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Abstract: This work focused on demonstrating the use of dynamic time warping (DTW) as a metric
for the elementary effects computation in Morris-based global sensitivity analysis (GSA) of model
parameters in multivariate dynamical systems. One of the challenges of GSA on multivariate time-
dependent dynamics is the modeling of parameter perturbation effects propagated to all model
outputs while capturing time-dependent patterns. The study establishes and demonstrates the use of
DTW as a metric of elementary effects across the time domain and the multivariate output domain,
which are all aggregated together via the DTW cost function into a single metric value. Unlike
the commonly studied coefficient-based functional approximation and covariance decomposition
methods, this new DTW-based Morris GSA algorithm implements curve alignment via dynamic
programing for cost computation in every parameter perturbation trajectory, which captures the
essence of “elementary effect” in the original Morris formulation. This new algorithm eliminates
approximations and assumptions about the model outputs while achieving the objective of capturing
perturbations across time and the array of model outputs. The technique was demonstrated using
an ordinary differential equation (ODE) system of mixed-order adsorption kinetics, Monod-type
microbial kinetics, and the Lorenz attractor for chaotic solutions. DTW as a Morris-based GSA metric
enables the modeling of parameter sensitivity effects on the entire array of model output variables
evolving in the time domain, resulting in parameter rankings attributed to the entire model dynamics.

Keywords: multivariate dynamical systems; system identification; functional data analysis

1. Motivations

Sensitivity analysis (SA) is important in the development and application of dynamical
models due to several reasons [1,2]: (i) understanding model behavior—SA helps in
understanding how changes in model parameters affect the overall behavior of the system;
(ii) identifying critical parameters—sensitivity analysis identifies which parameters have
the most significant impact on model outputs, allowing modelers to focus on accurately
estimating these critical parameters, improving the model’s reliability; (iii) model validation
and confidence building—SA aides in building confidence in the model by demonstrating
the robustness of the model and highlighting areas where more precise data is needed;
(iv) guiding data collection—SA informs data collection efforts by determining which
parameters require more accurate measurements, resulting in more efficient use of resources
and time during data collection; (v) exploring uncertainty—SA allows modelers to explore
the effects of uncertainty in parameter values on the models’ predictions.
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A widely accepted definition of SA, written in one of the foundational works on the
topic by Saltelli, Tarantola, et al. [3], is as follows: “Sensitivity analysis (SA) is the study of
how uncertainty in the output of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input”. Given a model y = g(p), SA explores
the relationship between the model’s k input variables, which are the model parameters
p = [p1, p2, . . . , pk], and n output variables, y = [y1, y2, . . . , yn], where g is the model
that maps the model’s inputs to the outputs [3,4]. There are two broad categories of SA:
global SA (GSA) and local SA. Local SA involves adjusting model parameters near certain
reference points to examine how minor changes in the inputs affect the model’s prediction
performance. Although widely used because of its low computational demand, local SA
is limited in its capability to accurately account for the entire model’s behavior, especially
if there are several nonlinear terms in the model [5,6]. This is solved by performing GSA
that allows for the sampling of model parameters from their entire range of possible
values [4,7]. There are two main steps in GSA: (1) sampling of model parameters from the
space of allowed values and this results in the perturbation of the model parameters; and
(2) computation of the effect of model parameters perturbation. Despite progress in refining
various aspects of the GSA workflow for various applications, there are new challenges
in GSA when applied to more advanced applications, such as SA of high-dimensional
dynamical models [2], and this current work aimed to contribute a solution.

Performing SA on high-dimensional dynamical models has been a challenge due to the
functional nature of data, i.e., information is a sequence of data [2]. Handling such functional
data during SA has been the focus of numerous studies that can be grouped into two main
categories: (1) elementary effects of the coefficients of basis functions [8–10], and (2) variance
decomposition [10,11]. However, it is computationally prohibitive to apply these prior
SA techniques separately on each time-dependent output in high-dimensional dynamical
models [12]. This work provides a solution to this challenge by establishing the theory and
demonstrating the use of dynamic time warping (DTW) as a metric of elementary effects
in Morris-based GSA. Originating in time series analysis, the DTW algorithm measures
the similarity between two sequential data by determining their optimal alignment or
matching via dynamic programming [13]. The sequences are “warped” non-linearly in the
time dimension to determine a measure of their similarity, which is the alignment path with
the minimal cost [14]. This makes DTW a fitting technique to be the generalized metric of
the Morris GSA for dynamical models that exhibit a range of linear and non-linear effects
of the parameters. We propose DTW as an elementary effects metric for Morris-based GSA
of high-dimension dynamical models.

2. The Proposed DTW-Based Metric of Elementary Effects for Dynamical Systems

Our proposed SA scheme, which we call DTW-based Morris GSA, can be visualized
using Figure 1 and Algorithm 1. Due to determination of the minimal cost of alignment,
DTW determines not only the path to align the paired sequences, but also the optimal
cost value to align the sequences [13]. After alignment via dynamic programming, the
difference between the two sequences (or perturbation in the context of SA) is computed
using a distance measure, like Euclidean distance, and aggregated by taking the mean of
the distances we denote as CDTW as shown in Equation (1), where am is the length of the
mth alignment path and M is the total number of paired alignment paths. This makes the
optimal cost of alignment CDTW as a measure of perturbation between the two sequences,
which is equivalent to the “elementary effect” in the original Morris GSA [15]. This leads
us to the following proposition:

CDTW =
1
M

M

∑
m=1

am (1)
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Proposition 1. We take the dynamic time warping (DTW) cost of alignment between pairs of sequen-
tial model outputs as the “elementary effect” to be used in the Morris GSA. By adding conditioning on
the multiple outputs, e.g., via normalization along each output dimension, the DTW cost of all model
outputs may then be aggregated together, e.g., via summation, averaging, etc., to compute a single
metric of model perturbation between two parameter settings; hence, a single metric of perturbation
across all model outputs is computed per parameter trajectory in the Morris GSA.

This proposed SA scheme implements a functional computation of the elementary
effect because DTW takes into account the entire sequential data in every model output
pair to compute the cost of alignment. In contrast to the prior algorithms implementing
basis functions approximation [8] and variance decomposition [11], DTW-based Morris
GSA does not approximate the model outputs, nor make assumptions on the sequential
data (normality of residuals, independence, etc.) in computing SA index. This makes our
proposed algorithm to be the first GSA on dynamical models that does not approximate
the model perturbations. We show in this paper the workflow on how to implement a
DTW-based Morris GSA.
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Figure 1. Schematic on how DTW is implemented for each pair of model parameter perturbations.
(A) The resulting data sequences (time curves) of model output between two pairs of parameter
settings constitute one trajectory of perturbation (deviation). (B) Each pair of perturbed curves
undergoes DTW alignment computation, achieved by applying dynamic programming. (C) The
DTW cost of alignment, CDTW , represents the deviation between the curves.



Math. Comput. Appl. 2024, 29, 111 4 of 13

Algorithm 1: DTW-based Morris GSA

This is the core DTW-based Morris GSA. Note: The algorithmic innovations in this current work from the base Morris
algorithm are in Step 3.
Steps:
1. Initialize the grid jump (∆), and the number of trajectories (r) of each parameter.
2. Simulate model for each trajectory and collect all model output vectors:

2.1. Randomly generate a starting point in the input parameter space.
2.2. Simulate model across random trajectories of input parameter:

2.2.1. Perturb the parameter by ∆, keeping others constant.
2.2.2. Run the model with the original and perturbed inputs and collect sequential data of model outputs.

3. Calculate the elementary effect of each parameter per trajectory step via DTW:
3.1. Normalize model output vectors according to each model output’s high and low values.
3.2. Calculate the elementary effect for each parameter per trajectory step via DTW:

3.2.1. Compute DTW cost (CDTW) then the elementary effect in each pair of original and perturbed model outputs.
3.2.2. Compute the average of the elementary effects of each parameter across all model output dimensions.

4. Calculate the mean (µ) of the elementary effects for each parameter across all trajectories. This number is the SA
index for each model parameter subject to GSA.
5. Rank the parameters based on the mean µ to identify the most influential model parameters.

3. Notations and Formulations for DTW-Based Morris GSA

We first present the original Morris formulation to have a reference for the new
approach in our proposed DTW-based Morris GSA. Then we show the modifications of the
formulations to implement the DTW cost as the new elementary effect metric.

3.1. Original Morris GSA Formulation

The Morris GSA involves the computation of the SA index using the fundamental
measure of “elementary effect” as a representation of model output perturbations relative
to the corresponding parameter perturbations. Let us denote the n model outputs (high-
dimensional) of the system of differential equations to be X = [X1, X2, X3, . . . , Xn], and the
k model parameters to be P = [p1, p2, p3, . . . , pk]. So, the system of ordinary differential
equations (ODEs) for the dynamical system evolving in time t is represented as follows
with the function f :

dX
dt

= f (X, P, t) (2)

Note that we are generalizing the ODE model by assuming f to be composed of
coupled ODEs where the Xn’s may exhibit relations among each other via the mathematical
definition of f . To compute the “elementary effect”, each parameter in P is varied across
r levels in the space of the parameters according to the Morris sampling approach [7,15].
The region of Morris sensitivity sampling is a k-dimensional r-level grid. Each parameter
pi being perturbed by an amount ∆ has its own elementary effect EEi (Equation (3)) on
the model outputs [7], but the original Morris formulation is valid only at a particular jth
time-point tj in the time-sequence.

[EEi(P)]tj
=

X(p1, . . . , pi−1, pi + ∆, pi+1, . . . , pk)− X(P)
∆

(3)

µi =
∑r

∣∣∣[EEi(P)]tj

∣∣∣
r

(4)

The Morris sensitivity index for ith parameter pi is then computed and we denote
the SA index as µi (Equation (4)). High level of µi indicates high SA index, which means
very sensitive model outputs relative to parameter pi perturbations. Note that several
prior works were conducted to extend this original Morris formulation to try to capture the
elementary effects across the entire sequence of t, but these works implemented approxi-
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mations of the sequential data of model outputs, as pointed out in the Introduction Section.
This paper proposes the DTW-based Morris GSA that eliminates the approximations while
achieving the goal of capturing the perturbation patterns across t.

3.2. DTW-Based Morris GSA Formulation

Our proposed DTW-based Morris GSA builds on the formulations of the original
Morris GSA, as shown above, by replacing the computation of elementary effect with
the DTW alignment cost, which captures the perturbations in the model outputs across
the time sequence t. This means that the model outputs X are now functions of both P
and t, i.e., X(P, t), when computing the elementary effect. We simplify the notation by
replacing the numerator expression representing the perturbation in the model outputs
[X(p1, . . . , pi−1, pi + ∆, pi+1, . . . , pk, t)− X(P, t)] with the DTW cost when the parameter
pi is perturbed by ∆, which we simply denote as CDTWi (see Figure 1 also). That is, we
define the new elementary effect [EEi(P)]DTW as measured by the cost of DTW alignment
as shown in Equation (5). The SA index, µDTWi, is computed in the same manner as the
original Morris approach but using the [EEi(P)]DTW as shown in Equation (6). For correct
aggregation of the costs across all model outputs into a single CDTWi value, model outputs
are normalized within each dimension in X (see Algorithm 1) prior to computing CDTWi;
hence, prior to computing [EEi(P)]DTW .

[EEi(P)]DTW =
X(p1, . . . , pi−1, pi + ∆, pi+1, . . . , pk, t)− X(P, t)

∆
def
=

CDTWi
∆

(5)

µDTWi =
∑r|[EEi(P)]DTW |

r
(6)

3.3. Assertion: The Original Morris GSA Is a Special Case of DTW-Based Morris GSA

This new formulation of SA index computation from the DTW-based elementary
effect is a generalization of the original Morris elementary effect when the DTW-based
Morris is applied on a single time point tj. This naturally follows from the definition of the
DTW-based elementary effect [EEi(P)]DTW as discussed above. This means the original
Morris GSA is a special case of one time-point implementation of our proposed DTW-based
Morris GSA.

4. Methodology
4.1. Pseudo-Code of Implementing DTW-Based Morris GSA

The implementation of DTW-based Morris GSA in this study was conducted by setting
different levels of a random number generator index, which varies the sampling trajectories
for the model parameters. Algorithm 2 summarizes the workflow for this implementation.

Algorithm 2: Implement DTW-based Morris GSA at Varying Randomization

This is the implementation-level algorithm for the DTW-based Morris GSA. Note: RNG seed randomization affects
step 2.1 and 2.2 in Algorithm 1.
Steps:
1. Generate a set of seed index for the random number generator (RNG)
2. Collect instances of parameter sensitivity ranks via Algorithm 1

2.1. Implement Algorithm 1 for each seed index.
2.2. Append each parameter ranking results until all RNG seeds are implemented.

3. Apply descriptive statistics and aggregation on the all-parameter sensitivity ranks.
4. Apply a set of rank-aggregation techniques to computationally determine the overall ranks of the parameters

4.2. Python Code Implementation: DTW-Morris GSA Python Module

The popular programming language Python was used to implement the computations
for this DTW-based Morris GSA. The code scripts are maintained in the open-access online
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GitHub repository of the paper [16]. For ease of use and readability of the codes and
workflow in this paper, the Python codes were also organized in Jupyter Notebook files,
which are also available in the same repository. See the Data Availability Section for more
information.

4.2.1. Model Parameter Sampling via Morris

The generation of the model parameters was achieved by using an existing Python
code implementation of the Morris sampling written by a prior study [17]. To maintain
good integration of our proposed DTW-based Morris GSA, this prior code implementation
of Morris sampling was adopted into the Python module we created for this work.

4.2.2. ODE Integration

The ODE integration method implemented was the ‘RK45’: Explicit Runge-Kutta
method of order 5(4) [18]. This was carried out using the Python package ‘Scipy’ [19] via
the function ‘solve_ivp()’ under the ‘integrate’ method class: scipy.integrate.solve_ivp().
After testing other integrating methods in the Scipy module, it was found that the RK45
simulated the ODEs in the same fidelity as the more computationally demanding methods
in the module (e.g., ‘Radau’, ‘BDF’, ‘DOP853’). The effect of step size was evaluated in
preliminary computations (at 50 runs, 100 runs, and 500 runs) and it was found that the
best step size was achieved when the integrating function is run in its default setting of
“inferring the best step size”, based on the error tolerances, relative error (or “rtol” in the
module code), and absolute error (or “atol” in the module code) when running the RK45.
It must be noted, however, that the another argument in the “scipy.integrate.solve_ivp()”
function the “t_eval” is different from the step size. The “t_eval” specifies the time-points
to “store” the computed solution values, but the step size of evaluation is separate and is
based on the specified “atol” and “rtol”, as explained above. The defaults values of rtol
and atoll are: rtol = 1 × 10−3 and atoll = 1 × 10−6 [19].

4.2.3. GSA Index Computation

The computation of the GSA index was achieved via the proposed DTW-based Morris
(Algorithms 1 and 2) implemented in a Python module developed for this study. This
module we call ‘DTWMorrisGSA’ is available as an open source code written in Python
hosted in the online repository of the paper [16]. This module is also being packaged for
deployment in the PyPi repository (currently the module is in the TestPyPi repository) for
easier installation by interested users.

4.3. Example Time-Series Dynamical Models Tested

The set of examples chosen for the testing of the proposed algorithm showcases a
progression of the complexity of the dynamical models. The first example involves a single
model output, the second example involves three model outputs, and the third example
involves a set of solutions to chaotic systems. This progression allows the evaluation of the
advances the proposed algorithm brings and also allows for the elucidation of potential
limitations.

4.3.1. Example 1: Mixed-Order Adsorption Kinetics—Single-Output Dynamics

The first example tested is the mixed-order adsorption kinetics model involving a
single differential equation of the adsorption capacity (q) [20,21]. Following is the set of
ODE system (Equation (7)) for this adsorption dynamics. There are three parameters in
the model and all are subjected to GSA via the proposed algorithm: k1 = first-order rate
constant, k2 = second-order rate constant, and qe = adsorption capacity at equilibrium [22].

dq
dt

= k1(qe − q) + k2(qe − q)2 (7)
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4.3.2. Example 2: Microbial Growth Kinetics—Multiple-Output Dynamics

The second example tested is a Monod-type microbial kinetics that models the growth
of microbial cells (C), the depletion of the substrate (S) during biogrowth, and the pro-
duction of extracellular product (P) during biogrowth. That is, X = [C S P]T having three
dimensions with each variable expressed in its ODE form with respect to time t. The spe-
cific model used is for the conversion of glucose to ethanol by Saccharomyces cerevisiae [23].
Following is the set of differential-algebraic ODE system for this biogrowth dynamics.
There are six parameters in the model and all are subjected to GSA via the proposed al-
gorithm: kd = cell natural death rate constant, Ys/c = substrate-per-cell yield coefficient,
Yp/c = product-per-cell yield coefficient, Ks = substrate saturation constant, ksm = cell main-
tenance utilization coefficient, and µmax = maximum specific growth rate. The model is
shown in Equations (8)–(14).

dC
dt

= rg − rd (8)

dS
dt

= −rgYs/c − rsm (9)

dP
dt

= rgYp/c (10)

where:
rg = kobsC

S
Ks + S

(11)

kobs = µmax

(
1 − P

93

)0.52
(12)

rd = kdC (13)

rsm = ksmC (14)

4.3.3. Example 3: Lorenz Attractor—A Set of Chaotic Solutions

The third example tested is the Lorenz attractor ODE system [24] that is commonly
used as a benchmark ODE for similar works on the analysis of dynamical models due to its
characteristic chaotic behavior that occurs with certain combinations of model parameter
values [25]. The Lorenz system is a foundational dynamical model in the areas of chaos
theory and weather modeling such as atmospheric convection [26]. The Lorenz ODE system
consists of three variables we denote as X1 = rate of convection, X2 = rate of horizontal
temperature variation, and X3 = rate of vertical temperature variation. Following is the
set of differential-algebraic ODE system for this chaos dynamics. That is, X = [X1 X2 X3]

T

having three dimensions with each variable expressed in its ODE form with respect to time
t. There are three parameters in the model and all are subjected to GSA via the proposed
algorithm: α, β, and γ, which are parameters respectively proportional to the Prantl number,
Rayleigh number, and certain physical dimensions of the atmospheric layer itself [25]. The
model is shown in Equations (15)–(17).

dX1

dt
= α(X2 − X1) (15)

dX2

dt
= X1(β − X3)− X2 (16)

dX3

dt
= X1X2 − γX3 (17)

4.4. Analysis and Aggregation of Model Parameter Sensitivities

Existing data analysis and data aggregation techniques are used to evaluate the per-
formance of the proposed DTW-based Morris GSA, and to make conclusions about the
sensitivities of the model parameters in Example 1, Example 2, and Example 3. For each
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run of the DTW-based Morris algorithm, the parameter sensitivity values are used to rank
the parameters, with Rank 1 assigned to the most sensitive (highest value). With the seed
index of the random number generator (RNG) varied in the study of each model, a set of
parameter ranking is created for every RNG index. After running the set total of varied
RNG index (Algorithm 2), a set of parameter rank list is consequently created. Graphical
analysis on the parameter rank list is conducted to evaluate sensitivity trends. Finally, a set
of rank-aggregation techniques is implemented on each model parameter rank list to com-
putationally determine the overall ranks of the parameters. The techniques include: Borda’s
rank aggregation method (Borda), and the Cross Entropy Monte Carlo rank aggregation
method (CEMC), which are all implemented using an existing R-package ‘TopKLists’ [27].
These methods were selected based on their long-established performance and their suit-
ability according to the data structure of the sensitivity indices from the DTW-based Morris
GSA. Furthermore, the Borda method is a popular type of non-optimization-based method
and the CEMC is a type of optimization-based method [28].

5. Results and Discussion

The results show the successful implementation of our proposed DTW-based Morris
GSA for high-dimensional dynamical models.

5.1. Example 1: Mixed-Order Adsorption Kinetics—Single-Output Dynamics

The results are shown in Figure 2. The sample adsorption kinetics curves in Figure 2A
follow the typical patterns of adsorption of various adsorbate-adsorbent pairs. The rank-
aggregation results (Figure 2B,C) on the parameter SA index rankings show consistent
overall rankings of the parameters with k1 as Top1 indicating it is the most sensitive model
parameter. Parameter k2 is Top2 and qe as the least sensitive parameter being Top3.
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Figure 2. Results in implementing the DTW-based Morris GSA on a single-output dynamics us-
ing the example of mixed-order adsorption kinetics: (A) example natural curves from the simu-
lated adsorption kinetics showing sample two trajectories among several trajectories during runs;
(B) descriptive summary of the model parameter ranking based in SA index; (C) Borda method and
CEMC method rank-aggregation results. First, the Morris sampling approach was applied to create
the set of model parameter values that represent the perturbation in the parameter values creating the
sampling trajectory such that p1 = [0.2, 0.0, 37.65862069] to p2 = [0.2, 0.0, 57.65862069] perturbation
creates the Trajectory 1 and p1 = [0.2, 0.0, 37.65862069] to p3 = [0.2, 0.05655172, 37.65862069] (where
pi = [k1, k2, qe]) perturbation creates the Trajectory 2 as shown in (A). Then, the model is simulated
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using these model parameter values and the DTW alignment cost is computed for each pair of curves
in a trajectory, and the graphics in (A) show the DTW1 as alignment cost for Trajectory 1 and DTW2

as alignment cost for Trajectory 2. The DTW alignment cost for each trajectory was then used to
compute the elementary effects, as shown in the DTW-based Morris GSA equations above, and the
resulting GSA index values were used to rank the model parameters, with Rank 1 assigned to the
parameter with highest GSA index. Finally, the parameter rankings were analyzed graphically as
shown in (B) and aggregated using rank-aggregation methods Borda and CEMC as shown in (C).

5.2. Example 2: Microbial Growth Kinetics—Multiple-Output Dynamics

The results are shown in Figure 3. The sample microbial kinetics curves in Figure 3A
follow the typical patterns of cell growth (C), substrate consumption (S), and product
accumulation (P). Evident in Figure 3B is the effect of normalizing the model outputs along
each output dimension. That is, Ĉ consists of curves of C normalized based on the lower-
bound Cmin and upper-bound Cmax values of C: Ĉ = C/(Cmax − Cmin). The same was
performed on the other model outputs: Ŝ = S/(Smax − Smin ) and P̂ = P/(Pmax − Pmin).
This normalization is a critical step to make sure the succeeding aggregation of the CDTWi
across all model outputs is correct. This normalization step has been coded in our Python
script implementing DTW-based Morris GSA.

The rank-aggregation results (Figure 3C–E) on the parameter SA index rankings show
consistent overall rankings of the four most sensitive parameters via the Borda method
(Figure 3D): µmax as Top1, ksm as Top2, Ks as Top3, and YS/C as Top4. On the other hand,
the lower-rank parameters YP/C, and kd changed overall ranking depending on the rank-
aggregation metric—mean, geometric mean, and L2-norm (Figure 3D). The CEMC method
results in almost the same overall parameter ranking aggregation as Borda except for the
parameter ksm as Top1, and µmax as Top2 (Figure 3E).
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Figure 3. Results in implementing the DTW-based Morris GSA on a multiple-output dynamics
using the example of microbial growth kinetics. (A) Example natural curves from the simulated
Monod-type microbial kinetics with color lines blue for p1, red for p2, and yellow for p3. (B) Example
of the normalized model outputs annotated with the optimally aligned path for each trajectory.
(C) Descriptive summary of the model parameter ranking based in SA index. (D) Borda method
rank-aggregation results. (E) CEMC rank-aggregation results with highlights in blue color for the
highest probability value per TopK rank.

5.3. Example 3: Lorenz Attractor: A Set of Chaotic Solutions

The results are shown in Figure 4. The sample Lorenz attractor curves shown in
Figure 4A,B follow the typical patterns of Lorenz chaotic solutions. An example of the
normalized model output X̂3 is shown Figure 4C. The rank-aggregation results (Figure 4D,E)
on the parameter SA index rankings show consistent overall rankings of the parameters,
with α as Top1 indicating it is the most sensitive model parameter. Parameter β is Top2 and
γ as the least sensitive parameter being Top3. Being a complex dynamical model due to its
chaotic nature, the Lorenz Attractor was conveniently subjected to the DTW-based Morris
GSA. After a careful search of the literature, we concluded that this is the first time that the
parameters sensitivities were computed for the Lorenz Attractor dynamical model, which
is an indication of the potential of our proposed approach.
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6. Conclusions

DTW-based Morris GSA can successfully determine parameter sensitivities of high-
dimensional dynamical models. The results verify the capabilities of our proposed DTW-
based Morris GSA. The findings also open the possibilities of extending the technique
to more complex dynamical systems and to other areas that may benefit from the com-
putational capabilities of the technique. Here are potential future research directions to
further evaluate the capabilities and limitations of our proposed method: (1) Analysis of
deep neural networks (DNNs), which are crucial components of many popular advanced
deep learning (DL) models, to develop explanations of predictions and the behavior of
DL models during training and prediction [29]. A popular topic in this area currently is
the examination on how large language models (LLMs) learn through their DNN compo-
nents [30]. Since LLMs learn using sequences of data, the DTW-based Morris GSA can be
applied to examine the model parameters inside DNNs as sequential data are assimilated
by LLMs. (2) Sensitivity analysis of discrete chaotic maps, such as adaptive symmetric
Hénon maps [31]. A Hénon map provides a way to conduct more detailed exploration of
the chaotic dynamics and there are open problems in this research area [32]. (3) Analysis of
chaos-based communication systems that use chaotic systems as an efficient, deterministic
high-entropy source that can mask information signals for safe transmission through public
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channels [33]. Finally, the immediate next directions from this current work will also
involve the further refinement of the Python module ‘DTWMorrisGSA’ [16] so it will allow
easy integration with existing modules in open-source repositories (e.g., PyPi, Conda, etc.),
ready for use by various users.

Author Contributions: Conceptualization, D.L.B.F., A.P.M. and W.S.; methodology, D.L.B.F. and
A.P.M.; software, D.L.B.F.; validation, D.L.B.F. and A.P.M.; formal analysis, D.L.B.F., A.P.M., R.H.,
E.R., W.S., W.H., D.G. and M.E.Z.; resources, D.L.B.F., R.H. and M.E.Z.; data curation, D.L.B.F.;
writing—D.L.B.F., A.P.M. and W.S.; writing—review and editing, R.H., E.R., W.H., D.G. and M.E.Z.;
visualization, D.L.B.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The Python package and Jupyter Notebook files used to implement the
DTW-based Morris GSA developed in this paper is provided as an open-source material through the
GitHub repository of the project [16] (accessed on 21 November 2024): https://github.com/dhanfort/
DTW_based_Morris_GSA.git.

Acknowledgments: This work was conducted with the support of the Energy Institute of Louisiana
(EIL) at the University of Louisiana at Lafayette. We are greatly appreciative of EIL’s administrative
staff, Sheila Holmes, for making things happen when research projects face challenges during
implementation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Murray-Smith, D.J. Sensitivity Analysis for Model Evaluation. In Testing and Validation of Computer Simulation Models: Principles,

Methods and Applications; Murray-Smith, D.J., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 49–60.
2. Zhang, K.; Lu, Z.; Cheng, K.; Wang, L.; Guo, Y. Global sensitivity analysis for multivariate output model and dynamic models.

Reliab. Eng. Syst. Saf. 2020, 204, 107195. [CrossRef]
3. Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; Wiley:

New York, NY, USA, 2004.
4. Sobol′, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul.

2001, 55, 271–280. [CrossRef]
5. Rakovec, O.; Hill, M.C.; Clark, M.P.; Weerts, A.H.; Teuling, A.J.; Uijlenhoet, R. Distributed Evaluation of Local Sensitivity Analysis

(DELSA), with application to hydrologic models. Water Resour. Res. 2014, 50, 409–426. [CrossRef]
6. Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 2010, 25, 1508–1517. [CrossRef]
7. Campolongo, F.; Cariboni, J.; Saltelli, A. An effective screening design for sensitivity analysis of large models. Environ. Model.

Softw. 2007, 22, 1509–1518. [CrossRef]
8. Campbell, K.; McKay, M.D.; Williams, B.J. Sensitivity analysis when model outputs are functions. Reliab. Eng. Syst. Saf. 2006, 91,

1468–1472. [CrossRef]
9. Fortela, D.L.B.; Farmer, K.; Zappi, A.; Sharp, W.W.; Revellame, E.; Gang, D.; Zappi, M. A Methodology for Global Sensitivity

Analysis of Activated Sludge Models: Case Study with Activated Sludge Model No. 3 (ASM3). Water Environ. Res. 2019, 91,
865–876. [CrossRef]

10. Cosenza, A.; Mannina, G.; Vanrolleghem, P.A.; Neumann, M.B. Global sensitivity analysis in wastewater applications: A
comprehensive comparison of different methods. Environ. Model. Softw. 2013, 49, 40–52. [CrossRef]

11. Gamboa, F.; Janon, A.; Klein, T.; Lagnoux, A. Sensitivity indices for multivariate outputs. Comptes Rendus Math. 2013, 351, 307–310.
[CrossRef]

12. Li, L.; Papaioannou, I.; Straub, D. Efficient global sensitivity analysis method for dynamic models in high dimensions. Int. J.
Numer. Methods Eng. 2024, 125, e7494. [CrossRef]

13. Gold, O.; Sharir, M. Dynamic Time Warping and Geometric Edit Distance: Breaking the Quadratic Barrier. ACM Trans. Algorithms
2018, 14, 1–17. [CrossRef]

14. Jeong, Y.-S.; Jeong, M.K.; Omitaomu, O.A. Weighted dynamic time warping for time series classification. Pattern Recognit. 2011,
44, 2231–2240. [CrossRef]

15. Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [CrossRef]
16. Fortela, D.L. DTW_Based_Morris_GSA: GitHub Repository of DTW-Based Morris GSA for Dynamical Systems. Available online:

https://github.com/dhanfort/DTW_based_Morris_GSA.git (accessed on 21 November 2024).
17. Cuntz, M.; Mai, J.; Zink, M.; Thober, S.; Kumar, R.; Schäfer, D.; Schrön, M.; Craven, J.; Rakovec, O.; Spieler, D.; et al. Computa-

tionally inexpensive identification of noninformative model parameters by sequential screening. Water Resour. Res. 2015, 51,
6417–6441. [CrossRef]

https://github.com/dhanfort/DTW_based_Morris_GSA.git
https://github.com/dhanfort/DTW_based_Morris_GSA.git
https://doi.org/10.1016/j.ress.2020.107195
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1002/2013WR014063
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1016/j.envsoft.2006.10.004
https://doi.org/10.1016/j.ress.2005.11.049
https://doi.org/10.1002/wer.1127
https://doi.org/10.1016/j.envsoft.2013.07.009
https://doi.org/10.1016/j.crma.2013.04.016
https://doi.org/10.1002/nme.7494
https://doi.org/10.1145/3230734
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1080/00401706.1991.10484804
https://github.com/dhanfort/DTW_based_Morris_GSA.git
https://doi.org/10.1002/2015WR016907


Math. Comput. Appl. 2024, 29, 111 13 of 13

18. Dormand, J.R.; Prince, P.J. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [CrossRef]
19. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;

Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
20. Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390,

122156. [CrossRef]
21. Mikolajczyk, A.P.; Fortela, D.L.B.; Berry, J.C.; Chirdon, W.M.; Hernandez, R.A.; Gang, D.D.; Zappi, M.E. Evaluating the Suitability

of Linear and Nonlinear Regression Approaches for the Langmuir Adsorption Model as Applied toward Biomass-Based
Adsorbents: Testing Residuals and Assessing Model Validity. Langmuir 2024, 40, 20428–20442. [CrossRef]

22. Guo, X.; Wang, J. A general kinetic model for adsorption: Theoretical analysis and modeling. J. Mol. Liq. 2019, 288, 111100.
[CrossRef]

23. Fogler, H.S. Chapter 9: Reaction Mechanisms, Pathways, Bioreactions, and Bioreactors. In Elements of Chemical Reaction Engineering,
6th ed.; Pearson: Harlow, UK, 2021.

24. Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
25. Sparrow, C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. In Applied Mathematical Sciences; Springer: New

York, NY, USA, 1982.
26. Shen, B.-W.; Pielke, R.; Zeng, X.; Cui, J.; Faghih-Naini, S.; Paxson, W.; Kesarkar, A.; Zeng, X.; Atlas, R. The Dual Nature of Chaos

and Order in the Atmosphere. Atmosphere 2022, 13, 1892. [CrossRef]
27. TopKLists: Inference, Aggregation and Visualization for Top-K Ranked Lists. CRAN (Comprehensive R Archive Network). 2022.

Available online: https://cran.r-project.org/web/packages/TopKLists/index.html (accessed on 21 November 2024).
28. Li, X.; Wang, X.; Xiao, G. A comparative study of rank aggregation methods for partial and top ranked lists in genomic applications.

Brief. Bioinform. 2019, 20, 178–189. [CrossRef] [PubMed]
29. Zhou, B.; Bau, D.; Oliva, A.; Torralba, A. Interpreting Deep Visual Representations via Network Dissection. IEEE Trans. Pattern

Anal. Mach. Intell. 2019, 41, 2131–2145. [CrossRef] [PubMed]
30. Mitchell, M.; Krakauer, D.C. The debate over understanding in AI’s large language models. Proc. Natl. Acad. Sci. USA 2023, 120,

e2215907120. [CrossRef] [PubMed]
31. Tutueva, A.V.; Moysis, L.; Rybin, V.G.; Kopets, E.E.; Volos, C.; Butusov, D.N. Fast synchronization of symmetric Hénon maps

using adaptive symmetry control. Chaos Solitons Fractals 2022, 155, 111732. [CrossRef]
32. de Hénon, J.X. Hénon Maps: A List of Open Problems. Arnold Math. J. 2024, 10. [CrossRef]
33. Grzybowski, J.M.V.; Eisencraft, M.; Macau, E.E.N. Chaos-Based Communication Systems: Current Trends and Challenges.

In Applications of Chaos and Nonlinear Dynamics in Engineering—Vol. 1; Banerjee, S., Mitra, M., Rondoni, L., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 203–230.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.jhazmat.2020.122156
https://doi.org/10.1021/acs.langmuir.4c01786
https://doi.org/10.1016/j.molliq.2019.111100
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.3390/atmos13111892
https://cran.r-project.org/web/packages/TopKLists/index.html
https://doi.org/10.1093/bib/bbx101
https://www.ncbi.nlm.nih.gov/pubmed/28968705
https://doi.org/10.1109/TPAMI.2018.2858759
https://www.ncbi.nlm.nih.gov/pubmed/30040625
https://doi.org/10.1073/pnas.2215907120
https://www.ncbi.nlm.nih.gov/pubmed/36943882
https://doi.org/10.1016/j.chaos.2021.111732
https://doi.org/10.1007/s40598-024-00252-x

	Motivations 
	The Proposed DTW-Based Metric of Elementary Effects for Dynamical Systems 
	Notations and Formulations for DTW-Based Morris GSA 
	Original Morris GSA Formulation 
	DTW-Based Morris GSA Formulation 
	Assertion: The Original Morris GSA Is a Special Case of DTW-Based Morris GSA 

	Methodology 
	Pseudo-Code of Implementing DTW-Based Morris GSA 
	Python Code Implementation: DTW-Morris GSA Python Module 
	Model Parameter Sampling via Morris 
	ODE Integration 
	GSA Index Computation 

	Example Time-Series Dynamical Models Tested 
	Example 1: Mixed-Order Adsorption Kinetics—Single-Output Dynamics 
	Example 2: Microbial Growth Kinetics—Multiple-Output Dynamics 
	Example 3: Lorenz Attractor—A Set of Chaotic Solutions 

	Analysis and Aggregation of Model Parameter Sensitivities 

	Results and Discussion 
	Example 1: Mixed-Order Adsorption Kinetics—Single-Output Dynamics 
	Example 2: Microbial Growth Kinetics—Multiple-Output Dynamics 
	Example 3: Lorenz Attractor: A Set of Chaotic Solutions 

	Conclusions 
	References

