultrasound D dataset containing N images. Each image is represented as a set
of visual features, denoted as d1, d2, . . ., and dn. Tre K-means unsupervised learning
algorithm is then used to group the images based on a fixed number of visual words
W denoted as w1, w2, . . ., and wk, where k is the number of clusters. The data can be
summarized in an N × K co-occurrence table of counts Nij = n (di, wj), where n (di, wj)
represents the frequency of word wj occurring in image di.

3.3. Ensemble Subspace KNN

Ensemble learning integrates multiple classification methods to build a powerful
composite model. The objective is to achieve higher accuracy compared to using any single
model. The base learning method in this study was KNN, while the ensemble approach
was a random subspace. The ensemble KNN algorithm divides the feature space into
separate clusters based on the features associated with different classes. When classifying
a test feature vector, this classifier considers the k-nearest metric distances between the
test sample features and those of the closest classes. In traditional KNN architecture,
the selection of neighbors and the choice of distance metric play crucial roles. Ensemble
classifiers, depicted in Figure 3, amalgamate the results of several base classifiers to heighten
the overall classification accuracy. Although the KNN algorithm is robust, it is susceptible
to alterations in the feature set. To address this, ensemble systems fashion individual
classifiers from randomly chosen data subspaces and then aggregate their outputs using a
majority vote to yield the final result. Subspace KNN encompasses projecting all points
onto a specified subspace and calculating distances to ascertain the K nearest neighbors.
Utilizing multiple designated subspaces is instrumental in determining the majority vote on
the class membership of the test sample by amalgamating the K nearest neighbors [30,31].
In the random subspace ensemble model, multiple KNN classifiers are trained using
different subsets of features randomly selected from the complete dataset. This approach
enables training with smaller feature subsets and improves the feature-to-instance ratio.
For the specific task of classifying muscle ultrasound images, a subset of features with
fewer dimensions is randomly selected from the original dataset, and KNN classifiers
are trained using these feature subsets. This process is repeated multiple times to train
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multiple classifiers, each using different feature subsets. The predictions of these classifiers
are then combined using a majority voting approach. This study utilized the subspace
KNN method for training, employing the simple majority vote rule and the subspace
ensemble method. The learner type was the nearest neighbor, comprising 30 learners and
200 subspace dimensions for classifying the muscle ultrasound images.
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Our research used the MATLAB platform’s computer vision toolbox and machine
learning capabilities. The MATLAB framework helped us design and implement machine
learning algorithms and supported the validation and testing processes using new datasets.
This streamlined environment was essential for conducting efficient and rapid trials, which,
in turn, facilitated the analysis and validation of the proposed method for DPN diagnosis.

3.4. Performance Evaluation

We employed various measures to assess the performance of our proposed method
and determine its effectiveness. These metrics are designed to evaluate different aspects of
the method’s effectiveness and are formulated as follows:

The t-SNE is a technique used to visualize high-dimensional data by projecting it
onto a 2D map while preserving its original structure. It is beneficial for visualizing
data with thousands of dimensions, such as feature vectors from a deep transfer learning
model [32,33].

A confusion matrix is a table arrangement that makes it possible to see how well an
algorithm performs. It comprises false positives (FP), false negatives (FN), true positives
(TP), and true negatives (TN), where P and N are positive and negative samples in the
original dataset.

Accuracy is the ratio of correctly predicted class samples to total samples. It measures
the model’s classification accuracy using the following formula:

Accuracy =
TP + TN

P + N
(1)

Sensitivity measures the accuracy of positive predictions by calculating the ratio of
correctly identified positive results to the total number of true positive and false negative
results. The formula is as follows:

Sensitivity =
TP

TP + FN
(2)
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Specificity measures the model’s ability to correctly reject healthy patients without a
condition by identifying negative instances. It is calculated by dividing the number of true
negatives by the sum of true negatives and false positives. The formula is as follows:

Specificity =
TN

FP + TN
(3)

The F1-Score measures predictive performance calculated from the test’s sensitivity
and specificity. The formula is as follows:

F1-Score =
2 TP

2 TP + FP + FN
(4)

Precision is the ratio of correctly predicted observations to the total predicted observa-
tions, expressed as follows:

Precision =
TP

TP + FP
(5)

A receiver operating characteristic curve (ROC) is a graphical tool used to assess a
classifier’s performance. The AUC represents the separability of class labels; a higher
AUC value indicates better predictive capability, while a lower value suggests a less
accurate model.

4. Results

In this section, we will review the performance analysis findings of our proposed
integrated model, which utilizes ensemble subspace KNN classification based on a BOF
model. The experimental settings involved variations of the BOF with different numbers
of levels in the vocabulary tree K values, applied with machine learning algorithms using
datasets comprising muscle ultrasound images. We extensively examined the extracted
features from BOF, demonstrating the best performance based on classification accuracy
using the optimal K value. We compared the performance of our BOF dataset with cross-
validation using the ensemble subspace KNN algorithm, which is considered a state-of-the-
art model for our research.

4.1. BOF Empirical Evaluation

The suggested BOF-based ensemble subspace KNN muscle ultrasound classification
model is designed to diagnose DPN. The model undergoes training using labeled ultra-
sound images of six muscles to construct the BOF codebook and set parameters for the
classification model. During the testing stage, we utilized ultrasound images as the basis
for our key points detection algorithm. This enabled us to derive SURF descriptors from
the recognized key points. We then quantized the most dependable features using a cre-
ated codebook to produce frequency histograms for the testing images. Ultimately, the
pre-existing classification model produced the intended result. The dataset was used to
select optimal values using empirical analysis to find the best setting for optimizing the
BOF. In this study, we examined the impact of varying the K values for quantization of
the visual word (K visual word) on the system’s performance. We conducted experiments
using different K values, from 200 to 400, to explore how increasing the number of extracted
features from each muscle ultrasound image affects the classification accuracy.

Additionally, we compared two classification models with the proposed ensemble
subspace KNN-based classification in the BOF model. The first model involved fine KNN
algorithms with a Euclidean distance and a single neighbor with equal distance weight.
The second model used SVM with a Gaussian Kernel function and a Kernel scale parameter
set to 32.

Table 4 illustrates the empirical analysis of ADM ultrasound images. The highest
accuracy of 97.23% was achieved with 400 visual words among the three classifiers using
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our proposed ensemble subspace KNN algorithm. The base KNN and SVM algorithms
exhibit variation as the K value increases alongside our proposed ensemble model.

Table 4. Classification accuracy of different K values for ADM muscle.

K-Value SVM KNN Ensemble Subspace KNN

200 89.09% 93.39% 94.71%

250 88.93% 93.06% 95.04%

300 90.41% 93.88% 95.04%

350 88.76% 94.71% 95.70%

400 90.91% 95.37% 97.23%

Tables 5–9 demonstrate the impact of increasing the number of visual words K from
200 to 400 on the classification models of ultrasound images of TA, RF, BR, AHB, and BB
muscle, respectively. This empirical analysis is based on three classification algorithms to
indicate the performance of our proposed ensemble model.

Table 5. Classification accuracy of different K values for TA muscle.

K-Value SVM KNN Ensemble Subspace KNN

200 88.14% 92.88% 91.89%

250 89.72% 92.88% 95.25%

300 87.94% 94.66% 94.86%

350 89.13% 92.89% 95.45%

400 90.12% 95.26% 95.85%

Table 6. Classification accuracy of different K values for RF muscle.

K-Value SVM KNN Ensemble Subspace KNN

200 88.91% 91.25% 93.77%

250 90.86% 92.41% 95.14%

300 89.88% 91.83% 95.14%

350 91.63% 91.05% 95.11%

400 92.41% 94.16% 95.70%

Table 7. Classification accuracy of different K values for BR muscle.

K-Value SVM KNN Ensemble Subspace KNN

200 85.62% 89.06% 88.63%

250 88.63% 89.91% 91.85%

300 88.63% 92.06% 93.99%

350 89.70% 89.06% 91.85%

400 89.27% 93.13% 95.17%
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Table 8. Classification accuracy of different K values for AHB muscle.

K-Value SVM KNN Ensemble Subspace KNN

200 90.46% 89.35% 90.87%

250 88.38% 90.18% 92.39%

300 89.90% 89.21% 91.59%

350 91.01% 90.46% 92.39%

400 92.12% 91.70% 92.67%

Table 9. Classification accuracy of different K values for BB muscle.

K-Value SVM KNN Ensemble Subspace KNN

200 81.53% 82.49% 86.81%

250 76.50% 83.69% 86.33%

300 81.77% 83.45% 87.05%

350 83.69% 83.45% 87.05%

400 85.13% 85.61% 89.00%

The proposed ensemble subspace KNN algorithms demonstrated superior classifica-
tion accuracy compared to KNN and SVM with a K value of 400 visual words BOF. They
achieved performance accuracy of 95.85% for TA muscle, 95.70% for RF muscle, 95.17% for
BR muscle, 92.67% for AHB, and 89.00% for BB muscle. In comparison, KNN achieved
performance accuracy of 95.26%, 94.16%, 93.13%, 91.7%, and 85.61%, while SVM achieved
performance accuracy of 90.12%, 92.41%, 89.27%, 92.12%, and 85.13% for ultrasound images
of TA, RF, BR, AHB, and BB muscle, respectively.

Increasing the number of visual words from 200 to 400 positively impacted the per-
formance of ensemble, KNN, and SVM algorithms by improving classification accuracy
metrics. The analysis revealed that by increasing the number of visual words K, there
was an average improvement in performance accuracy of nearly 5% across the six muscle
ultrasounds for the classification algorithms.

4.2. BOF Visualization Evaluation

We conducted an analysis of visual words and utilized t-SNE visualization to explore
the distribution of high-dimensional feature datasets obtained from ultrasound images
using 400 visual words. This method enabled us to map the data onto a 2D representation,
offering valuable insights into the data distribution and aiding in the interpretation of
predictions. Our analysis revealed that the feature datasets showed non-linear separations,
leading to overlapping data clusters in certain areas. Figures 4 and 5 depict the t-SNE
distribution of upper limb muscles (BB, BR, and ADM) and lower limb muscles (RF, TA,
and AHB) across six different muscles for the BOF dataset with 400 visual words. The data
exhibited multiple clustered groups on the 2D map due to BOF features K-means clustering.
This approach necessitated a non-linear classifier based on a non-parametric method, which
makes predictions by comparing the similarity of data points and identifying the closest
groups or nearest points for a query point. This discovery was influential in selecting
ensemble subspace KNN classification algorithms. Furthermore, qualitative observations
indicated that t-SNE significantly improved the classification accuracy in the training and
validation datasets.
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4.3. Classification Performance Ensemble Subspace KNN

The classification evaluation results are based on the performance metrics listed in
Table 10 for the feature datasets. We used five-fold cross-validation to ensure the model’s
performance on an independent dataset and to effectively identify issues such as overfitting
or selection bias to gain valuable insights. This evaluation used an ensemble subspace
KNN with the extracted features, employing the BOF with 400 visual words.

The results show that the ensemble-BOF-based classifier for the ADM muscle achieved
the highest classification accuracy of 97.23%, while the sensitivity, specificity, precision,
F1-score, and AUC were 97.62%, 96.88%, 96.63%, 97.12%, and 99.52%, respectively.

On the other hand, our proposed model achieved the lowest result with BB muscle,
with an accuracy of 89.00%, sensitivity of 89.70%, specificity of 88.75%, precision of 85.41%,
F1-score of 87.29%, and AUC of 99.62%. Additionally, the evaluation metrics of RF, TA, BR,
and AHB achieved an accuracy of 95.7%, 95.85%, 95.17%, and 92.67%, while the AUC was
99.06%, 99.21%, 99.04%, and 92.83%, respectively. The sensitivity, specificity, precision, and
F1-score finding for the TA muscle ultrasound images were 94.12%, 97.61%, 97.56%, and
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95.81%, and for RF muscle ultrasound images, were 94.80%, 97.09%, 96.96%, and 95.86%,
respectively, based on our proposed ensemble model.

Table 10. Metric analysis of ensemble subspace KNN with 400 visual word BOF dataset for 5-fold
cross-validation.

Muscle Sensitivity Specificity Precision F1-Score AUC Accuracy

TA 94.12% 97.61% 97.56% 95.81% 99.21% 95.85%

RF 94.80% 97.09% 96.96% 95.86% 99.06% 95.70%

BB 89.27% 88.75% 85.41% 87.29% 99.62% 89.00%

BR 96.68% 93.62% 93.95% 95.30% 99.04% 95.17%

ADM 97.62% 96.88% 96.63% 97.12% 99.52% 97.23%

AHB 89.66% 95.62% 95.25% 92.37% 92.83% 92.67%

Moreover, the sensitivity, specificity, precision, and F1-score finding for the BR mus-
cle ultrasound images were 96.68%, 93.62%, 93.95%, and 95.3%, and for AHB muscle
ultrasound images, the values were 89.66%, 95.62%, 95.25%, and 92.37%, respectively.
The sensitivity, specificity, precision, F1-score, AUC, and accuracy can vary within a rea-
sonable range across different muscle ultrasound images due to variations in anatomy,
physiology, and the pathological effects of DPN on each muscle. Our proposed ensemble-
BOF-based classifier can accurately classify cases as either DPN or healthy. Figure 6 shows
the confusion matrix for the binary classifier for each muscle, based on the proposed
ensemble-BOF-based model. The numbers in the matrix indicate the count of images
per class. Upon five-fold cross-validation, our model consistently predicted DPN images
more accurately than healthy/control images. This is due to anatomical changes in the
muscle fibers of DPN patients, resulting in increased muscle echogenicity or grayscale
representation. These changes will be reflected in the detected features and improve the
classification accuracy of DPN cases.
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Additionally, Figure 7 shows the ROC curve for the ensemble subspace KNN classifier
based on the muscle ultrasound images coded with 400 visual words for the ADM muscle
ultrasound images, where we achieved the highest classification accuracy compared with
other muscles.
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5. Discussion

Our research addresses limitations in previous studies by significantly advancing the
DPN diagnosis method. By integrating ensemble machine learning and using a bag of
features or visual word approaches, our model offers a robust and precise technique for
detecting DPN. The bag of features method analyzes ultrasound images and generates a
representation using a group of visual words to illustrate muscle characteristics and extract
relevant features from complex image data. The comparison in Table 11 provides insights
into various neuromuscular disease detection approaches and their corresponding accuracy
rates. Our proposed model for DPN detection achieved the highest accuracy rate of 97.23%
in DPN detection among the listed approaches.

Table 11. Comparison of the muscle ultrasound diagnosis approaches.

Author Approach No. of Subjects/Images Accuracy

Konig et al. [18] 2D-DWT + PCA + SVM 18/60 87%

Nodera et al. [19] Texture features + (simple logistic, SVM, and
random forest) 51/51 78.4%

Ahmed et al. [20] YOLO-CSE + SPPF+ ELU 80/3214 98%

Noda et al. [21] Texture feature (dissimilarity and
homogeneity) + random forest 75/17,021 81%

Our Model BOF + Ensemble Subspace KNN 53/3231 97.23%
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Additionally, the ensemble random subspace KNN algorithm combines multiple base
learners to enhance the classification accuracy of the base classifier, leading to improved
predictions and overcoming the bias–variance tradeoff problem. A comparative analysis
highlighting our proposed system’s performance compared to other state-of-the-art studies
demonstrates the superiority of the bag of features ensemble subspace KNN-based DPN
detection model. This preponderance of the ensemble-BOF-based model against texture-
based classification through conventional SVM and random forest models in [18,19,21]
and complex deep-learning techniques was examined in [20] based on performance for
distinguishing between positive and negative cases and stability across iterations. However,
this study has some limitations, including the number of subjects and images used for the
analysis, which require further investigation. Also, this proposed method can be applied to
other neuromuscular diseases to show its capabilities for detecting pathological changes
in muscle ultrasound images. For future work, the authors will investigate adding more
muscle ultrasound images and analyze them with texture features to find pathological
changes in muscle tissue. Also, it recommended investigating muscle ultrasound with
convolutional neural networks (CNNs), YOLO (versions 8–10), and segment anything
model (SAM), to improve the accuracy of DPN detection with a larger dataset of MUS.

6. Conclusions

Muscle ultrasound is an important imaging technique for diagnosing various neu-
romuscular disorders, including diabetic peripheral neuropathy. Ultrasound imaging of
muscles can identify changes in tissue structure caused by the degeneration of healthy
muscle fibers and their replacement with fatty deposits and fibrous tissue. Muscles affected
by DPN appear differently on ultrasound compared to healthy muscles. Patients with DPN
typically have higher muscle echogenicity, meaning their muscles appear whiter on ultra-
sound scans. However, its full potential is hindered by limitations in visual interpretation
and the necessity for device-specific reference values. Developing specialized ultrasound
systems and using artificial intelligence in computer-aided diagnosis improve usability
and enhance this imaging technique’s effectiveness. In this study, we researched the bag of
features classification model. This model used labelled ultrasound images of six muscles to
construct a codebook and set parameters for the classification model. The training process
involved detecting key points, extracting descriptors, and constructing a codebook using
K-means clustering. Then, the obtained histograms were used to train the classification
model. We examined how the number of visual words impacts classification performance
for six muscles in each subject’s upper and lower limbs. Increasing the number of visual
words enhances classification accuracy by incorporating more distinctive features. In the
proposed BOF model, ensembles were used in the classification process to efficiently detect
muscle ultrasound images in normal or DPN cases. Ensembles of random subspace KNN
were investigated and compared with KNN and SVM base classifiers. The results have
shown that the ensemble subspace KNN achieved superior performance with a maximum
accuracy of 97.23% for ADM muscle ultrasound images when the number of visual words
K was set to 400.
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