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Abstract: This study aims to analyze the dynamics of Lassa fever transmission and its impact on the
brain and spinal cord then devise and analyze preventive actions. The stability of the infection-free
equilibrium point is evaluated; the model’s precision is examined using empirical data; and all
parameters are estimated and fitted. Subsequently, the basic reproductive number is determined,
and subpopulation trends are observed over time. Sensitivity analysis is conducted to identify
critical drivers influencing transmission dynamics. Two-dimensional plots visualize the impact of
crucial parameters on the reproductive number. Through a comprehensive literature review and
case analysis, an association between Lassa fever and various disabilities is established, including
conditions such as encephalitis, hearing loss, ataxia, neuropsychiatric manifestations, meningitis,
seizures, and coma. Solutions are devised and analyzed to enhance early detection, treatment, and
mitigation of disease.

Keywords: mathematical application; Lassa virus; disabilities; empirical data; sensitivity analysis;
optimal control

1. Introduction

The World Health Organization defines disease as a state that negatively impacts
the proper operation of any human, animal, or plant organism. Illnesses in humans are
commonly identified through discomfort, suffering, malfunction, or death. Infectious dis-
eases can be transmitted directly or indirectly through microorganisms and pose significant
global health concerns due to their potential to cause widespread illness and fatalities [1].

One such disease is Lassa fever, also known as Lassa hemorrhagic fever, which is a
zoonotic disease that has emerged or reemerged in various West African countries, includ-
ing Liberia, Ghana, Guinea, Nigeria, Côte d’Ivoire, Togo, Benin, and Sierra Leone [2,3].
Between the 3 and 30 of January 2022, Nigeria documented a total of 211 laboratory-
confirmed instances of Lassa fever, leading to 40 fatalities. These cases emerged across
14 of the 36 Nigerian states and the Federal Capital Territory, covering a large portion of the
country. Notably, most Lassa virus infections in humans, around 80%, are asymptomatic
or have mild symptoms. The remaining 20% of cases are accompanied by febrile ailments
of varying severity that can cause multiple organ malfunctions with or without bleeding.
Although the overall case fatality ratio for the virus is approximately 1%, it is considerably
higher for patients with severe illnesses who require hospitalization, reaching about 15%.
It is primarily transmitted to humans through contact with contaminated food and house-
hold items tainted with urine or feces from Mastomys rats. Secondary human-to-human
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transmission can also occur via direct contact with infected individuals’ blood, secretions,
organs, or other bodily fluids [4], as depicted in Figure 1.

Figure 1. Transmission of Lassa virus.

The virus first targets immune cells in the nasopharynx and then spreads to nearby
lymph nodes before disseminating to multiple organs. Following an incubation period
of 1 to 3 weeks, the disease’s progression varies widely. While most patients exhibit mild
symptoms like malaise, headache, and low-grade fever, more severe cases can present a
range of symptoms, including diarrhea, low blood pressure, and pulmonary edema. A
small percentage, less than 20%, may exhibit oozing blood from the oropharynx, rectum, or
genitals, as documented by Khan et al. [5].

Sensorineural deafness is the most common neurological disability observed in pa-
tients with Lassa fever. Reports suggest that this complication affects around 25% to
one-third of individuals who survive the illness, although some studies argue that this
estimation might be too high [5,6]. Interestingly, hearing loss typically occurs during the
convalescent phase of the illness, even after the patient’s overall recovery, indicating that
an immune-related mechanism rather than a direct viral cause might be responsible for
this disorder [7]. This hearing loss can affect one ear (unilateral) or both ears (bilateral) and
resolves spontaneously in fewer than half of cases.

The infrequent central nervous system (CNS) disabilities caused by Lassa fever include
sensorineural deafness, encephalitis (characterized by inflammation of the brain), delayed
or recuperative ataxia (manifesting as a loss of coordination), subacute or prolonged
neuropsychiatric manifestations (such as mania, depression, asthenia, sleep disturbances,
cognitive impairments, and psychosis), meningitis (involving inflammation of the meninges
surrounding the brain and spinal cord), seizures, and coma. These neurological symptoms
are less common than the more typical systemic manifestations of Lassa fever [8–10].

To cope with specific issues and advance our knowledge of epidemiological circum-
stances, several models for different diseases have been constructed, as shown in [11–19].
Ndenda et al. [20] and Barua et al. [21] developed a mathematical model to analyze the
transmission dynamics of the Lassa virus qualitatively, taking into account mildly and
severely infected individuals separately. Still, their models needed to incorporate optimal
control analysis. This study extends the framework of ordinary differential equations to an-
alyze the virus’ transmission among rodent and human populations, considering variability
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in disease severity among individuals. Furthermore, this investigation provides a visual
analysis of control strategies to prevent disabilities caused by Lassa fever, contributing to
its novelty.

2. Methods

This study utilizes a diverse methodological framework, combining epidemiological
modeling and biomedical investigations, to explore Lassa fever’s spread patterns and neu-
rological consequences. The primary emphasis is on devising robust preventive measures
and innovative diagnostic tools.

2.1. Epidemiological Model

Mathematical modeling is one of the most essential tools for understanding disease
transmission dynamics. The deterministic model’s formulation involves the subdivision of
the human population, H(t), into susceptible, S(t), mildly infected, Im(t), severely infected,
Is(t), and recovered individuals, R(t), mathematically interpreted as

H(t) = S(t) + Im(t) + Is(t) + R(t),

while the rodent population, M(t), which is categorized into susceptible rodents, Sr(t), and
infected rodents, Ir(t), can be elucidated as

M(t) = Sr(t) + Ir(t).

The rate at which the human population becomes susceptible is denoted by Π. In
contrast, the relative transmissibilities from human to human in the mildly and severely
infected categories are represented by βm and βs, respectively. The transition rate from the
mild to the severe category is γ. Furthermore, the relative transmission rates from rodents
to humans are denoted as αm and αs, while the relative recovery rates are symbolized by
ρm and ρs.

For the population of rodents, Λ is taken as the recruitment rate, and ϕ represents
the rate of transmission among rodents, where ν and ξ signify the mortality rates for the
human and rodent populations, respectively.

The system of differential equations can be formulated based on the above description
to represent the biological problem illustrated by a schematic diagram Figure 2.

Figure 2. Schematic diagram of Model (1).
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dS
dt

= Π − βm ImS − βs IsS − (αm + αs)SIr − νS,

dIm

dt
= βm ImS + αmSIr − γIm − (ν + ρm)Im,

dIs

dt
= βs IsS + αsSIr + γIm − (ν + ρs)Is,

dR
dt

= ρm Im + ρs Is − νR,

dSr

dt
= Λ − ϕSr Ir − ξSr,

dIr

dt
= ϕSr Ir − ξ Ir.

(1)

All the variables utilized here must remain non-negative for t ≥ 0, as they represent
the human and rodent populations. The populations of both hosts and vectors can be
expressed as a set of equations:

dH
dt

= Π − ν(S + Im + Is + R),

dM
dt

= Λ − ξ(Sr + Ir).
(2)

The positively invariant region for Model (1) is defined as

W =

{
(S, Im, Is, R, Sr, Ir) ∈ R6

+ : S + Im + Is + R ≤ Π
ν

, Sr + Ir ≤
Λ
ξ

}
. (3)

2.2. Infection-Free Equilibrium (IFE) and Basic Reproductive Number (R0)

The infection-free equilibrium point of Model (1) can be calculated by setting the state
variables representing infectious compartments equal to zero in the differential equations:

E0 =

(
Π
ν

, 0, 0, 0,
Λ
ξ

, 0
)

. (4)

The basic reproductive number, which provides clear insight into the transmission
of any infectious disease, is derived using the next-generation matrix approach. This
methodology can be thoroughly grasped by delving into the theory presented in [22]. The
expression for the basic reproductive number [23,24] is as follows:

R0 = max[Rm, Rs, Rr], (5)

where

Rm =
(Πβm − γν)

ν2 + ρmν
,

Rs = Π
βs

ν2 + ρsν
,

Rr = Λ
ϕ

ξ2 .

Here, Rm and Rs denote the basic reproduction numbers for mildly and severely
infected human populations, respectively, while Rr denotes the basic reproduction number
for rodents. Effective public health interventions and the evaluation of disease dynamics
depend on these metrics.
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2.3. Stability Analysis

The use of stability analysis in mathematical models of infectious diseases offers
significant insights into disease transmission and persistence dynamics. By evaluating the
stability of various equilibrium points, one can better understand the possible outcomes
of different control strategies. This is important as better understanding the potential
consequences of various control analyses is vital for predicting the trajectory of infectious
diseases and informing policies to mitigate their impact on populations.

Theorem 1. The infection-free equilibrium point, E0, exhibits local asymptotic stability within the
positively continuous set W if R0 does not exceed unity [25].

Proof. The local stability of infection-free equilibrium exhibits the short-living phenomenon
of Lassa virus [26]. To investigate this further, the Jacobian matrix of System (1) at the IFE
is computed as follows:

J 0 =



−ν −βm
Π
ν −βs

Π
ν 0 0 −(αm + αs)

Π
ν

0 βm
Π
ν − γ − (ν + ρm) 0 0 0 αm

Π
ν

0 γ βs
Π
ν − (ν + ρs) 0 0 αs

Π
ν

0 ρm ρs −ν 0 0
0 0 0 0 −ξ −ϕ Λ

ξ

0 0 0 0 0 ϕ Λ
ξ − ξ


. (6)

The eigenvalues of the matrix J 0 are

λ1 = −ξ,

λ2 = −ν,

λ3 = −1
ξ

(
ξ2 − Λϕ

)
= ξ(Rr − 1),

λ4 = −1
ν

(
ν2 + γν − Πβm + νρm

)
,

λ5 = −1
ν

(
ν2 + ρsν − Πβs

)
.

Both λ1 and λ2 exhibit a negative value, and in addition, λ3 has a negative value if
Rr < 1. Similarly, λ4 and λ5 have negative values if Rm < 1 and Rs < 1, respectively. When
the eigenvalues are negative, a stable infection-free equilibrium will eventually arise, and
the infection dynamics will gradually decrease.

The consequences of Theorem 1 hold substantial significance in the battle against
Lassa fever. When the condition R0 < 1 is met, alongside an initial infected population
falling within the bounds specified by IFE (4), there emerges a feasible opportunity to
eradicate the infection from the entire population. However, if R0 > 1, the disease will
likely persevere.

The task of achieving infection eradication proves to be immensely challenging, irre-
spective of the initial infected population’s size. Consequently, comprehensively assessing
global stability at the IFE becomes a formidable undertaking. The global stability findings
outlined in [27] are brought into play to address this.

Theorem 2. The infection-free equilibrium point, E0, exhibits global asymptotic stability within
the positively continuous set W if R0 does not exceed unity [25].

It suffices to verify the Castillo–Chavez conditions, presented in [27], to investigate
the global asymptotic stability at IFE. The state variables in System (1) are X1 = (S, Sr) and
X2 = (Im, Is, Ir) and the infection-free equilibrium is X∗

1 =
(

Π
ν , Λ

ξ

)
. The system of linear

equations can be solved through the following means:
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dS
dt

= Π − νS,

dSr

dt
= Λ − ξSr,

where we have

S =
Π
ν
−
(

Π
ν
− S(0)

)
e−νt,

Sr =
Λ
ξ
−
(

Λ
ξ
− Sr(0)

)
e−ξt.

The aforementioned equations tend towards the limits Π
ν and Λ

ξ , respectively, as
t approaches infinity, regardless of the initial values of S(0) and Sr(0). Consequently,
X∗

1 =
(

Π
ν , Λ

ξ

)
is considered globally asymptotically stable. Moreover, it can be asserted that

G(X1,X2) =

 βm ImS + αmSIr − γIm − (ν + ρm)Im
βs IsS + αsSIr + γIm − (ν + ρs)Is

ϕSr Ir − ξ Ir

.

define A and AX2 as follows:

A =

 βm
Π
ν − γ − (ν + ρm) 0 αmΠ

ν

γ βs
Π
ν − (ν + ρs)

αsΠ
ν

0 0 ϕΛ
ξ − ξ

,

AX2 =


1
ν Παm Ir − Im

(
γ + ν + ρm − 1

ν Πβm

)
γIm − Is

(
ν + ρs − 1

ν Πβs

)
+ 1

ν Παs Ir(
Λ ϕ

ξ − ξ
)

Ir

.

The matrix A possesses off-diagonal non-negative entries, classifying it as an M-matrix.
As a result, Ĝ can be derived from the expression AX2 −G.

Ĝ(X1,X2) =


(

Π
ν − S

)
βm Im +

(
Π
ν − S

)
αm Ir(

Π
ν − S

)
βs Is +

(
Π
ν − S

)
αs Ir(

Λ
ξ − Sr

)
ϕIr

.

It is clear that Ĝ(X1,X2) is non-negative, where 0 ≤ S ≤ H and 0 ≤ Sr ≤ M.

2.4. Parameter Estimation and Model Fitting

The precise estimation of parameter values remains critical in epidemiological re-
search, ensuring the accuracy of predictions. Validating Model (1) against empirical data is
pivotal for obtaining reliable results, achieved through fitting it to empirical data, offering
crucial insights into predictive accuracy. This study utilized Lassa fever cases reported
in Nigeria and confirmed [4], from weeks one to four in 2022, to estimate parameters,
separately assessing mild and severe cases. Notably, the escalating counts of confirmed
cases underscore the urgent need for effective disease control measures in the community.
The estimated parameter values, evaluated for mild and severe cases and presented in
Tables 1 and 2, respectively, are calibrated against authentic data, acknowledging Nigeria’s
average life expectancy of 55.44 years [28]. Figure 3 represents the tally of confirmed cases
in Nigeria—comparing actual versus estimated numbers.
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Table 1. Estimated parameter values for the mildly infected population.

Notations Values Discription Source

Π 75,806.6 Birth rate of humans per week [28,29]

ν 3.46875 × 10−4 Rate at which humans die naturally [28]

βm 4.0 × 10−9 Rate of mild infections through humans fitted

βs 1.5 × 10−9 Rate of severe infections through humans fitted

αm [1.0 × 10−8, 4.69 × 10−8] Rate of mild infections through rodents fitted

αs 0.0865 Rate of severe infections through rodents fitted

γ 0.3 Rate of being severely infected from mild infection fitted

ρm 0.2 Rate at which humans recover from mild infection fitted

ρs 0.1 Rate at which humans recover from severe infection fitted

Λ 125,000 Birth rate of rodents per week assumed

ϕ 1.0 × 10−6 Rate of infection between rodents fitted

ξ 0.2 Rate at which rodents die naturally fitted

Table 2. Estimated parameter values for the severely infected population.

Notations Values Discription Source

Π 75,806.6 Birth rate of humans per week [28,29]

ν 3.46875 × 10−4 Rate at which humans die naturally [28]

βm 1.0 × 10−11 Rate of mild infections through humans fitted

βs 1.0 × 10−11 Rate of severe infections through humans fitted

αm [1.0 × 10−13, 7.4 × 10−9] Rate of mild infections through rodents fitted

αs 1.0 × 10−15 Rate of severe infections through rodents fitted

γ 1.0 × 10−4 Rate of being severely infected from mild infection fitted

ρm 5.0 × 10−4 Rate at which humans recover from mild infection fitted

ρs [2.49 × 10−3, 7.7 × 10−2] Rate at which humans recover from severe infection fitted

Λ 125,000 Birth rate of rodents per week assumed

ϕ 1.0 × 10−6 Rate of infection between rodents fitted

ξ 0.2 Rate at which rodents die naturally fitted

Utilizing the count of confirmed incidences of Lassa Fever reported in Nigeria during
weeks one (starting from 2 January) through four (starting from 23 January) in the year
2022 [4], the reproductive number for transmissions between humans and rodents is
evaluated based on mild and severe cases in the human population. The computed
reproductive number for the population infected with mild symptoms ranges from 2.46248
to 2.86586. Likewise, the range for the population with severe symptoms is 0.0282547 to
3.26679, whereas the reproductive number for rodents is 3.125.
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(a)

(b)

Figure 3. Visualization depicting the tally of confirmed cases in Nigeria—comparing actual versus
estimated numbers. The various marker shapes denote actual cases per week, while the line represents
estimated data. Data are categorized as (a) mild and (b) severe cases, spanning four weeks from
2 January to 30 January 2022 [4]. The estimated data exhibit a close resemblance to the actual data.

2.5. Population Dynamics

This section explains the estimated parameters and clarifies the intricate interac-
tions between various factors that help spread the virus throughout the population. The
Figures 4 and 5 makes the information presented transparent, which also helps illustrate
how the virus spreads over time. This methodology is necessary to give a more complete
view of the epidemiological scenario being studied.

Actual epidemiological data spanning four weeks in Nigeria are employed as the
foundation for parameter estimation within the model, followed by implementing the
RK4 method to solve the model. This approach yields outcomes for estimated and fitted
parameters, which form the basis for a comprehensive discussion on the model’s solution
and its implications for understanding the evolving dynamics of the disease over time.



Math. Comput. Appl. 2024, 29, 102 9 of 21

Population Dynamics for R0 < 1

Figure 4. Illustration depicting the population dynamics using estimated values of the parameters
for R0 < 1, where Rm = 0.8940, Rs = 0.9110, and Rr = 0.7812.

Population Dynamics for R0 > 1

Figure 5. Illustration depicting the population dynamics using estimated values of the parameters
for R0 > 1, where Rm = 2.3148, Rs = 2.42288, and Rr = 3.1250.
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2.6. Sensitivity Analysis

Sensitivity analysis is essential for assessing how parameter fluctuations like pop-
ulation density, transmission rates, or intervention strategies affect the model’s results.
This technique helps determine which parameters affect forecasts the most. Providing
insights into uncertainty enables researchers and policymakers to prioritize interventions
and devise strategies for controlling disease.

Sensitivity Indices

Sensitivity indices offer a way of measuring the shift in the state variable brought
about by parameter variations. Chitnis et al. have devised a method involving partial
derivatives to compute sensitivity indices, as detailed in their work [30]. The mathematical
expression for these indices is as follows:

ΓR0
x =

∂R0

∂x
× x

R0
. (7)

Analyzing the data presented in Tables 3 and 4, it becomes evident that there is a direct
correlation between virus transmission and trends observed in the parameters βm, βs, and
ϕ. Conversely, virus transmission is inversely related to the negative values associated
with the parameters γ, ρm, ρs, and ξ. Among these sensitivity indices, ξ exhibits the most
significant negative value, representing the rate at which rodents die naturally.

Table 3. Sensitivity indices using estimated parameter values for the mildly infected population.

Parameters Discription Sensitivity Index Sign

βm Rate of mild infections through humans 1.5225 +ve

βs Rate of severe infections through humans 1 +ve

γ Rate of being severely infected from mild infection −0.52250 −ve

ρm Rate at which humans recover from mild infection −0.99822 −ve

ρs Rate at which humans recover from severe infection −0.99654 −ve

ϕ Rate of infections between rodents 1 +ve

ξ Rate at which rodents die naturally −2 −ve

Table 4. Sensitivity indices using estimated parameter values for the severely infected population.

Parameters Discription Sensitivity Index Sign

βm Rate of mild infections through humans 1.0480 +ve

βs Rate of severe infections through humans 1 +ve

γ Rate of being severely infected from mild infection −0.047952 −ve

ρm Rate at which humans recover from mild infection −0.59041 −ve

ρs Rate at which humans recover from severe infection [−0.99552,−0.87773] −ve

ϕ Rate of infections between rodents 1 +ve

ξ Rate at which rodents die naturally −2 −ve

Graphical representations of these observations can be found in Figures 6 and 7.
Notably, each positive index resulting from the sensitivity analysis directly increases the
disease threshold quantity and vice versa.
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Figure 6. Visual illustration of sensitivity indices using mildly infected population.

Figure 7. Visual illustration of sensitivity indices using severely infected population.

The sensitivity analysis reveals that the index of the parameter ϕ, which represents the
rate of transmission among rodents, is +1. This means that any change in its value causes
R0 to climb or fall because of a direct relation. The natural mortality rate of rats, marked by
the parameter ξ, also exhibits a sensitivity index of −2, meaning that a change in its value
results in a reverse shift in R0 because of an inverse relation.

2.7. Relationship Between Significant Parameters and the Basic Reproductive Number

The contour plot depicts the influence of threshold parameters on R0. This approach
offers an effective way to understand how changing these parameters affects disease
transmission potential. The contour plots in Figure 8 vividly display reproductive dynamics
by manipulating two parameters.

Figure 8a illustrates the correlation between the mild infection rate among humans
and the recovery rate from mild infections. These are represented by the parameters βm and
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ρm, respectively, and their impact on R0 is depicted. The results underscore the significance
of diminishing the mild infection rate among humans to a level below 4 × 10−9 while
concurrently ensuring an elevation in the recovery rate from mild infections to keep it
above 0.573819 to continue fulfilling the condition R0 < 1. Similarly, Figure 8b portrays the
influence of the severe infection rate among humans, denoted as βs, and the recovery rate
from severe infections, denoted as ρs, on R0. The findings indicate that curtailing the severe
infection rate among humans to less than 1.5 × 10−9 and elevating the recovery rate from
severe infections to above 0.327465 could contribute to keeping the reproductive number
below unity. Figure 8c,d similarly present analogous results concerning the parameter
values required to keep R0 below unity.

(a) R0 vs. βm and ρm

(b) R0 vs. βs and ρs

Figure 8. Cont.
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(c) R0 vs. βm and γ

(d) R0 vs. ϕ and ξ

Figure 8. Contour plot depicting the influence of parameters on R0.

The outcomes imply that an effective control strategy should encompass reductions in
both the mild and severe infection rates among humans (βm and βs, respectively) as well as
augmentations in the recovery rates (ρm and ρs, respectively) for individuals with mild and
severe infections. This is crucial for keeping R0 below unity. An increase in the likelihood
of transmission would result in a higher reproductive number. On the other hand, reducing
both βm and βs while keeping ρm and ρs constant would cause the reproductive number
to decrease.

To make R0 less than unity, it is imperative to keep βm < 4× 10−9 and βs < 1.5× 10−9.
This highlights that tweaking one transmission parameter will not greatly lower R0. To
stop the spread of viruses within the community, it is critical to have policies addressing
both human–rodent transmission risks and possibilities.
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2.8. Optimal Control

This section articulates three time-varying dynamic control factors, marked by the
notations C1, C2, and C3, that are employed in Model (1) within the domain of optimizing
intervention approaches for the eradication of disease. These factors use nanotechnology to
enhance the virus’ dissemination across the community. Below are descriptions of various
dynamic control factors:

• The control approach C1 emphasizes maintaining cleanliness and raising commu-
nity awareness. To check if these strategies effectively eliminate the Lassa virus, C1
is set to 1. In contrast, assigning a value of 0 to this parameter nullifies the effectiveness
of these strategies. Therefore, accurately putting these preventive measures into action
is crucial for eliminating the Lassa virus.

• The control approach represented by C2 uses nanotechnology to improve Lassa virus
patient diagnosis and care. In milder instances, nanoparticles are utilized to lessen
negative impacts and enhance the effectiveness of antiviral medications. Nanosen-
sors are essential for quickly conveying illness data and supporting accurate treat-
ment decisions during emergencies. Furthermore, nanotechnology makes protective
equipment creation possible, as well as medical imaging improvements, vaccination
developments, and immunological modulation. Meningitis, encephalitis, auditory
impairment, neuropathy, visual issues, cognitive difficulties, organ dysfunction, paral-
ysis, convulsions, and behavioral disorders are among the neurological side effects
linked to Lassa fever.

• One novel approach based on nanotechnology to reduce the spread of viruses among
vulnerable rats is represented by the control variable C3. Creating nano-materials to
discourage rodent occupancy in certain areas is just one method in this broad plan.
Additionally, precise and careful management of rodent populations can be made
easier by nanoparticles containing specific poisonous agents or contraceptives. An
accurate and efficient way to manage rodent populations is through novel obstacles,
traps, and nanotechnologies that alter rodent behavior. The promise of nanotechnology
makes the efficacious control and management of rodent-related diseases possible, as
demonstrated by these pragmatic applications.

A control model for Lassa Fever management can be constructed utilizing the previous
descriptions. This model involves three variables that change over time, outlined as follows:

dS
dt

= Π − βm ImS − βs IsS − (1 −C1)(αm + αs)SIr − νS,

dIm

dt
= βm ImS + (1 −C1)αmSIr − γIm − (ν + ρm + θ1C2)Im,

dIs

dt
= βs IsS + (1 −C1)αsSIr + γIm − (ν + ρs + θ2C2)Is,

dR
dt

= (ρm + θ1C2)Im + (ρs + θ2C2)Is − νR,

dSr

dt
= Λ(1 −C3)− ϕSr Ir − ξSr − θ3C3Sr,

dIr

dt
= ϕSr Ir − ξ Ir − θ3C3 Ir.

(8)

The purpose of this model is to reduce the transmission of the Lassa virus among
individuals and rodents in the community using three controls. This objective will be
achieved while maintaining cost-effectiveness. To achieve this goal, the objective functional
is defined as follows:

F (Ci) =
∫ t f

0

(
A1 Im + A2 Is + A3Sr + A4 Ir +

1
2

3

∑
i=1

BiC2
i (t)

)
dt, (9)
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where t f denotes the ultimate execution time of the control, and t ∈ [0, t f ] represents the
constant weight factors Ai (i = 1, 2, 3, 4) and Bi (i = 1, 2, 3), while Ci represents the total

cost associated with the control variables for i = 1, . . . , 3. The function B1C2
1

2 represents cost
control for elevating community awareness and encouraging good hygiene practices. In

contrast, B2C2
2

2 constitutes the cost control functions for diagnosing and treating disabilities

caused by Lassa fever through nanotechnology. Similarly, the term B3C2
3

2 signifies the cost
control functions related to the utilization of a nanotechnological approach for controlling
virus transmission via rodents. To address the given minimization dilemma, it is essential
to ascertain the optimal control, denoted as C∗ =

(
C∗

1 ,C∗
2 ,C∗

3
)
:

F (C∗
1 ,C∗

2 ,C∗
3) = min{F (C1,C2,C3) : C1,C2,C3 ∈ Ω}. (10)

Define a set Ω as

Ω =
{
(C1,C2,C3) : 0 ≤ C1(t),C2(t),C3(t) ≤ 1, t ∈ [0, t f ]

}
.

Pontryagin’s maximum principle reconfigures the task of reducing controls (10) within
the optimal control system (8) into a pointwise challenge of minimizing the Hamiltonian.
This conversion has been extensively explored in the literature [31], delineating the resultant
Hamiltonian equation as H.

H = A1 Im + A2 Is + A3Sr + A4 Ir +
1
2

3

∑
i=1

BiC2
i (t) +

6

∑
i=1

σiMi. (11)

In this context, Mi for i ranging from 1 to 6 symbolizes the expressions on the right-
hand side of the differential equations that dictate the behavior of the state variables in
System (8). Meanwhile, σi, corresponding to values of i from 1 to 6, denotes the adjoint
functions linked to the state variables within the control model. The expanded version of
the Hamiltonian equation is articulated as follows:

H = A1 Im + A2 Is + A3Sr + A4 Ir +
1
2

B1C2
1 +

1
2

B2C2
2 +

1
2

B3C2
3

+ σ1(Π − βm ImS − βs IsS − (1 −C1)(αm + αs)SIr − νS)
+ σ2(βm ImS + (1 −C1)αmSIr − γIm − (ν + ρm + θ1C2)Im)

+ σ3(βs IsS + (1 −C1)αsSIr + γIm − (ν + ρs + θ2C2)Is)

+ σ4((ρm + θ1C2)Im + (ρs + θ2C2)Is − νR)
+ σ5(Λ(1 −C3)− ϕSr Ir − ξSr − θ3C3Sr)

+ σ6(ϕSr Ir − ξ Ir − θ3C3 Ir).

The theorem presented below outlines the criteria for controls that meet the objective
of minimizing the problem (10). It is important to note that the approach used in this study
is based on the methods described in [32,33].

Theorem 3. If C∗
1 ,C∗

2 , and C∗
3 ∈ Ω are specific control variables that hold true for (10) with respect

to the associated model, Model (8), then there exists a set of functions, σ1(t), σ2(t), . . . , σ6(t), that
meet the requirements of the subsequent system:
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dσ1

dt
= νσ1 + (σ1 − σ2)βm Im + (σ1 − σ3)βs Is + (σ1 − σ2)αm Ir + (σ1 − σ3)αs Ir

− (σ1 − σ2)αm Iru1 − (σ1 − σ3)αs Iru1,
dσ2

dt
= −A1 + (σ2 − σ3)γ − σ4(ρm + θ1u2) + σ2(ν + ρm + θ1u2) + (σ1 − σ2)βmS,

dσ3

dt
= −A2 + (σ1 − σ3)βsS + σ3(ν + ρs + θ2u2)− σ4(ρs + θ2u2),

dσ4

dt
= νσ4,

dσ5

dt
= ξσ5 − A3 + ϕσ5 Ir − ϕσ6 Ir + θ3σ5u3,

dσ6

dt
= −A4 + ξσ6 + (σ1 − σ2)αmS + (σ1 − σ3)αsS + (σ5 − σ6)ϕSr + θ3σ6u3

− (σ1 − σ2)u1αmS − (σ1 − σ3)u1αsS,

subject to the transversality conditions σi(t f ) = 0 for all i = 1, 2, . . . , 6. Hence, the optimal control
Ω = (C∗

1 ,C∗
2 ,C∗

3) is given by

C∗
1 = min

{
max

{
0,

(αm(σ2 − σ1) + αs(σ3 − σ1))SIr

B1

}
, 1
}

, (12)

C∗
2 = min

{
max

{
0,

(σ2 − σ4)θ1 Im + (σ3 − σ4)θ1 Is

B2

}
, 1
}

, (13)

C∗
3 = min

{
max

{
0,

Λσ5 + θ3σ6 Ir + θ3σ5Sr

B3

}
, 1
}

. (14)

Proof. Expanding on the approach detailed in [32], Pontryagin’s maximum principle can
be utilized to establish the conditions for the existence of an optimal control problem,
which entails an assessment of the Hamiltonian function’s partial derivatives with respect
to the state variables. Consequently, this process enables the derivation of the necessary
conditions that the adjoint variables must fulfill, outlined as follows:

dσ1

dt
= −∂H

∂S
,

dσ2

dt
= − ∂H

∂Im
,

dσ3

dt
= −∂H

∂Is
,

dσ4

dt
= −∂H

∂R
,

dσ5

dt
= − ∂H

∂Sr
,

dσ6

dt
= −∂H

∂Ir
.

By satisfying the transversality conditions, σi(t f ) = 0, for each i within the range of 1
through 6, an analysis of the controls’ behavior can be elucidated through the process of
differentiating the Hamiltonian, H, with respect to the optimal control triplet (C∗

1 ,C∗
2 ,C∗

3).

∂H
∂Ci

= 0, i = 1, 2, 3.

Then, the controls can be defined by implementing limitations on their values through
suitable justifications.

C∗
i =


0, if ∆∗

i ≤ 0
∆∗

i , if 0 ≤ ∆∗
i ≤ 1

1, if ∆∗
i ≥ 1

where
∆∗

1 =
(αm(σ2 − σ1) + αs(σ3 − σ1))SIr

B1
,

∆∗
2 =

(σ2 − σ4)θ1 Im + (σ3 − σ4)θ1 Is

B2
,

∆∗
3 =

Λσ5 + θ3σ6 Ir + θ3σ5Sr

B3
.
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This completes the proof.

The problem’s numerical solution has been executed, and the efficacy of the imple-
mented controls has been observed. The premise of this study is based on a 4-week optimal
campaign, leveraging the values from Tables 1 and 2. The initial conditions are established
as follows: S(0) = 218,541,212; Im(0) = 39; Is(0) = 10, R(0) = 50; Sr(0) = 500,000; and
Ir(0) = 10,000. Positive weights are designated as follows: A1 = 3; A2 = 6; A3 = 9;
and A4 = 12 and B1 = 2; B2 = 4; and B3 = 6. By adopting a comprehensive array of
controls, the ultimate objective is to minimize the count of victims while increasing the
number of individuals who have successfully recovered. These outcomes are effectively
demonstrated through graphical visualizations. Figure 9 presents the results of optimal
control for estimated parameter values.

(a)

(b)

Figure 9. Cont.
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(c)

(d)

(e)

Figure 9. Cont.
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(f)

(g)

Figure 9. Implementation of controls C1,C2, and C3.

In Figure 9a, it can be seen that adopting preventive measures leads to a notable reduc-
tion in the susceptible human population, but after the 6th week, it starts to increase. This
signifies that the shift of susceptible individuals into the infected group and subsequently
into the recovered category has stopped.

Implementing control strategies gradually curtails the count of mildly and severely
infected humans. This trend is evident in Figure 9b,c. The increased number of individuals
recovering from the infection is clearly displayed in Figure 9d.

Moreover, after the integration of control efforts, Figure 9e demonstrates a decline in
the susceptible rodent population. This suggests that rodents are moving into the infected
category or are being removed from the community. Furthermore, Figure 9f highlights a
significant reduction in infected rodents.

Numerical results illustrating the effectiveness of various optimal control measures in
mitigating Lassa virus transmission are depicted in Figure 9g. These observations showcase
the efficiency of each strategy in curtailing the spread of the virus within the community
during specific time intervals. Precisely, Control C1 demonstrates a 48% efficacy initially,
which remains effective until the 19th week. Control C2 exhibits a pattern of efficacy initially
from 75%, followed by stabilization until the 16th week, and then decreases in effectiveness.
Similarly, control C3 depicts a 75% efficacy that remains more stable and effective.
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3. Conclusions

This article develops a mathematical model to provide valuable insights into the
interaction between the virus’ systemic behavior and its ability to trigger disabilities. The
investigation of the infection-free equilibrium point’s stability, coupled with the model’s
validation using real-world data, enhances the reliability and applicability of the findings.

Estimating the parameters and calculating the basic reproductive number add a
quantitative dimension, helping to gauge the potential of the virus to spread within a
population alongside the examination of weekly trends among subpopulations. Sensitivity
analysis identifies key influencers driving transmission dynamics, emphasizing the sub-
stantial effects of threshold parameters through the visual representation of informative
contour plots.

The rigorous case analysis and comprehensive literature review exhibit a direct correla-
tion between Lassa fever and impairments like hearing loss, encephalitis, neuropsychiatric
symptoms, ataxia, seizures, meningitis, and coma. Recognizing these neurological conse-
quences underscores the urgent need for effective control measures to mitigate the impact
of the disease on patients’ long-term health.

This study creatively suggests the use of nanotechnology as a targeted intervention,
diagnostic tool, and protective measure against neurological damage caused by the Lassa
virus. The amalgamation of epidemiological proficiency with nanotechnology presents an
innovative approach to alleviating neurological consequences and bolstering outbreak re-
sponses. Through the fusion of mathematical modeling, epidemiological investigation, and
nanotechnology applications, this all-encompassing research embraces a multidimensional
methodology for addressing the complexities linked to the Lassa virus, offering valuable
insights for policymakers, researchers, and public health authorities.
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