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Abstract: In this study, we propose a conservative and compact finite difference scheme designed
to preserve both the mass change rate and energy for solving the sixth-order Boussinesq equation
with surface tension. Theoretical analysis confirms that the proposed scheme achieves second-order
accuracy in temporal discretization and fourth-order accuracy in spatial discretization. The solvability,
convergence, and stability of the difference scheme are rigorously established through the application
of the discrete energy method. Additionally, a series of numerical experiments are conducted to
illustrate the effectiveness and reliability of the conservative scheme for long-time simulations.
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1. Introduction

The numerical solution of partial differential equations (PDEs) is a fundamental
component in numerous scientific and engineering applications. In recent years, there has
been a growing emphasis on developing high-order finite difference methods to improve
both the accuracy and efficiency of solutions for a wide range of PDEs. A particular area
of interest is the Boussinesq equation, which was first introduced by Joseph Boussinesq
in 1872 to model nonlinear wave propagation in dispersive media [1]. Consequently, this
equation has been extensively applied across multiple domains, including the investigation
of ion sound waves in plasma, solitary waves in vascular systems, tsunami waves in
oceanography and coastal sciences, as well as pressure waves in liquid—gas bubble mixtures,
among others [2,3].

This article investigates the sixth-order Boussinesq equation, taking into account the
effects of surface tension, as outlined in the following [4]:

Ut — kzuxx + A1 Uxxxx — A2Uxxtt — D1lxxxxxx + boUxxxxtt + C(uzp)xx =0, 1)
with the specified initial conditions
u(x,0) = @(x), ur(x,0) = p(x), )

where the parameters a; > 0,4, > 0, b; > 0, and by > 0 are non-negative, while k and ¢ are
constants. Furthermore, p > 1 is a positive integer, and ¢(x) and (x) are two provided
smooth functions.
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Solitary waves have attracted considerable interest in various fields of physics and en-
gineering. Biswas [5] successfully derived an exact solitary wave solution for the Korteweg—
de Vries equation, which is characterized by power law nonlinearity and time-varying
coefficients. The singular solitary wave solution for the Rosenau-KdV equation is pre-
sented in [6], while a specific 1-soliton solution for the Rosenau-KdV RLW equation is
detailed in [7]. Equation (1) is frequently encountered in numerous mathematical models
concerning solitary wave propagation, as emphasized by Lu and Helal [8,9]. Furthermore,
Biswas et al. [4] provided a variety of solitary wave, shock wave, and singular solitary
wave solutions for the Boussinesq equation (1), incorporating the effects of surface ten-
sion. Under the assumption of solitary wave behavior, it is observed that the solution to
the sixth-order Boussinesq equation (1) and its derivatives approaches zero as |x| — oo,
as noted by Burde and Yimnet et al. [10,11]

d"u

Iim =0, lim =0, n>1.
x—Foo x—+oo dx™

Thus, Equation (1) is linked to the following global conservation law:

d [t
ﬁ/ u(x, t)dx = C.

This research focuses on the solitary wave solution and aims to develop a conservative
linear finite difference scheme for the sixth-order Boussinesq Equation (1). To implement
the numerical method effectively, we analyze a sufficiently large yet finite spatial domain,
denoted as [x;, x;], instead of the unbounded interval (—co, +0c0). This ensures that the
solution remains sufficiently small at the domain boundaries. Consequently, we consider
the following boundary conditions:

u(xg, t) =u(x,,t) =0, uy(x;,t) = ux(xp,t) =0, tyx(x1,t) = thrx(xr,t) =0, (3)

where 0 < t < T. Considering the requirement for continuity, we further assume
o(x1) = g(x,) = 0.

The Boussinesq equation and its variants have been extensively studied through both
theoretical and numerical methods. Esfahani and Farah [12] investigated the following
nonlinear sixth-order Boussinesq equation in the theoretical context:

Upp — Uyyx £ Uyxxx — Uxxxxxx + (uz)xx =0, xeR, t>0. (4)

The authors established the local well-posedness of Equation (4) within the framework of
non-homogeneous Sobolev spaces H°(R), where s < 0 and s € R. Subsequently, Wang
and Esfahani [13] conducted an investigation into the sixth-order Boussinesq equation as
follows:

Ut — Uxx E Upxxx — Uxxxoxex — (|”|2”)xx =0, xeR, t>0. (5)

They demonstrated that the problem described by Equation (5) is globally well-posed
within the Sobolev space H*(R), where 3/2 < s < 2and s € R.

In a numerical context, Feng et al. [14] proposed a symmetric three-level implicit differ-
ence scheme that exhibits second-order accuracy for the following sixth-order Boussinesq
equation

Upt — Uxx — Uxxxx — 04 Uxxxxxx — 6(“2)xx =0. (6)

A linearized stability analysis indicates that the difference scheme, which incorporates a
free parameter denoted as 6, exhibits stability for values of 6 that are equal to or greater than
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1/4. In 2017, Kolkovska and Vucheva [15] introduced a nonlinear second-order difference
scheme aimed at addressing the sixth-order Boussinesq problem, as detailed below:

Ut — Uxx — ,Bluxxtt + ,Bzuxxxx - ﬁ3uxxxxxx + lx(u2>xx =0,
u(x,0) = ¢(x), ut(0,x) =(x), (7)

u—0, Uyy =0, Uyxxx — 0, |x| = o0

However, the scheme presented in [15] demonstrates conditional stability, which is depen-
dent on a strict limitation on the subsequent ratio

T 3VB1
2" 2\ /T+ 4B, + 16Bs

Moreover, there is a significant lack of theoretical analysis regarding the solvability and
convergence properties of the scheme proposed by Kolkovska [15]. Recently, Arslan [16]
introduced a novel methodology combining the differential transform method with the
finite difference technique to approximate solutions for singularly perturbed ill-posed prob-
lems and sixth-order Boussinesq equations. In another study, Zhang et al. [17] introduced
a meshless numerical technique called the generalized finite difference method, which has
proven effective for solving enhanced Boussinesq-type equations, especially for simulating
wave propagation over irregular bottom topographies.

In numerical simulations, compact difference schemes generally require fewer stencils
than standard finite difference methods while providing better resolution and maintaining
the same order of accuracy. Hou et al. [18] introduced an energy-preserving, high-order
compact finite difference scheme specifically designed for two-dimensional nonlinear wave
equations. Mohanty et al. [19-22] developed highly accurate compact difference schemes
for several equations, including the coupled viscous Burgers equations, the good Boussinesq
equation, the time-dependent viscous Burgers-Huxley equation, and a generalized version
of fourth-order parabolic partial differential equations.

On the other hand, the principle of conservation of mass and energy is crucial in
physics. A numerical scheme that fails to uphold local conservation may produce non-
physical outcomes [23]. Therefore, preserving mass and energy is fundamental in the
development of numerical schemes for solving PDEs. Significant research has been con-
ducted on conservative finite difference schemes for various nonlinear wave equations.
For instance, Deng et al. [24] proposed energy-preserving finite difference methods for
two-dimensional nonlinear wave equations. Bayarassou et al. [25] investigated a high-
order conservative linearized finite difference scheme for the regularized long wave (RLW)
Korteweg—de Vries equation. Additionally, Nanta et al. [26] presented a wave model inte-
grating the classical Camassa—Holm equation with the BBM-KdV equation, incorporating
dual-power law nonlinearities while ensuring energy conservation.

This article aims to present a conservative difference scheme for solving the sixth-
order Boussinesq problem as defined in Equations (1)—(3). Additional, it will examine the
solvability, convergence, and stability of the proposed scheme.

, B120, Bp >0, B3=>0.

Theorem 1. Consider u as the solution to the sixth-order Boussinesq problem defined by Equations
(1)—~(3). Let us denote uy = vyyx and assume that the supplementary boundary conditions are
provided by vy (x;,t) = vx(xy,t) = 0 and vy (x], t) = Vxx (X, ) = 0. Under these conditions, it
can be concluded that E(t) = E(0) for all t € [0, T|, where

E(t) = K ||ullfz + arlluxl|fz + azllul|fz + byl eae | T2 + bollueae |2 + o172

. X Y w?Plgy,
2p+1Jy
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Proof. Let u; = vyy. We substitute this expression into Equation (1) and subsequently take
the antiderivative twice. This process results in the following equation:

2 2
Uy = kU — ajuxy + apup + bty — boUxxt — ClU b,

we the obtain

dE Xr
- =2 (k2uut + aqtiytiyt + AUty + bytgx iy + bptixitiyet + 0xOxt — cuzPut>dx
X]

Y
2 [”t (kzu + agup — cuz’”) + (a1uxuxt + by thytiyt + batiystiys + vxvxtﬂ dx
B x,

Xr
2/ [”t (vt + agtxy — Dylbyyax + b2”xxtt>
x;

+ (ﬂluxuxt + bytsexUxxt + Dottt + vx%ct)} dx

Xr

Xr
= 2/ (upvr + vy vy )dx + 2aq / (Upthyy + Uylly)dx
X X1
Xy

Xr
+ 2b2/ (“tuxxtt + “xtuxtt)dx —2by / (”tuxxxx - ”xxuxxt)dx
x

1 X

= 2(11 +aily + byly — bll4). (8)

Utilizing the boundary conditions delineated in Equation (3) along with the additional
assumptions, we derive the following results

Xy "Xy
_ _ _ Xr

I = / (upvr + vyvy)dx = / (Uxx 0t + Ux U )dx = vtvx|x; =0, 9)
X1 JX]
Xr

X,

I, = / (Upthyy + Uyl )dx = utux|xl’ =0, (10)
X
Xr

X, X,

I3 = / (Utthxxtt + Uxttixr )X = Uptharr|y] = Oxxthar|3] = 0. (11)

X
Since
Xy Xy Xy
X,
/ UxxUxxrdx = / uxxd(uxt) = ”xtuxx|xlr - / UxtUyxxdX
X X X
Xr Xr Xr
X,
= _/ UxtUyxxdX = _/ uxxxd(ut) = _utuxxx|xlr +/ UplyxxxdX
X x; X
. Xr Xy
= _Uxxuxxxlx; +/ UpUyxxrdX = / UplyxxxdX,
X X
which yields

X X

' UyyUxyrdx = 0. (12)

Xr
Iy = / (utuxxxx - uxx”xxt)dx = /
x

1 X

»
Ul xxxdX — /

X

Consequently, from Equations (8)—(12), we deduce that dE/dt = 0, which indicates
that E(t) = E(0) for t € [0, T]. This completes the proof. [

It is essential to emphasize that, if parameters a1, a, b1, by, k, and c and the initial
conditions ¢(x) and (x) satisfy E(0) > 0, then E(t) can be defined as the energy, and the
solution to Equations (1)—(3) complies with the principle of energy conservation, where

E(0) = Kll@l72 + arllgxll7z + a2l plI72 + brll@xxl|72 + ballxl|72 + [[ox(x, 0)]172

2C Xr 2
- PHlgy,
2p+1 /xl ¢




Math. Comput. Appl. 2024, 29,112

50f28

V4

0
h

The remainder of this article is organized as follows. Section 2 introduces a compact
finite difference scheme for solving the sixth-order Boussinesq Equations (1)—(3). Section 3
rigorously establishes the discrete conservation properties of mass change rate and energy.
A comprehensive theoretical analysis addressing the scheme’s solvability, convergence, and
stability is presented in Section 4. Numerical experiments validating the theoretical results
are included in Section 5 . Finally, Section 6 provides a concise summary of the findings.

2. Compact Difference Scheme

In this section, we present a compact and conservative difference scheme to solve the
sixth-order Boussinesq problem as delineated in Equations (1)-(3). For two positive integers
J and N, we define the spatial and temporal discretization parameters as h = (x, — x;)/]
and T = T/N, respectively. The uniform grid points are established as x; = x; + jh
and t" = nt, where j = 0,1,...,Jand n = 0,1,...,N. We denote U]” ~ u(x]',t”) as the
approximation of the function u at the point (x;,#") and

{U = (Uj)|u,2 =U1=Uy=U1 =U, = U]_z = uf—l = u] = u]+1 = u]+2 = 0},

where —2 < j < J 4 2. The Sobolev space is defined as described in [27]:

) dlu

L — =0, i=01,2,...,k—1%.
ax! 1a0 ! }

H§(0) = {u(x) € H Q)

For any two mesh functions U", V" € 79 we define the following difference operators,
inner product and norms:

1 1 1
(U)s = (U —Up), (U)o = T —UP ), (U)s = (U2, — U2 ),
1 1 _ 1 _
Wy = L -, @ - - u, @y - s -,
_ 1 1 1
n__ *optl n—1 nt+s Lol n
i = Z(U] + LI] ), LI]. = 2(u] + U] ),

J—-1
n n\ __ nymn n|2 _ n n n _ n
(U v = UV, U = 0, U e = e U]

By setting
w = kzuxx — A Uxxxx + A2Uxxtt + b1 Uxxxxxxr — D2lyxxxst — C(u2p> o (13)

then Equation (1) can be expressed as w = uy. By utilizing the Taylor expansion for the
variable x, we obtain

n 2 n h2 4. \n n h2 6.\ n hz 42 \n
wf = K[ (U] )ax = 13 040)]] = a1 [ (U] )sens — - (080)] | + a2 | (U)ot — 75 (340F0)]
+ b | (U)zsxexs — ﬁ(agu)ﬂ — by | (U)ot — ’iz(a%zu)ﬂ]
] 4 X j /Xxxxtt 6 xUtH)j
n\2p]__ & 4. 2p\n 2 4
= c{ [ y)es — 5 @)1} +O(22 + 1. (14)

Furthermore, Equation (2) is associated with

b1(93u)} = —K*(9xu)]f + a1 (9Gu)} + az(9307u)} + ba (8307 u)]
+ c(aiuz”)]’-‘ + (8,%@0)]” (15)
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Substituting Equation (15) into Equation (14) yields

w]” — kz(llj”);zx — al(uj Vezzz + az(ll' )zett + b1( i) xezzes — bZ(an)xx;zxtt

K2h? alh B Gty +

e[ ]ﬁ+—<a4 - o
Z(aiw)}“

! (8482 )
20 gy — O )y
By applying second-order accuracy in our approximations, we achieve

uj = Ui +0(r), wj = (9fu)} = (U}')z +0(7?),

ot ) = (U )sssz + +OUR), (@ W) = (UP)sesees + O(),

(307u)} = (U} )eig + O(T* + %), (9507u)] = (U} ) enir + O(T* + 1),

(2597 ur)

w)j = (U} sezeze + O(T2 +1%), (936 = [(U])?]eze + O(?).
Consequently, the proposed compact finite difference scheme can be expressed
as follows:
- K22y, h? aph?y ,
(U= R (O] )z + (1 = == ) (@ )zsas — (92 = ) (U g = (b1 = 5 ) (0 sasss
aph? bzh ch?
+ (bz - T> (U zzzsit + =5 (Uj ) zxzeeste + c[(Uf )?]ex + ?[(U]ﬂ)zr}]ifif =0, (16)
ud = o(x)), (U); = ¢(x;), o <j<], (17)
4 1 4 1
Uy =0, 3(Up)s = 3(Ug)e =0, 7 (Up)ex — 5(Up)ss =0,
4 1 4 1
uy =0, g(U}l)f - E(U}’),g =0, g(u;l)jf - E(U?),g)e =0, 0<n<N. (18)
4
It is essential to recognize that, since Uj = 0, (UO) (U{)’) ¢+ =0,and g(ug) #r —
%(UZ}) #¢+ = 0 hold based on Equation (18), we may proceed with the assumption that
ut, = u", = Uy = Uy = 0 for the sake of simplicity. Similarly, we can also assume that
uy_, = uj_, LI?+1 Uj,, =0, wherej = —2,-1,] + 1, and | + 2 denote ghost points
under the condition 1 < n < N. Consequently, it can be concluded that U" & Zg.
In this context, we employ the following methodology to derive U':
k2h2 — hZ a1h2 —
(U})z — k(07 zx + (01 - T) () sz — (ﬂz - Z)(u]('))ifﬁ - (bl - T> (UEpPIsee:
azh? byh? ch?
+ (bz - 27) (uo)fffictt + iz (Uo)fffxfxtt + C[(u?)ZP]a?x + ?[(U}))Zp]ﬁff =0. (19)

From Equation (17), we obtain
= (Uf = U = (UD); = 9(x)) +O(?), 0<j<J;

thatis,

u‘_l = u]1 - 2T1/J(x]) +O(T3)/ 0 S ] S ]’ (20)
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which yields

%(u —2u) + U )

2 2

Sl -u —p)] = 5[ul - elx) - ()] +0(),
where 0 <j < J.

3. Discrete Conservative Laws

In this section, we demonstrate that the proposed methodology, as outlined in
Equations (16)—(18), maintains both the rate of mass change and energy conservation.

We will now present a modified version of the previously discussed scheme and define
an auxiliary variable V" € Z) that fulfills the following conditions:

(V) = (U, j=0,1,...,], n=0,1,..., N—1. 1)

Lemma 1 ([28-30]). For any two discrete functions U,V € Z0, it follows that

=
iﬂ
-

) = —(Us, Us) = —[|Us]?,
(Uss, V) = —(Usz, Vz) = (U, Vzz).

Furthermore, we have
(Usszer, U) = [|Uze|
Lemma 2. For any discrete function U € Z), it follows that

(Uszzzze, U) = — (Uzsz, Uzzz) = — || Uszz||*

(Ugzzzzz, U) = ((Uzzzz) iz, U) = (Uzzzz, Uzx)
= ((Usz) gz, Usz) = —((Usz)z, (Uze)z) = —||Usss ||

This completes the proof. [
Lemma 3 ([11,30]). For any discrete function U" € Z7, it follows that
[utl < cliuzll, [[u*fle < ClIUE|-

Lemma 4 ([11,31]). For any discrete function U" € ZJ, it follows that

4
IUZlF < Sz U]l
Theorem 2. Let U" € Zg denote the solution to Equations (16)—(18). We define the discrete mass
J-1
as M" = h Z; U]”. Consequently, the rate of change regarding discrete mass is described by the
]:

following equation:

_ J—1
"= 2 (Ut —uy) = R 1:---:R0=hZilP(xj)+O(Tzh),
j=1 j=

where0 <n < N —1.
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Proof. By multiplying Equation (16) by / and subsequently summing over j from 1 to J,
we obtain the following result:

J—-1 J-1
hZ(u]n)f;—kzh Z(U]n)fgz 01—T)h E(Ll]n)ffff
= =

mh?y\ I ah?y I boh3 I}
- (bl - ?>h ;(U}Z)xﬁﬁx + (bz - 6)h]§(u]"1)fxfxtt 1 ];(u]n)iﬁa‘cfﬂt
h]_l ur 2p71 .. @j_l ur 2p1 . 0 oy,
+chy [( i) Jzz + 6 P ) Jzzzz = 0. (22)
=1 =1

J-1 e
P LW = g L -2 s, @)
j=1 =1
]_1 TN 1 ]_1 TN n 1 I_l n n TN
p2 = h Z(U] )J?J? = E . (u]+1 2uj + U]—l) = E [( j+1 u ) (u] ]—1)}
j=1 j=1 j=1
1 A 1 -
= L@, =0 -5 Y (@ -0 = £ [(Af - Of) — (@ - 03| =0, (24)
j=1 j=1
J-1 1 =1
ps="h, 1(“}1)”% =3 Zi(uﬁz 4uj,, +6Uy —4uf , + Uj )
= =
= o o o
= [(u;;z — ) -3, — T +3(0r - ) — (T — u;ﬂ_z)}
j=1
— o5 [ = Tg) = 3(0y — G +3(07_, - G) — (G, - 0"y)] =0, (25)
-1 1 /=1 _ _ _ _
pa=1h) 1(u]n)ﬁm = ;( g — 607, + 1507, — 2007 + 1507 | — 67 5 + U7 5)
j= j=

17, - _ _ _ _ _
= o5 (0 = TF) = 5(0}, — 0F) + 10007 - O}) —10(T), — )

+5(0f, — 0) — (Af_5 - U"y)] =0, (26)
J-1 1 J-1
ps=h Y (Ulsen = 3 ¥ | (Ufy —2U] + Ul )g
= =1
1 ]71 n n 1 ]71 n
T (u]+1 uj )i — n (LI] - u]—l)tf
j=1 =1
= 1[(u" —up) - (uy - ug)] =0 27)
h J+1 J 1 0 i :

J-1 J-1
pe=hY_[(U) )z =0, pr=hY_[(U)*]eerz =0, (28)
j:1 j=1
-1
ps = h Z Jxeesit =0, po=h ) (U)gxzezsrr = 0. (29)
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Substituting Equations (23)—-(29) into Equation (22), we obtain

hZ(uj’ﬂ)g— = Z (Uit —2uf + Uit = 0;
- =

that is,
h - n+1 ny _ h = n n—1
;; (urt —uy) ;];(uj —-u'h,
which yields R* = R""1 = ... = RO,
Additionally, as indicated by Equation (20), we obtain
= _hc
o_ " —
RY = — ];(u == ;

-1
= F LU} U} 2ty + O
£

J-1
= —RY+2n Y p(xj) + O(th),
j=1

J-1
which yields R” =1 ) 9(xj) + O(7h). This completes the proof. [
=1

Theorem 3. Let U" € Zg represent the solution to Equations (16)—(18) and let V"' € Zg denote

the solution to Equation (21). It can be inferred that the discrete energy is conserved, such that
E" =E"1=... = EO where

- 1 k2h?
A (||un+1||2+|\u"|\2)+§(a1—T)(nuzﬂuunu;nZ)

+(a2—’i)nug+ln2 (0= S0 (s 2+ )

azh bzh
(bz— 7)||un+1“2 ||Un+1||2

{ Z (U + 4 + (U P (U + Uy,

cht &

6 k=0

where) <n < N —1.

Proof. By computing the inner product of Equation (16) with V2 4 V"3, we obtain
(U, v v ) R, v v d) (o — S ) (e Vv

h? 1 _1 ah? -1
B (“2 - *)<U7~z- vty vnTe) — (bl B 17)< Berree VI 4+ VIR

xk
azh +l B bzh +1 B
(b2 B T) (Uggeerey V"2 + V" > + T< teeeep V2 HVIT2)

+e((UNZ, VIR 4 VITE) 4+ T (U, VIR V) = 0, (30)

Xx/

Utilizing Lemmas 1 and 2, along with Equation (21), a simple computation yields
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1
( ?ffn,v'”% +VR)

XX

)
—
I
—~
S
==
3
<
=
+
NI=
_|_
<
T
[T
~
I

-1 1 _1 n+ -3
b VT4 VIT) = (||V~ R - Vi), (31)

Al
~
I
<

1

1
Vn7§> — E<u‘rz+1 + unfll (Vn+% 4 Vn7%>ﬁ>

N
N
|
—~
==
3
<
=
+
Nf—=
+

1
<un+1 + unfll (un + unfl){> — E<un+l + Unfl’ un+l _ Un71>

‘HN\P—‘

= S ([umHE = ur=®), (32)

==

1
’ff/Vn+j +an%> _ E<(un+l un 1) (V”+2 _f_an—) )2>

Nl =~ N

1
un+l 4 un—l)ﬁ, (un + Un_l);> — 27T<(un+l 4 un—l)ﬁ, un-i—l _ un—l>

—~
—_

= — o= (lug ™2 = uz P, (33)

B Vi Vi)

L
'Sy
|
—
=
=i
=
3
<
=
+
[N]
_I_
<
T
[N
~
|
—~
—
b
I

1 1 1 1 1 nal n_1l
(Viged — Vit Vit vid) = Z(1VE2 2 - Vi 2 R)

Al

_ 1
(Ug 1> = =) = (g =z = ug)®), (34)

Bl
a1
—~
==
]
=
ol
=
=i

1
VI LYy = S (UM U Ve, (V'3 V1))
1 _ _
2T<(Un+l u" 1)ffffrlln+1 —_yn l>

= 5o (IUE P = Uz 1), (35)

<(un+1 + unil)ififr (un + Un71>z> _

‘HI\J\’—‘

—un . Vn+2 an— _ n+3 L ynts an%
Xxxxtt’ + > <( X )xxxxtr + >
n+%

(Vo2 . NS VS-S Vo SNER VRS >:—

XXXXXX XXXXXX’

—~ N

—~

Rx =
2T
M»—-

R

sl

R

~

1 1
= ——(lugl* = lug P = ;(llu”ﬂll2 HU?;HZ)/ (36)
~~~~~~ Vn+§ _|_an7> = <(Vxx+ ) xﬁﬁz Vn+% —I—V”7%>

X
1 n+ -1
2) == (II Vi IP — Vi 1)

q7 =
_1
(Veoi2oooo — Voo 2o 0 Vs 4oyne

IXXXXXXX ~ 7 XXXXXXXX!

(Ug
1
T
1

T(IIU fI? = llug ||2):;(IIU§%HII2 U2, (37)
= (UM, VI £ VITE) = (U, (VI 4 V) x>

_ <(un)2p,(un +un—l) > <(un)2p (un—l-l 4 un =h Z [ Zp un+l 4 un) }

- i{z[u“ﬁw"“w" "} hz{z{u“”w"“wkﬁ} @
%)

= (UM, (U + U Y)y) = <<u“>§~i§,<u"H +U) =L [t + uy|
]

[a=)
e
I
S
N
e
1S
<
=
J’_
NI
+
<
N
|
NI
S
=
\_/N
‘E
<
=
+
[T
+
<
N
|
NI=
— ><\
R

i b} -nE 2 [+ up) ). @)



Math. Comput. Appl. 2024, 29, 112 110f28

As a result, following Equations (38) and (39), we arrive at the following conclusions

c((U") 3, v 4 Vi) 4 CZZ (U") e, VITE 4 V72

_ - chd o I

- g{;[uk2puk+l+uk)}} kz(:){;{ uk+l+uk)}}
— — 31171 J—-1
Z{]_l[ukZP(uk+1+uk ]}_6,(;){];{ uk+1+uk)”

= C:ki){]z [(u]’f+l)2p+4(uk)2p+(u]’.f_l)z } uk+1+uk }
—0 = j=

= Céhz_:{ji [(U]k+1)2p +4(Uf) + Uy )2’7] Uk+l +Uy) ;} (40)

By substituting Equations (31)—(37) and (40) into Equation (30), we obtain
2 2
+zz nt1)12 4 1 _kh 12 1 _’L n+1)12
LIV 4+ zf(al I e S I

B “1h n+1y2 Y L2
+2T(bl —)Hw 124 2 (b — 2 U2 - 2 g

—% Z i Z (U +4(UD + (U] (U + ubye}

_1 k2h?
A ||U” R L T (z——)nu"nz
h h? byh?
oz (b= S U 12+ 1 (b — 2 Ul - 225 U
n
—%Z{Z[rH“MwWMﬂﬁVWW“+WH- (41)

Multiplying Equation (41) by 7, and subsequently adding the formula
k h lllh
HU”Hz (o= N + 3 (0 - B0

to both sides, we obtain

Ui |

2 (o= ) (e + )

o= Y U (o B (g2 s ) + (- 2 e

+
v (e i) +

]_
I = Ty Y (U A+ U )) UE  u)

6 =i !
= ||v,?*%|\2+"25(||u"||2+HU’HHZ) o =) (uzie ¢ puzpe)
o (=Y U+ 2 (= 2) (el + ) + (bz—%)n |
S W—ﬂE{EWh”HMWHU)WWHwM; @)

thatis, E" = E"1 = ... = EO,
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In a similar manner, by computing the inner product of Equation (19) with Vi4Voz

we obtain
E0 = |VEIP+ ﬁ(Hulll2 FIUOP) + 5 (- @) (U2 + u2i?) + (a2 - hzz) |2
2 (o= ) (el 4 HBelP) + (52— 2k — 22 P

N CLT Z H 0,1)2 +4(UD) + (Ud,) P] (ut+ u}))z}

2
+ (=Y U+ 2 (61 = S0 (el + Uz )

ayh? boh?
+ (b2 = ) U = S5 IUg)>, (43)

R+ + ) + 2 o = 2 (U2 + s e)

where U]fl = U} —27p(x;), 0 < j < J. This completes the proof. [J

Note 1. In Theorem 1, setting

. 2¢c Xr 2}7"!‘1
;7(t)—2p+1/xl u P dx,

we have
Xr
7' (t) = 2c/ u?Pudx.
X

By using Simpson’s formula, one obtains

71 2 [ s+

6 &1
2ch I k2 kov2p] [ ket gk
~ . [(U]+l) P+4(U;)T + (Uj_y) p} b(uj+ +uj)f}
]:

ch 12
~ 2 Y [(UE )P AU + (U )|+ Uy

We further obtain

ch
n(t)z/o 7 (F)dtE = / Z UE )% + AU + (U5 )27 | (UEH + Ubygaet
cht & —
~ 20y Z (U, )2 + 4 + (U 2] (Ui + b},

Xr
which is an approximation of the continuous term 1 / u?P1dx in Theorem 1.
X1

Theorem 4. Let ¢(x), ¥ (x) € H3(Q); then, it follows that the solution U" to Equations (16)—(18)
satisfies

ut| <c, U] <c, U <C, 0<n<N.
X
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Proof. We employ mathematical induction to derive the estimate. From Equation (17), it
can be deduced that || U°|| < C and ||UY|| < C. From Lemma 3, we obtain ||U°||c < C. We
will proceed with the assumption that

u" < ¢ Uzl < ¢ [[U"le <C,

where m = 1,2, - - -, n. By taking the inner product of Equation (16) with U, we can express
the components of the inner product as follows:

n n 2/1n n 2h2 N n h2 n n
(U, ury — K (U, UF) + (a1 - )(u,zm, ur) — (az - Z) (., Uy
{Ill]’lz - a2h2 bgl’lz
- (bl - T)< ;:EJ?JE)?J?/ Ut”> + (bZ - T) <U;c}')2fff’ u:l> + ﬁ< :?l)?ffffff’ u:z>
2 ch? 2
= —c{(U")Z Uf) — - (U") e, ). (44)

By utilizing Lemmas 1 and 2 in conjunction with the Cauchy—Schwarz inequality [28,32],
a simple calculation yields

1 1
s1= (Ugy, Up) = o (U = Up, uptt + up) = (U 12 = up ), (45)
_ 1 _ _ 1 _
s2= (0o Uf) = - (U 4+ U U — ) = —— (U2 = ug 2, @e)
_ 1 _ _ 1 _
5= (Ueer Uf) = - (U + Ugege, U — U Y) = (JUE P~ U P), - @9)
1
s1.= (U, Uf) = —{(UD)gr, (UR)1) = — o= (17 I = U], (48)
_ 1 _ _
55 = < gﬁfffff utn> = E<u;rzl;z1xﬁ + u;rzlxxlxﬁf urtt -y 1>
1 _
= — - (U 1P = g 1), (49)
1
56 = (Weyarrs Uf) = (Ui (Uke)s) = 5= (IUEE P — 1], (50)
1
57 = (Usgeeate Uf) = —(Uko)ir (Uken)t) = — 5= (I = | U ), (51)
2 2 = 2
s = (U, up) = —(UnF, ) = —h Y [(unF )]
j=1
-1
— —h] umryn umr=tum. | (um ..
- Z(])f ]+l+( ]) (])x(])ft
j=1
n12p—1 = n n ny2p—1 = n n
< HIUEIE Y (Ul 1 gl +RIu 12 [l)s] - 1) ]
j=1 j=1

< COIU™ P+ [[UF 1 + (1UZ]).

Since
1
Uz = 5 (U + Ug™), [lu”| < clluz],
then we finally have

2
ss = ((U")3% U}) < COUE® + Uzl + U ). (52)

xx/
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Similarly, we have

J-1

2 2
s9. = W2 {(U") e, Uf) = WU, Ut) = 12 ) [(UN (U o]
j=1
Z[ 1) = 2(UNF + (W) ] (U < COIU P + [Uzggl1?)
]:
< CUIUEIP + Ukl + U 1P)- (53)
By substituting Equations (45)—(53) into Equation (44), we obtain
1 K2 _ 1 k*h? _
SN2 = g 2) + a2 = P + 5 (= == ) (U2 = P
1 h2 1 alh
+5 (a2 = ) QU2 = U + 5 (b1 — S5 ) (NUEE 2 = U 1)
1 le]’l bZh
+ 5 (b2 = 2= ) (U 1P — U - <||u;;£\|2 — [ UZetl?)
< Co(|URIP + U + Uz I + ||u;;ﬂ||2 + U 1P). (54)
Defining
a_ Ve K2 n2y o L k*h? n1)2 |2
B" = S U2+ (U P+ NUEP) + 5 (a1 — == ) (U2 + kel )
1 1 1111’1
+2(az——)||u"“||2+1(bl ) (U + U )
azh? n+1)12 balt? a2
> (0= Yz - e,
then, based on Lemma 4, we can conclude that
n 1 n+1)2 k2 n—+1(2 ny2 n+142 n |12 n+1)2
B > S|P+ - (lup | +||u,z||> U P + Ul + 2
by
BB P + el ) + 2 - f<||u<1“||2 ugIP) - e
IO P+ U ) — 2R - 22 P
—ﬁ<||u;;“||2+||u;~z||2> TR 2+ el + 2 s 2
by
P12+ el ) + 22 Ut P (55)

Consequently, Equation (54) can be reformulated as follows
B"—B" ! <Ct(B"+B"1), 1<n<N-1

Assuming that 7 is sufficiently small, specifically T < LEZ with kg > 2, we further obtain

1+7CN _, _
"o~ n-1 - n-1 - 0
B" < (1 _TC>B < (14 7koC)B" ! < exp(koTC)B
This indicates that B" is bounded, which leads to the conclusions that || U;’H || < Cas
derived from Equation (55). By applying Lemma 3, we further establish that ||[U"*!|| < C,
and ||U"!|| < C. This completes the proof. [
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4. Solvability, Convergence, and Stability

In this section, we examine the solvability, convergence, and stability of the previously
discussed scheme.

Theorem 5. The difference scheme outlined in Equations (16)—(18) exhibits a unique solution.

Proof. From Equation (17), we know that U° has a unique solution. To demonstrate the
unique solvability of U!, we will analyze the homogeneous version of Equation (19) as

detailed below:
?U - 5Uﬁ + 5 (al - T) Uzzzz — = (ﬂz — Z> Uzz — 5 (bl - ?> Uzszzzz
1 azl’l bzl’l
+ 2 (bZ - T) ualcxxx + 1272 u}bbb?fx =Y (56)

By computing the inner product of Equation (56) with U, we obtain

L e 7 ) o A (A L L
2 (0= ) - 2t o &)

Furthermore, from Lemma 4, one obtains

2k2 72 T b1
2 P! 2 X xxx
JUM2 + (5 + a2 ) U + (G + b2 ) Uk + 2 | Uk P
_ h 112 T k h azh 1 2 aszhZ bzh 1 2
= I + (5 + ) kel P + (P + 25 ) kel
22 L 2a mt> b
< 112 T 2 12y (2 92 12
< JU'P+ (5 )nun (Fo—+ 3 ) Ukl
which yields
Tzkz ar mT sz T b1
(T 2t + (B + 22 julelp+ T2 Ul <o, (59)
Considering the parameters a; > 0, a, > 0, by > 0, and b, > 0, we then obtain
UL =0, ||Uk] =0, |Ul]| = 0. We further obtain from Equation (57) that ||[U!| = 0.
Consequently, Equation (19) admits only the trivial solution, indicating that U" is uniquely
determined.

We then assume that U°, U1, U?,...,U" are uniquely determined, wheren < N — 1.
By examining the homogeneous version of Equation (16) for U"*!, we obtain

lun-&-l_ ﬁuggr1+1(a1_ %)u@ﬂ__ l(az— ’L)unﬂ _ 1( L ayh? )U’fil—n

T2 2 6 XXxx Tz 4 2 12 XXXXxXx
1 azh 1 bzh 1

Similarly, by computing the inner product of Equation (59) with U"*!, we obtain

||un+1H2 + (% +a, — hf) HunJrlHZ [’l; (‘11 _ %) (bz _ %)] Hun+1||2

[z(bl aiﬁ) bilﬂ” Uiz I1” = (60)
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which yields |[U"+1|| = 0, U™ = 0, UL = 0, US| = 0. The difference scheme
(16)—(18) is demonstrated to possess a unique solution through the application of the

method of induction. This completes the proof. [

Theorem 6. Assuming that ¢(x),y(x) € H3(Q) and u € Ci(,)t"l([xl,xr] x (0, T)), it can be
concluded that the solution U" to Equations (16)—(18) converges to the solution u" of the problem
defined by Equations (1)~(3). Furthermore, the rate of convergence is characterized by O (72 + h*)
in both the || - || and || - ||co norms. Specifically, this implies that

lu" —u"|| < O(x* +1*), [lu"

—U"||eo < O(T2 + H4).

Proof. The truncation errors associated with Equations (16)—(18) can be expressed as fol-

lows:
_ K2h2 h? ah?y ,

()i = Rz + (w1 = == ) @)sssr — (a2 = 7 ) () esir = (b1 = S5 ) (7] sssrs

ah? byh? ch?
(b2 = ) () sesin + 5 (4 essrar + cl0]) Tz + = [(0) szss = 17, (61)
W) = (xj), (W))=1y(x), 0<j<], (62)

4 1 4 1
ug =0, g(”g):? - g(“o)x =0, g(”o)ﬁ - g(”g)fa? =0,
”04”A1 —04~—1”—00<<N 63
uy =4, g(”])x—g(“])x— , g(”])xx—g(“])xx— , n (63)

Through the application of the Taylor expansion, it can be demonstrated that the
inequality [r| < O(7% + h*) is valid as both T and h approach zero for n > 0. Letting

et =
]

} Kh?y h? arh
H = () — @) + (1= == ) (@)sers — (a2 = ) s — (01— 35
an bzh
+ (bZ - T) (ef)xfmtt + 5 12 (u )ffazfxftt + C[(”?)ZP - (U;})ZP]:?:E
)2 (U e
6 [\ i ’
d=0, (=0 0<j<],
4 1 4 1
g =0, () —3(e0)s =0, 3(ef)sx — 3(ep)ss =0,
4 1 4 1
67 = 0, 5(6?)32 — g(e?)x = 0, g(e?)jf — g(ej)}ef = 0, 0<mn < N
By computmg the inner product of Equation (64) with ( )¢, one obtains
1o n+1)12 w2y, L(, KK n+1)2
S (lef P = llef 1) He~ 12 =y 1) + 5 (a1 — == ) (el 1P -
1 n 12 2y, 1 alh 12
+ 5 (a2 - —)(He"+ 12 = leel2) + 7 (81 = 53 ) e 12 = Nl 1)
1 leh bzh
+ 5 (b2 = D) (et 1P = Neanl®) — 2 (leki = leleatl?)
CTh2
=1(r", e} ) — ct([(u")? — (U")*P]sz,€f) — T([(u”)z’” — (U")?P)zxzz,€}).

u U" and subtracting Equations (16)—(18) from Equations (61)—-(63), we obtain

ez

711

(64)
(65)

(66)

(67)
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According to Lemma 1 and the Cauchy-Schwarz inequality [28,32], it can be concluded

that
(L") — (U")?PLaz ef) ] = (") — ("), elgy)
S 2 = 21k ik
=h Y 1)) — (U})*P](e} )zzp = I ?[ Y ()i uy) ](6}1)m}
j=1 =1 k=0
< CIlegI? + e 1P + llekel)- (68)
Similarly, we have
h2<[(u")2” = (U")Plsszs, ef) = H2([(")?F — (U") ]z, efgy)
= Z ([0 = ] =2y — )] + [ )2 = U ] U
(IIefIIZHIE all? + e 1) (69)
Furthermore, we obtain
1 1
(r",ef) = (", S (e +ef)) < Sl 1P + (||6-+1||2+||e?|| )- (70)
Substituting Equations (68)—(70) into Equation (67), we obtain
Loons12 nt12 _ jon-12y 4 L KB\ g2 1
5 Ulef 11 = llef 1) + (Ile 17— llez ™" )+4(a1 5 )(He 12— llef 1)
1 h? 1 alh
+§(az—z)<||e"“u2— el + 5 (b1 = 52 ) (let 12 = et 1)
1 112]1 bzh
*(bz— 2 ) U P = lletepl®) = S leel2 = Nl l®)
IIV”II2 +CT([|eg ]l + llef 1 + ”er{”2 + e 2+ llef 1) (71)
Setting
1 k? 1 k2h?
n_ Zlentl)2 4 n+1)12 n 1 n+12 2
D" = S lef P+ - (lef 2+ e3P + 5 (a1 — == ) (b 12 + ekl
1 h? 1 alh
+§(02—*)||€”+1H2+1( S ) UBE I + llekes )
tlzh bzl’l
3 (0= ) et - 2 :;;&uz 72)
then, from Lemma 4, we have
k a
D" > IIe-“II2 (II€Z“||2+||6¥||2)+Z(||e'3—+1||2+||€2;z||2) > e
by by k2
7 ez 17 + llefezl1?) f||e;;1||27<||ez“n2+Hezn ) — He-“\l2
b
+12 2 4142 2 n+12
(Ileq— 1+ Nlez=ll) — || i 17— = legr |
k2
= 5 UleF 12 + llek %) + ||€’3-“H2 +Jlefe %) HE”“H2
n+1||2' (73)

l
+ - Ulezde 2 + llekesl 1) + ||em
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Consequently, from Equations (71) and (72), we obtain
D" - Dl < §\|rn||2 +Ct(D" + D" Y.
That is
(1-Ct)(D" - D" 1) < %||r”||2 +2CTD" 1,
Therefore, if 7 is sufficiently small such that 1 — Ct = 1/cg > 0, then
D" — D"l < %‘)anﬂu2 +2CcotD" 1., (74)

By summing Equation (74) from 1 to 1, we obtain

n
[7!]]> +2Ccot Y D' 1.

p* <D0+ 9
2 =1 1=1

n
It is essential to note that

n
Y |If|? < nT max |72 < T-O(t? + h*)?, D < O(? + h*)2.
=1 Shsn

We then obtain from the Discrete Gronwall’s inequality [33,34] that D" < O(t? + h*)2. This
leads to the conclusion that ||ef|| < O(t? + h*) and [le?|| < O(7? + h*). Ultimately, we
utilize Lemma 3 to demonstrate that |[e"|| < O(7? + h?*) and [|e" || < O(7? + h*). This
completes the proof. [

We subsequently obtain the following theorem.

Theorem 7. Under the conditions specified in Theorem 6, the solution U" of the Equations (16)—(18)
exhibits stability. The analysis is conducted with respect to both the || - || norm and the || - ||co norm.

5. Numerical Experiments

In this section, we conduct a series of numerical experiments aimed at assessing
the efficacy and accuracy of the theoretical analysis presented in the preceding sections.
Following this, we will quantify the corresponding errors utilizing the designated error
norms [31,33,35]:

J-1 1
ni| n__qm2|2 n _ n_qm
e |—{h];|uj WPL, el = | max fuf — U,

Example 1. Consider the parameters
k=1, a1=0, ap=1, by =0, bp =0, c=-1, p=1,
which is the following improved Boussinesq equation [2,31]
gt — Uy — Uyt — (U%)xx = 0, (75)

and the solitary wave solution is expressed as follows

u(x,t) = Asech? [% %(x—xo—cot)}, cozi\/1+§A, (76)
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where A, xo, and cg are provided constants. The initial conditions may be established by evaluating
Equation (76) and its derivative for t at the point t = O:

¢(x) = Asech? {Clo\/?(x - xo)} , (77)
P(x) = 2A\/gsech2 {Clo\/f(x — xo)} tanh [Clo\/§<x — xo)} . (78)

First, we choose the following parameters:
x0=0, A=05 ¢g=+V1+2A/3, x;=—-60, x, =100, t € [0,1],

and compare our findings with the numerical results presented in [2]. The computational
accuracy for both temporal and spatial variables is evaluated at T = 1 and is detailed
in Tables 1 and 2, where T = 0.001 in Table 1 and t/kh = 0.1 in Table 2. The data in
Tables 1 and 2 indicate that the current difference scheme (16)—(18) significantly outper-
forms the finite volume element scheme described in [2].

Table 1. Comparative analysis of spatial errors and convergence rates for Example 1.

h [|e™||[2] Rate [le™]| Rate [|e"]|oo[2] Rate [|e™]| oo Rate
0.4 9.05 x 104 — 544 x 107> - 450 x 1074 — 3.15 x 107> -

0.2 225 x 1074 2.01 321 x 10 4.08 113 x 1074 1.99 2.05 x 107° 3.94
0.1 5.62 x 107° 2.00 1.90 x 1077 4.07 281 x 107° 2.00 1.19 x 1077 4.09

Table 2. Comparison of the temporal errors and convergence rates for Example 1.

h [|e™||[2] Rate [le™]| Rate [|e™]|oo[2] Rate [|e™]| oo Rate
0.04 8.69 x 1074 — 2.76 x 107° — 432 x 1074 — 151 x 1075 -
0.02 219 x 1074 1.98 6.58 x 107 2.06 1.10 x 1074 1.97 3.63 x 107 2.05
0.01 553 x 1075 1.99 159 x 10~° 2.04 278 x 1075 1.99 9.04 x 1077 2.00

On the other hand, to further demonstrate the computational efficiency of the proposed
compact difference scheme (16)—(18), we compare the numerical errors with the previous
studies [3,36,37]. The results are detailed in Table 3, where the error is defined as follows

Error = ||€n|‘/||u?xﬂct”'

It is evident that, under the same conditions, the computational errors of the proposed
difference scheme (16)—(18) are smaller than those reported in other studies.

Table 3. Comparison of the computational errors between the present scheme and the other methods
for Example 1.

h T (16)—(18) Error [3] Error [36] Error [37]
0.4 0.04 229716 x 107° 219 x 1073 2.07164 x 10~% 1.22 x 107°
0.2 0.02 596777 x 107® 533 x 107%* 5.27850 x 107° 8.41 x 107°
0.1 0.01 150726 x 107® 1.33 x 10~% 1.33205 x 10~° 8.11 x 10~

The present analysis investigates the solitary wave and its corresponding numerical
solutions, as illustrated in Figure 1. The spatial domain is defined as x € [—20,30] and
[—40, 60], with parameters setath = 0.1 and T = h? at the time instances T = 0, 5, 10, 15, 20.
Figure 1 indicates that the patterns generated by the current scheme (16)-(18), demonstrate
a significant degree of agreement with the solitary wave solutions.
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Furthermore, the numerical solutions for the auxiliary variable V", as estimated by
Equation (21), are visually represented in Figure 2. The graphs displaying the approximate
solutions U" and V", obtained from the difference scheme (16)—(18) with the parameters
x € [—40,60], h = 0.1, T = h?,¢g = £/1+2A/3, T = 10 are shown in Figure 3. It is
observed that, when ¢y > 0, the solitary wave propagates to the right, while, for cp < 0, the
solitary wave propagates to the left. These results are consistent with those reported in [31].

08y, T=0 08f —T=0
|| e—T=5 L —T=5
0.4 .4
¥l — 1o 045 —T=10
0.4} T=15 0.41 T_;g 1
T=20 —
0.35F 0.35F
0.3 0.3
= 0251 = 0251
0.2 0.2
0.15F 1 0.15|
0.1 1 0.1
0.051 \ \ 1 0.051 \ K
o . o ATA -
-20 -10 0 10 20 30 -40 -20 0 20 40 60
X X

Figure 1. Solitary wave solutions of u(x, ) at T = 0 and numerical solutions at T = 5, 10, 15, and 20,
x; =—20, and x, = 30 (left) and x; =—40 and x, = 60 (right) for Example 1.

— 2\ p——ry
T=5 \ \ —T=5
-0.51] T-10 ] -0.51 \ —T=10
- \ T=15
4 T=15 1 b T=20] |
T=20
-15 -15
> 2 > 2
-25 -25
-3 \ -3
\
\ \
-35 -35
" . . . . " . . . .
20 -10 0 10 20 30 —40 -20 0 20 40 60

X X

Figure 2. Numerical solutions of the auxiliary variable V at T = 0, 5, 10, 15, and 20, x; =—20, and
xy = 30 (left) and x; =—40 and x, = 60 (right) for Example 1.

Finally, we present the discrete mass M", the discrete rate of mass change R", and
the discrete energy E" at various time intervals, as detailed in Table 4. The parameters are
defined with ¢y > 0, x € [—40,60], h = 0.1, and T = h?. Analysis of Table 4 indicates that
the discrete rate of mass change R" associated with soliton wave propagation is minimal,
indicating that the mass change R" is conservative. Additionally, it is noted that the energy
E™ also exhibits conservative properties.

Table 4. Discrete mass M", discrete rate of mass change R", and discrete energy E" at various time
intervals for Example 1.

T M R" E"

0 3.99999998662202 0.00000000770792 2.59519634357874
5 3.99999998684879 0.00000000748522 2.59519634801190
10 3.99999998721201 0.00000000711875 2.59519636602745
15 3.99999998755727 0.00000000676334 2.59519639725431
20 3.99999998788500 0.00000000641617 2.59519644155837
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Example 2. Consider the parameters
k=1, a1:%, a =2, blzé, b2:0,C=%,P=,
which is the sixth-order Boussinesq equation [15]
Ut — Uxx — 2Uxxt + %uxxxx - %uxxxxxx + %(uz)xx =0, (79)

and the solitary wave solution is provided by

210 ./ x 97
1) = 2 sech? (2 — ) 2L 4).
u(x,t) = Jgg sec (,@6 4394 ) (80)

The initial data are

_ 210 i (L
p(x) = 169 sech (\/%), (81)

42
0 /2522 sech? (

¥(x) = 28,561 (82)

\/%) tanh (\/%76)

c,>0 c>0

¢,<0 c,<0

t - X

Figure 3. 3D plots of numerical solutions U" and V" at T = 10 with x; =—40 and x, = 60 for
Example 1.

In this example, we first calculate the solution over the spatial domain defined by
[—40,60] x [0,40] with a grid size of h = 0.1 and a time step T = h?. The comparison
between the solitary wave and the numerical solutions at the time instances T = 10, 20,
and 30 is presented in Figure 4. The results indicate that the errors across all grid points
remain below 4.5 x 107°.

Figure 5 illustrates the numerical solutions at various time intervals, specifically T = 0,
10, 20, 30, and 40. A detailed analysis of Figure 5 indicates that the wave heights at these
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specified time points are nearly indistinguishable. Figure 6 presents the graphs of the ap-
proximate solutions U" obtained from the current scheme described by Equations (16)—(18)
at times T = 5, 10, 15, and 20, with the parameters setto h = 0.1, T = h?, x; = —40, and
.Xr - 60.

T=10 %10 T=10
T T T T 2 T T T
1ok *  Numerical solution |
b Solitary wave solution 1.81
161
1k ]
141
0.8 ] 5 12f
o
5 2 4
3 o6l 1 3
3
< 0.8
041 1 061
04r
0.2r 1
" ﬂ/\
0 0 { .
-40 -20 0 20 40 60 -40 -20 0 20 40 60
X X
T=20 x10°° T=20
T T 35 T T T
12l *  Numerical solution |
h Solitary wave solution
3l
11 ]
25
0.8 1 5
& 2
=) 2
3 o6l 1 3
2 15F
<
40 E
0. 4t
02f i i ] 05k
C . 0 . . .
-40 -20 0 20 40 60 -40 -20 0 20 40 60
X X
T=30 %1078 T=30
T T T T 45 T T
126 *  Numerical solution |
: Solitary wave solution 4t
1t f 35
3l
0.8 5
G 25
=] 2
El L 2
0.6 g 2r
o
<
04} 157
1k
0.2r 4
051
0 . 0 . . . )
-40 -20 0 20 40 60 -40 -20 0 20 40 60
X X

Figure 4. Numerical and solitary wave solutions and absolute error at T = 10, 20 and 30 for
Example 2.

Additionally, Table 5 presents a summary of the discrete mass M", the discrete rate of
mass change R”, and the discrete energy E" at various time points T = 0, 5, 10, 15, and 20.
The findings suggest that both the discrete rate of mass change R" and the discrete energy
E™ exhibit conservative behavior in the discrete sense.
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Table 5. Discrete mass M", discrete rate of mass change R”, and discrete energy E” with i = 0.1 and
T = h? at various time intervals for Example 2.

T M" R" E"
0 8.44807966748734 1.88271050488737 15.35813895730075
5 8.44807966747724 1.88289006817254 15.35813896808486
10 8.44807966744347 1.88285678675310 15.35813901287684
15 8.44807966738941 1.88269314441971 15.35813909109440
20 8.44807966731402 1.88292585889068 15.35813920256866
—r == 7
—3 ==
1" T=40 -2p T=30
T-40
3t |
08l ‘
_at |
> o8 > ol ‘\\
|
0.4 -6r
7t
02t
_sl
0 ‘ / CA NN 9 ‘ ‘ ‘ ‘
40 20 0 20 4 60 a0 20 0 20 ) 60

X X

Figure 5. Numerical solutions of U and V with h = 0.1 and 7 = W2 atT = 0, 10, 20, 30, and 40,
x; =—40, and x, = 60 for Example 2.

T=5 T=10

T=15 T=20

Figure 6. 3D plots of the numerical solutions U" at T = 5, 10, 15, and 20 with h = 0.1, T = W2,
x; =—40, and x, = 60 for Example 2.
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Example 3. Consider the following sixth-order Boussinesq equation with the effects of surface
tension

2 2
Up — kK Uy + A Uxxxx — A2Uxxtt — bluxxxxxx + quxxxxtt + C(u p)xx =0, (83)

where a; > 0,a, > 0,b1 > 0,by > 0, and p > 1. In their research, Biswas et al. [4] examined the
solitary wave solution corresponding to Equation (83); that is,

u(x,t) = Asech® 1 [B(x — vt)], (84)
where
A:[(Zp—l—l)(bzkz—bl)]z;ﬁ, g l2p =1l [k b b
2chy a1by — arby by

To perform numerical simulations, the initial conditions can be determined by evaluating
Equation (84) and its derivative at the time point t = 0; that is,

o(x) = Asech 1 (Bx), (85)

P(x) = zpz_lABv sechﬁ (Bx) tanh(Bx). (86)

To demonstrate the efficacy of the present difference scheme, we provide numerical
results that pertain to the errors and rates of convergence. The parameters are configured
with i = 0.4 and T = h? at time T = 10, as illustrated in Table 6, where x; = —40 and
x, = 60. From Table 6, it is evident that the convergence rate achieved by the current finite
difference scheme is approximately 4.0, which is consistent with the theoretical order of
convergence specified in Theorem 6.

Table 6. Errors and convergence rates of the current scheme when & = 0.4 and T = h? at T = 10 for

Example 3.
p h T hl2, t/4 hl4, t/16
llell 1.530067340x 1072 9.709362247x10~*  5.777896747x10~>
p=1 rate - 3.9780748 4.07076021
llellco 1.015003674x1072  6.556924437x10™%  4.127486212x 107>
rate - 3.9523219 3.9896839
llell 7.862155174x1072  4.719448787x1073  3.012389794x10~*
p=2 rate - 4.0582346 3.9696380
llelloo 7.973541804x1072  4.682164328x1073  3.018001249x10~*
rate - 4.0899732 3.9555103

Figure 7 depicts the numerical solutions and absolute errors at times T = 10 and
20 with h = 0.1, T = h?, x; = —40, x, = 60, and p = 2. Furthermore, Table 7 presents
additional information regarding the discrete mass M", the discrete rate of mass change R",
and the discrete energy E" at various time intervals T =0, T =5, T=10,T =15, T = 20,
T = 25,and T = 30. It is clear that both the rate of mass change R" and the energy E"
exhibit conservative behavior in the discrete sense.
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Table 7. Discrete mass M", discrete rate of mass change R", and discrete energy E” with h = 0.1,

T = h?, and P = 2 at various time intervals for Example 3.

T M" R" E"

0 3.02090976925920 1.52260617289068 8.70669460321910
5 3.02090976827031 1.52400439056038 8.70669481288416
10 3.02090976455933 1.52404485849716 8.70669563361528
15 3.02090975829348 1.52179604152168 8.70669698162941
20 3.02090974941932 1.52420689642572 8.70669874989782
25 3.02090973801432 1.52375610223547 8.70670081739405
30 3.02090972410221 1.52240106874032 8.70670306135933

Furthermore, for p = 1, Equation (83) exhibits two conserved quantities [4]:
L= / (7621 — 100202, + 102 ) dx, 87)
10 /-
_ 1 2,2 2,2 22 12\,2
L = 30 /_oo { (15191 +2byv )uxxx 15ayv°us, + 15 (c ve—k )ux}dx. (88)

T=10 T=10

Absolute errors

T=20 T=20

Absolute errors

o o o o

N
S

60

Figure 7. Numerical solutions and absolute errors at T = 10 and 20 with & = 0.1, T = h?, x; =—40,
xy = 60, and p = 2 for Example 3.

Furthermore, for any arbitrary p > 1, Equation (83) possesses two conserved quanti-
ties [4]:

© 1 1
I3 = /_oo ( - gquxxxxt + §ﬂ2uxxt - ut)dx/ (89)

I—/w(—lbtu —l—ibu —i—latu —lau —tu —i—u)dx (90)
4 — . 3 20U xxxxt 15 2Uxxx 5 20U xxt 6 2Uxx t .
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We will evaluate our numerical method by employing these invariants and selecting
the approximate values as follows:

= 10a 10
fr = o ]; {72[3(U]’-1),;m - (Uf)xxﬂz - T2[4(U}1)f2 - (U}')x:e]z + 3[ (Uj')z — <ujn>"'}2}’
R | ) . a2 2 . 12
L=3 { B 5(15171 +205v7) B(U}") ez — (Uj )xxz]” — Saov [4(Uj ) xx — (Uf') 2]
j=1
+5( 12— ) — (U ),
. J-1 b a
= hj_1 { - 52 [5(U]")mzx - 2(u]")m4 o+ ZZ [4(u]")m - (uj’)m] - (uf)f},
I?f = h]_1 { B = [S(Un)ffff - Z(Un)fmf] + bsz(””)fff — (U}) zxs]
& 9 j j P30 !
at" a
2 AU e — (U)se| — T2 (40U )z — (U] )se] — 1 (U); + UL .

To demonstrate the conservative properties of the current difference scheme repre-
sented by Equations (16)—(18), we have compiled the invariants I}, I}, I¥, I}, M", R", and
E™ at various temporal intervals, as presented in Tables 8 and 9. The data illustrated in
these tables indicate that the conservative quantities f]?l (j=1,2,3,4) and R" and E" remain
approximately constant over a time frame of up to 30 units. Consequently, the compact
scheme proposed, as outlined by Equations (16)—(18), demonstrates both efficiency and
reliability for simulations conducted over long periods.

Table 8. Conservative quantities Tf and Tﬁ’ and discrete quantities M", R", and E" with h = 0.1,

T = h?,and p = 1 at various time intervals for Example 3.

T I Iy M" R" E"
0.77574398822  0.72568182168 299999999979  1.06047283470  3.78558199462
5 0.77574415451 072568197184 299999999869  1.06079683168  3.78558200635
10 0.77574474392  0.72568250450  2.99999999479  1.06080624484  3.78558205484
15 0.77574571092  0.72568337974 299999998836  1.06028637400  3.78558213956
20 0.77574703291  0.72568457913 299999997943  1.06084514881  3.78558226063
25 0.77574867931  0.72568607763  2.99999996804  1.06074072374  3.78558241692
30 0.77575061250  0.72568784435  2.99999995426  1.06042851618  3.78558260687

Table 9. Conservative quantities fg‘ and TZ’ and discrete quantities M", R", and E" with h = 0.1,
T = I?, and p = 2 at various time intervals for Example 3.

T I Iy M" R" E"

0 0.00000000879  3.02090976945  3.02090976927  1.52260617358  8.70669460355
5 0.00000001689  3.02090976957  3.02090976906  1.52318643159  8.70669464967
10 0.00000002587 ~ 3.02090976979  3.02090976876 ~ 1.52365257478  8.70669471985
15 0.00000003535  3.02090977012  3.02090976836 ~ 1.52400439292  8.70669481421
20 0.00000004386  3.02090977051  3.02090976788  1.52424172749  8.70669493260
25 0.00000005221  3.02090977097  3.02090976732  1.52436447198  8.70669507504
30 0.00000006009  3.02090977148  3.02090976668  1.52437256971  8.70669524020
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6. Conclusions

A conservative and compact fourth-order accurate difference scheme has been for-
mulated for solving the sixth-order Boussinesq equation. A comprehensive analysis of
solvability, convergence, and stability has been conducted. Numerical results show that the
numerical solution effectively preserves the discrete rates of mass change R" and energy
E".
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