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Abstract: Alzheimer’s disease (AD) is a degenerative disorder characterized by progressive cogni-
tive decline and memory loss. The few contemporary therapies may ease symptoms and/or slow
down AD progression but cannot cure the disease. The orally administered AD drug donepezil
hydrochloride enhances the availability of acetylcholine that supports cholinergic neurotransmission.
In this paper, a generalized Hodgkin-Huxley model is proposed that uses Caputo fractional order
temporal derivatives to link action potentials and viscoelasticity of cholinergic receptors. The model
provides not only structurally dependent action potentials for health and AD but also a possible
mechanism of donepezil effect on action potentials: the binding between the acetylcholine and the re-
ceptors preserves the structural fitness of these receptors. In addition, a generalized pharmacokinetic
model of donepezil transport to the brain is proposed that incorporates controlled release modalities.
Caputo fractional order temporal derivatives are used again to model anomalous drug release. Nu-
merical simulations show how controlled release donepezil recovers the structural integrity of the
receptors which further brings the abnormal action potentials due to AD to their healthy state. The
results suggest that combining various drug release modalities and dosages may improve treatment
effectiveness with donepezil.

Keywords: fractional calculus; viscoelasticity; action potentials; Alzheimer’s disease; donepezil

1. Introduction

The first case of Alzheimer’s disease (AD) was diagnosed in 1906 [1]. More than a
century later, there are tens of millions of people with AD worldwide and millions of new
cases are confirmed annually [2]. Currently, AD is considered to be a multifactorial degen-
erative disorder of the neuro-glial-vascular units characterized by progressive cognitive
and memory deficits. The few existing therapies may ease symptoms and/or slow down
AD progression but cannot cure the disease.

The lack of a cure and effective treatments for AD is because of the complexities of
brain’s structure and biochemical processes that have hindered the discovery of critical
mechanisms governing the AD onset and progression. Pathological factors like the ag-
gregation of toxic extracellular amyloid-β (Aβ) plaques, the accumulation of intracellular
tau-containing neurofibrillary tangles (NFT) and the rise in neuroinflammation [3], as well
as the intricate interlinks among them are presently considered possible causes of AD.
For instance, the large loss of cells in the amygdala, hippocampus, and neocortex disrupts
the cholinergic neurotransmission that leads to cognitive and functional dysfunctions.
The accumulation of NFT causes the loss of neuronal functionality and eventually neuronal
apoptosis. The aggregation of toxic Aβ plaques impedes the clearance of brain waste via
the glymphatic pathway and the blood-brain barrier which leads to neuroinflammation
and neurodegeneration [4,5]. Cerebral chronic inflammation due to prolonged activation
of microglia cells and astrocytes contributes not only to neurodegeneration but also to the
aggregation of Aβ plaques and NFT [6].
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Given the rather futile attempts at treating AD by tackling various aspects of the
accumulations of Aβ plaques and NFT [7], recent years have seen renewed efforts in un-
derstanding the interplay between neurodegeneration, characterized by abnormal action
potentials and damaged neuronal structure, and the buildups of Aβ plaques and NFT
that can improve the AD therapies aimed at enhancing the cholinergic neurotransmis-
sion [8–17]. One of the few FDA-approved drugs for treating AD that is safe and provides
cognitive benefits at all stages of the disease is donepezil hydrochloride [7,18]. Donepezil
is a fast-acting and reversible inhibitor of acetylcholinesterase (AChE), an enzyme that
becomes abundant during AD progression and may be involved in the formation of the
Aβ plaques [7,8]. Specifically, the presence of Aβ plaques increases the amount of one
molecular form of AchE, while the accumulation of NFT causes an increase in the levels of
all major molecular forms of AChE [8]. AChE disintegrates acetylcholine (ACh), a key neu-
rotransmitter released by neurons involved in neuronal communications through binding
to cholinergic ACh receptors [19,20]. Nicotinic and muscarinic receptors are the two main
types of cholinergic ACh receptors. Nicotinic receptors are ligand-gated ion channels whose
structural conformations are temporarily changed by the ACh binding to allow the fast
depolarization of the postsynaptic neuronal membrane. Muscarinic receptors are G-protein
coupled receptors that, when binded to ACh, activate intracellular signaling pathways via
the G-proteins that cause the opening/closing of neuronal ion channels (hyperpolariza-
tion/depolarization of the membrane) and other slower cellular responses. The binding
between AChE and donepezil increases temporarily the bioavailability of ACh and, thus,
improves cholinergic transmission. Additionally, donepezil and its analogues are involved
in the enhancement of cerebral blood flow and the reduction of neuroinflammation and
oxidative stress and thus they may inhibit the aggregation of the Aβ plaques [7,21].

Donepezil lessens AD symptoms but, as the disease progresses and negatively im-
pacts the individual functions of the two types of cholinergic ACh receptors and the func-
tional crosstalks between them [22,23], its dosage is increased gradually which can worsen
gastrointestinal and heart-related adverse effects of the drug. To reduce side effects, var-
ious delivery and release systems for donepezil were proposed in the literature. For ex-
ample, some donepezil-loaded systems that can reach the brain and provide nontoxic pro-
longed drug release are mango gum polymeric nanoparticles [24], extracellular vesicles
isolated from human plasma [25], solid lipid nanoparticles with or without ApoE [26,27],
cholesterol-modified pullulan nanoparticle with polysorbate 80 surface coverage [28], ternary
sodium alginate based hydrogels [29], lyotropic liquid crystalline mesophases composed
by monoolein/oleic acid/water [30], and sodium alginate microspheres [31]. Although in
clinical practice donepezil is administered orally, nasal [32–34], subcutaneous [35] and trans-
dermal [36] administrations have also been investigated and shown promising results.

Two aspects relevant to improving the treatment with donepezil that need more clari-
fication are: (1) finding controlled release modalities for donepezil that provide effective
treatments for longer time periods without increasing the drug dosage, and (2) finding
mechanisms that link donepezil intake and action potentials. Mathematical modeling
can provide insights into brain’s processes and mechanisms worthy of further experimen-
tal/clinical explorations which ultimately may lead to better therapies for AD. Mathe-
matical models of drug release (Fick, Higuchi, Hopfenberg Peppas, Weibull, etc. models)
existing in the pharmacology literature predict cumulative drug release over time and can
be easily fitted to experimental data [37,38]. In particular, the Ritger-Peppas model was
used in experimental studies of controlled release donepezil to describe both Fickian and
non-Fickian temporal release behavior [31]. The transport of a drug through the body
can be described mathematically using pharmacokinetic (compartmental) models [39–41].
Specifically, pharmacokinetic models fitted to experimental observations of the transport of
orally and nasally administrated donepezil were given in [32]. Lastly, the propagation of
action potentials can be described mathematically by the Hodgkin-Huxley model [42] (see
also [43]). Mathematical models of action potentials in the presence of AD were proposed
in [44–46]. These models are obtained by coupling the Hodgkin-Huxley model and ion
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concentration dynamics specific to AD via the Nernst equations. Potential linkages among
the above-mentioned pharmacokinetic and Hodgkin-Huxley mathematical models have
not been explored yet.

In this paper, a mathematical model that couples controlled release of donepezil, trans-
port to the brain of donepezil, and the effect of donepezil on action potentials is proposed
to study the two aspects stated earlier. The model’s main assumptions are that: (1) AD
onset and progression cause structural damages to the ion channels within a neuronal
membrane that lead to abnormal action potentials, and (2) in the presence of AD and
donepezil intake, the binding between ACh and ligand-gated ion channels temporarily
recovers the structural fitness of the channels accompanied by healthy action potentials.
These assumptions are supported by [10–12] (assumption 1) and respectively [47,48] (as-
sumption 2). Mathematically, the coupling is realized through fractional order derivatives,
versatile integro-differential operators that have been successfully used to model long-range
(spatial) interactions and long-term (temporal) memory characteristic to various systems.
Specifically, anomalous diffusion (diffusion process characterized by a non-linear power
law relationship between the mean squared displacement of a particle and time) [49] and
viscoelastic fading memory (distant past deformations have less influence on the present
state than those which happened in the more recent past) [50] have been modeled with
fractional order derivatives and these modeling techniques are also used in this paper. Thus,
a generalized pharmacokinetic model for the transport of donepezil with anomalous release
patterns is proposed that combines the pharmacokinetic model in [32] and the controlled
release modalities in [31]. Also, a generalized Hodgkin-Huxley model linking the electric
activity of neuronal membrane (action potentials) and the viscoelasticity of ion channels
is adapted from [51] (the focus in [51] was to study mechanical deformations of a neuron
with a healthy electric activity described by the classic Hodgkin-Huxley model exposed
to traumatic mechanical events). The viscoelastic behavior of the channels is described
by the variable-order fractional Maxwell linear viscoelastic model which was introduced
in [52] without a detailed presentation of its properties. The Haar piecewise-constant
approximants of the variable fractional orders are used to highlight the creep and relaxation
properties of the chosen viscoelastic model. Lastly, using the fact that ACh acts upon
the structure of the ligand-gated ion channels to facilitate action potentials and assuming
that the concentrations of ACh and donepezil in a brain with AD treated with donepezil
are proportional, the coupling of the two generalized models is achieved by taking the
variable fractional order describing the viscoelastic fading memory of the ion channels to be
dependent on the concentration of donepezil. Numerical simulations show the following:
(1) in the brain, an anomalous release donepezil decays slower than a donepezil solution
available on the market, (2) abnormal action potentials correspond to longer viscoelastic
fading memory of the ion channels, and (3) donepezil intake temporarily recovers healthy
action potentials which agrees with clinical observations [7].

Thus, the original contributions of this paper are:

1. a pharmacokinetic model showing that anomalous release modalities of donepezil can
slow down the decay of the drug in the brain which may provide effective treatments
for AD with smaller drug dosages;

2. an electromechanical model of ion channels showing that: (1) a shorter viscoelastic fad-
ing memory modulated by the ACh binding is associated with a properly functioning
neuron, (2) a longer viscoelastic memory corresponding to ion channels structurally
altered by AD progression causes abnormal action potentials, and (3) donepezil in-
take can recover the structural fitness of the ion channels as well as healthy action
potentials by using anomalous release donepezil either combined or not with various
drug dosages depending on the AD severity;

3. Haar piecewise-constant approximations can be used to characterize the creep and
relaxation properties of the variable-order fractional Maxwell linear viscoelastic model
assumed to describe the mechanical behavior of ion channels.



Math. Comput. Appl. 2024, 29, 117 4 of 29

Figure 1 shows a schematic of this paper’s main contributions (represented by blue,
green and red fonts) and how they link to specific knowledge about AD and donepezil
treatment that was mentioned earlier. It is hoped that this work may inspire future studies
of the neuronal electromechanical properties in health and AD that could lead to improved
personalized therapies for AD and other brain disorders.

Figure 1. Schematics of simplistic linkages between AD/donepezil treatment and action potentials
via the viscoelasticity of ion channels. The abnormal accumulations of Aβ plaques and NFT specific
to AD cause and benefit from an increase in the amount of AChE that leads to a decrease in the
quantity of ACh available for binding to the nicotinic ACh receptors (and cholinergic ACh receptors,
in general). The lack of ACh changes the structure of these receptors and their viscoelastic fading
memory becomes longer which further causes delayed or loss of action potentials. On the other hand,
donepezil treatment reduces temporarily the quantity of AChE and thus contributes to an increase in
the amount of ACh. The binding between ACh and nicotinic ACh receptors changes the viscoelastic
behavior of these receptors. The shorter fading memory modulated by the ACh binding leads to a
temporary recovery of the healthy action potentials. Lastly, an anomalous release donepezil decays
slower in the brain than a classic Fickian release, thus facilitating the propagation of healthy action
potentials for a longer time. The blue, green and red fonts highlight this paper’s main contributions.

The paper is organized as follows. A brief review of Caputo fractional derivatives
of constant and variable orders and Haar wavelets is given in Section 2. Section 3 in-
troduces the variable-order fractional Maxwell linear viscoelastic model, the generalized
Hodgkin-Huxley and pharmacokinetic models and the coupling of these generalized mod-
els. Numerical results are shown in Section 4. Lastly, a discussion and concluding remarks
are presented in Section 5.

2. Mathematical Preliminaries

The mathematical concepts needed in this paper are reviewed in this section. Readers
familiar with these concepts may skip this section.

Definition 1. 1. [53] (p. 33), [54]: The left-sided Riemann-Liouville fractional integral
of constant order δ, δ > 0, of a function f ∈ L1(a, b), (a, b) ⊂ R, is:

Iδ
a+ f (x) =

1
Γ(δ)

∫ x

a

f (y)
(x − y)1−δ

dy, (1)
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where Γ(s) =
∫ ∞

0
ts−1e−tdt is the gamma function. In particular, I0

a+ f (x) = f (x).

2. [54,55]: Let f : [a, b] → R be a p-times differentiable function on (a, b) ⊂ R whose pth-order
derivative denoted by f (p) satisfies f (p) ∈ L1(a, b), where p ∈ {1, 2, 3, . . . }. The left-sided
Caputo fractional derivative of constant order δ, p − 1 < δ < p, of the function f is:

Dδ
a+ f (x) =

1
Γ(p − δ)

∫ x

a

f (p)(y)
(x − y)δ+1−p dy = Ip−δ

a+ f (p)(x). (2)

In particular, Dp
a+ f (x) = f (p)(x).

3. [56,57]: The left-sided Caputo fractional derivative of variable order δ(x), p − 1 <
δ(x) < p for p ∈ {1, 2, 3, . . . } and x ∈ (a, b) ⊂ R of a function f : [a, b] → R that is
p-times differentiable on (a, b) and has f (p) ∈ L1(a, b) is:

Dδ(x)
a+ f (x) =

1
Γ(p − δ(x))

∫ x

a

f (p)(y)
(x − y)δ(x)+1−p

dy. (3)

In [58], the variable-order Caputo fractional derivative (3) is called the variable order fractional
derivative type 1.

Proposition 1. 1. [53] (p. 40), [54]: If δ ∈ R and x > a then:

Iδ
a+(x − a)γ−1 =

Γ(γ)
Γ(δ + γ)

(x − a)δ+γ−1, Re(γ) > 0, (4)

Dδ
a+ c = 0, ∀c ∈ R, (5)

and, if p − 1 < δ < p for p ∈ {1, 2, 3 . . . }:

Dδ
a+(x − a)γ−1 =

{ Γ(γ)
Γ(γ−δ)

(x − a)γ−δ−1, γ > p, γ ∈ R,

0, γ ∈ {1, 2, . . . , p}.
(6)

2. [54], [59] (p. 18): If p − 1 < δ ≤ p for p ∈ {1, 2, 3 . . . } and f : [a, b] → R is a p-
times differentiable function such that there exist r > γ ≥ −1 and a continuous function
g : (a, b) → R such that f (p)(x) = xrg(x) for x > a then

Dδ
a+ Iδ

a+ f (x) = f (x),

Iδ
a+Dδ

a+ f (x) = f (x)−
p−1

∑
j=0

f (j)(a+)
xj

j!
. (7)

3. [59] (pp. 4, 19), [50] (pp. 60, 222–229): If f , Dδ
0+ f ∈ L1(0,+∞), for p − 1 < δ ≤ p and

p ∈ {1, 2, 3 . . . }, then the following identity holds:

L
[

Dδ
0+ f

]
(s) = sδL[ f ](s)−

p−1

∑
k=0

sδ−k−1 f (k)(0+), (8)

where L[ f ](s) =
∫ ∞

0
e−sx f (x)dx, s ≥ 0 is the Laplace transform of the function f .

Also, for 0 < δ ≤ 1:

L
[

x−δ

Γ(1 − δ)

]
(s) = s1−δ, L

[
xδ

Γ(1 + δ)

]
(s) =

1
s1+δ

,

L
[

Eδ

(
−(x/a)δ

)]
(s) =

sδ−1

sδ + (1/a)δ
, (9)
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where Eδ(z) =
∞

∑
k=0

zk

Γ(kδ + 1)
, δ > 0, z ∈ C is the Mittag-Leffler function. In particular,

E1(z) = ez.
4. [58]: Let f : [0, T] → R be a differentiable function, δ : [0, T] → (0, 1], and 0 = x0 < x1 <

· · · < xN−1 < xN = T be an equally-spaced discretization of the interval [0, T] of constant
step size ∆x. Denote by f k = f (xk), δk = δ(xk) for xk = k∆x and k ∈ {0, 1, 2, . . . , N}.
Then a finite difference scheme for the variable-order fractional derivative (3) is:

Dδ(t)
0+ f k+1 =

∆x−δk+1

Γ(2 − δk+1)

k

∑
j=0

(
(j + 1)1−δk+1 − j1−δk+1

)(
f k+1−j − f k−j

)
+O(∆x), (10)

for k = 0, 1, 2, . . . , N − 1.

Fractional order integrals and derivatives of other special functions can be found
in [53] (pp. 173–174), [60].

First introduced by Haar in [61], Haar wavelets are well-localized oscillatory functions
in L2(R) (they have finite energy) with zero mean (derived from an admissibility condition
that establishes the decay pattern of the Fourier transforms of the wavelets) [62] that
have been used successfully in various applications such as signal/image processing [63]
and numerically solving integro-differential equations [64–68]. In this paper, piecewise-
constant approximants of variable fractional orders will be found using Haar wavelets and
properties of the constant-order Caputo fractional derivative (2) will be applied to gain
some insights into the behavior of the variable-order Caputo fractional derivative (3).

Definition 2 ([62] (pp. 69–82)). 1. The function H : R → R given by:

H(x) =


1, 0 ≤ x < 1

2

−1, 1
2 ≤ x ≤ 1

0, otherwise

is called the Haar mother wavelet.
2. The functions Hj,k : R → R, j, k ∈ Z, given by:

Hj,k(x) = 2j/2H(2jx − k),

are called the Haar wavelets. They are obtained from function H by dilation with parameter
j ∈ Z and translation with parameter k ∈ Z.

3. The functions φ : R → R given by:

φ(x) = χ[0,1)(x) =

{
1, 0 ≤ x < 1
0, otherwise

is called the Haar scaling function. Also, the dilation and translation of function φ generate
scaling functions φj,k : R → R, j, k ∈ Z, defined as:

φj,k(x) = 2j/2 φ(2jx − k).

Proposition 2 ([62] (pp. 69–82), [69] (ch. 12)). 1. The following identity holds:

H(x) =
1√
2

φ1,0(x)− 1√
2

φ1,1(x), x ∈ R.
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2. The sequence {φJ,k}k∈Z ∪ {Hj,k}j≥J,j,k∈Z, ∀J ∈ Z is a complete orthonormal sequence (or-
thonormal basis) in L2(R). Thus, every function f ∈ L2(R) can be represented as:

f (x) =
+∞

∑
k=−∞

cJ,k φJ,k(x) +
+∞

∑
j=J

+∞

∑
k=−∞

dj,k Hj,k(x), ∀J ∈ Z (11)

where the wavelet coefficients of f are cJ,k =< f , φJ,k >L2(R), dj,k =< f , Hj,k >L2(R),
and the L2-inner product of two functions f , g ∈ L2(R) is:

< f , g >L2(R)=
∫
R

f (x)g(x)dx.

Representation (11) is known as the discrete Haar wavelet transform.

3. The scale spaces VJ = span{φJ,k}k∈Z
∥.∥L2(R) , J ∈ Z, is a multiresolution analysis, i.e.,

VJ ⊂ VJ+1 ⊂ L2(R), ∀J ∈ Z, and ∪J∈ZVJ
∥.∥L2(R) = L2(R).

The detail spaces WJ = span{HJ,k}k∈Z
∥.∥L2(R) , J ∈ Z, satisfy the scale-step property:

VJ2 = VJ1

⊕ J2−1⊕
j=J1

Wj, ∀J1, J2 ∈ Z, J1 < J2.

Above, the L2-norm is ∥ f ∥L2(R) =
√
< f , f >L2(R) for f ∈ L2(R).

Thus, for a function f ∈ L2(R) and a scale J ∈ Z,

1. the scale functions act as low-pass filters providing a coarse, piecewise-constant
approximation (first series of representation (11)):

f (x) =
+∞

∑
k=−∞

cJ,k φJ,k(x) ∈ VJ , (12)

2. wavelets are band-pass filters providing the details of f as
+∞

∑
k=−∞

dJ,k HJ,k(x) ∈ WJ

(second series of representation (11)).

Figures 2 and 3g–i show plots of Caputo fractional derivatives of the function f (x) = x
calculated using Formula (6). For a constant fractional order δ ∈ (0, 1], the fractional derivative
becomes flatter as δ increases to 1 (Figure 2). Variable-order Caputo fractional derivatives of
the function f (x) = x are also calculated using the Haar piecewise-constant approximants
of the following variable fractional orders: δ(x) = 0.25 + 0.15x, δ(x) = 0.5+ 0.25 sin 8x

π ,
and δ(x) = 0.25+ 2e−x. Plots of the chosen variable orders and their corresponding Haar
piecewise-constant approximants given by Formula (12) are shown in Figure 3a–f. The
piecewise-constant approximants are found by applying the direct and inverse Haar wavelet
transforms using Matlab’s built-in functions haart and ihaart [70]. On each subinterval of a
numerical discretization of the interval [0, 5] the approximant is constant and Formula (6) can
be used to calculate the corresponding constant-order Caputo fractional derivative. The plots
in Figure 3g–i show not only that the variable-order Caputo fractional derivatives are bounded
between the constant-order fractional derivatives for δ = 0.25 and δ = 1 since δ(x) ∈ (0.25, 1)
for all considered cases, but also that certain features of the variable orders δ(x) seen in
Figure 3a–c are transferred to the corresponding derivatives.
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Figure 2. Plots of the function f (x) = x, x ∈ [0, 5], and its constant-order Caputo fractional derivatives
calculated for various constant fractional orders δ ∈ (0, 1].

Figure 3. Plots of variable fractional orders δ(x) (black line) and their corresponding Haar piecewise-
constant approximants (red line): (a) δ(x) = 0.25 + 0.15x, (b) δ(x) = 0.5 + 0.25 sin 8x

π , and
(c) δ(x) = 0.25 + 2e−x. (d–f) Zoomed-in views of the plots shown in (a–c). (g–i) Plots of the
variable-order Caputo fractional derivatives of the function f (x) = x, x ∈ [0, 5], for the Haar
piecewise-constant approximants of the variable orders plotted in (a–c). (a–f) share the legend located
in (f), while (g–i) share the legend in (g). In the legend maps, (a) stands for the piecewise-constant
approximant of δ(x).



Math. Comput. Appl. 2024, 29, 117 9 of 29

In this paper it is assumed that 0 < δ, δ(x) ≤ 1. Then, the constant-order and
variable-order Caputo fractional derivatives (2) and respectively (3) model fading memory,
and the memory gets smaller as the fractional order approaches 1. Also, the variable-order
fractional derivative (3) conserves physical causality [71] for continuous functions f (x) and
has no memory of its past order [72]. The lack of past order memory gives the derivative
(3) the ability to transfer to the output specific features (such as monotonicity or oscillatory
behavior) of the fractional order δ(x) [73].

Remark 1. Fading memory is terminology commonly used in the theory of viscoelasticity. However,
anomalous diffusion processes are described using the mathematical concepts and language of
probability theory. The integro-differential representation with a slowly decreasing power law kernel
of the Caputo fractional derivative has been linked to the long-tailed waiting time probability density
function with an asymptotic inverse power law expression specific to anomalous diffusion [49].

3. Mathematical Modeling

The model of a variable-order fractional Maxwell linear viscoelastic material intro-
duced in Section 3.1 is used to describe the mechanical behavior of neuronal ion channels
and the corresponding generalized Hodgkin-Huxley model is presented in Section 3.2.
The transport of a controlled release donepezil through various compartments of the body
is described by the generalized pharmacokinetic model presented in Section 3.3. Lastly,
the coupling of the proposed generalized Hodgkin-Huxley and pharmacokinetic models is
given in Section 3.4. Figure 4 shows how these subsections are linked. The descriptions
and physical units of the models’ variables are given in Table A1.

Figure 4. Linkages among Sections 3.1–3.4 of this section.

3.1. Viscoelastic Model

The constitutive equation of a variable-order fractional Maxwell linear viscoelastic
model (schematically represented as an elastic spring connected in series to a viscous
dashpot with long memory) is [52]:

Dδ(t)
0+ σ = E

(
Dδ(t)

0+ ϵ − σ

µδ

)
, (13)

where σ(t) and ϵ(t) are the stress and respectively infinitesimal strain in the one-dimensional
case, and t ≥ 0 denotes the physical time. The model has three physical parameters: E,
the modulus of elasticity (of the spring element), µδ, and 0 < δ(t) ≤ 1 (µδ, δ(t) correspond
to the dashpot element). If δ(t) = δ is a constant then Equation (13) becomes the fractional
Maxwell model for δ ∈ (0, 1) [50] (p. 62), [74], or the classic Maxwell model for δ = 1 [75]
(pp. 53–55), [50] (p. 32). Also, in the case δ(t) = 1, ∀t ≥ 0, parameter µδ is the dynamic
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viscosity µ and, thus, µδ is called the generalized viscosity. Lastly, the initial condition
compatible with Equation (13) is the same as for the classic Maxwell model, namely:

σ(0+) = E ϵ(0+). (14)

If M, L, and T denote characteristic mass, length, and time, then dimensional analysis
gives the dimensions of the physical quantities in Equation (13):

[ϵ] = 1, [δ(t)] = 1, [σ] = [E] = ML−1T−2, [µδ] = ML−1Tδ(t)−2 (15)

since
[

Dδ(t)
0+ f

]
= [ f ]T−δ(t) for a physical quantity f of dimension [ f ].

When the variable fractional order is a constant δ ∈ (0, 1], then [50] (p. 62):

1. the creep compliance J(t) is the strain per unit applied constant stress σ0 calcu-
lated from Equation (13). By replacing σ = σ0 in Equation (13), using Formula (5),
and then applying the Laplace transform to the updated Equation (13) combined with
σ0 = Eϵ(0+) (Formula (14) corresponding to this case), the following expression for J
can be obtained from Formulas (8) and (9):

J(t) =
1
E
+

1
µδΓ(1 + δ)

tδ. (16)

2. the relaxation modulus G(t) is the stress per unit applied constant strain ϵ0 calcu-
lated from Equation (13). By replacing ϵ = ϵ0 in Equation (13), using Formula (5),
and then applying the Laplace transform to the updated Equation (13) combined with
σ(0+) = Eϵ0 (Formula (14) corresponding to this case), the following expression for
G can be obtained from Formulas (8) and (9):

G(t) = E Eδ

(
− E

µδ
tδ

)
. (17)

In particular, if δ(t) = 1, ∀t ≥ 0, then the corresponding creep compliance and
relaxation modulus can also be obtained as closed-form solutions of first order linear (and
separable) ordinary differential equations derived from Equation (13) [75] (pp. 53–55):

J(t) =
1
E
+

1
µ

t, (18)

G(t) = E e−
E
µ t. (19)

While Formula (18) is precisely Formula (16) for δ = 1, Formula (19) admits a Taylor
series representation given by Formula (17) for δ = 1. In this case, Formula (17) approx-
imates the function (19). Figure 5 shows plots of dimensionless functions J(t) and G(t)
given by Formulas (16) and (17) versus a dimensionless time t for dimensionless parameters
E = 1, µδ = 1 and various constant values of δ. The tail of the relaxation modulus gets
longer as δ decreases to 0 (the decaying exponential behavior corresponding to δ = 1 has
the shortest tail; see Figure 5b).
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Figure 5. Plots of dimensionless (a) creep compliance J(t) (Formula (16)) and (b) relaxation modulus
G(t) (Formula (17)) versus a dimensionless time t for dimensionless parameters E = 1, µδ = 1 and
various constant fractional orders δ ∈ (0, 1]. For δ = 1, a perfect agreement is observed between the
closed-form expressions (18), (19) (denoted by (e) in the legend) and the approximations (16), (17)
(denoted by (a) in the legend). (a,b) share the legend in (a).

For a variable fractional order δ(t), the creep compliance and relaxation modulus are
combinations of the creep and relaxation functions corresponding to multiple constant
fractional orders. Indeed, if the variable fractional orders introduced in Section 2 and their
corresponding Haar piecewise-constant approximants are used again, the creep compliance
and relaxation modulus can be calculated using Formula (16) and respectively (17) on
each subinterval of a numerical discretization of the chosen dimensionless time interval
where the approximant is constant. The plots in Figure 6g–l, obtained for dimensionless
parameters E = 1, µδ = 1, show that the approximated creep compliances and relaxation
moduli corresponding to the given variable fractional orders δ(t) are bounded between the
creep compliances and respectively relaxation moduli corresponding to the constant frac-
tional orders δ = 0.25 and δ = 1 since δ(t) ∈ (0.25, 1) for all considered cases, and specific
features of the variable orders δ(t) is transferred to the corresponding functions J(t) and
G(t). For the sake of simplicity, plots of the chosen functions δ(t) and their corresponding
piecewise-constant approximants are shown in Figure 6a–f. As expected from Formula (16),
the approximated creep compliances corresponding to the variable fractional orders shown
in Figure 6a–c resemble the plots in Figure 3g–i. For larger values of t, the relaxation
modulus corresponding to the linear variable fractional order δ(t) plotted in Figure 6a
decreases almost linearly (Figure 6j), while the tail of G(t) plotted in Figure 6l becomes
longer on the region where the variable fractional order δ(t) shown in Figure 6c experiences
exponential decay. Lastly, the oscillatory decay of the relaxation modulus seen in Figure 6k
is due to the oscillations of the variable fractional order δ(t) shown in Figure 6b.
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Figure 6. Plots of variable fractional orders δ(t) (black line) and their corresponding Haar
piecewise-constant approximants (red line): (a) δ(t) = 0.25 + 0.15t, (b) δ(t) = 0.5 + 0.25 sin 8t

π ,
and (c) δ(t) = 0.25 + 2e−t. (d–f) Zoomed-in views of the plots shown in (a–c). (g–i) Plots of di-
mensionless creep compliance J(t) versus a dimensionless time t for dimensionless parameters
E = 1, µδ = 1 and the Haar piecewise-constant approximants of the variable orders plotted in (a–c).
(j–l) Plots of dimensionless relaxation modulus G(t) versus a dimensionless time t for dimensionless
parameters E = 1, µδ = 1 and and the Haar piecewise-constant approximants of the variable orders
plotted in (a–c). (a–f) share the legend located in (f), while (g–l) share the legend in (j). In the legend
maps, (a) stands for the piecewise-constant approximant of δ(t).

Since a variable fractional order δ(t) admits a Haar piecewise-constant approximant
and the creep compliance J(t) and relaxation modulus G(t) corresponding to a constant
fractional order are given by power law expressions (16) and respectively (17), the dimen-
sionless physical parameter δ(t) of model (13) can be called the memory parameter.

Remark 2. By using a Haar piecewise-constant approximation (12) of the memory parameter
δ(t), definition (1) and property (7) of fractional calculus, and the initial condition (14), it can
be shown that the constitutive law (13) can be written as a linear relationship between the stress
σ(t) and strain ϵ(t) involving a single integral with a power law memory kernel. For infinitesimal
deformations, this one integral representation of the constitutive law can also be derived via the
linearization of the Pipkin-Rogers model of non-linear viscoelasticity [76] that uses the Fréchet
approximation of continuous functionals proposed in [77] to represent the stress as an infinite sum
of multiple integrals of the finite strain-rate histories (also called a Volterra series, see [78]) whose
so-called memory kernels are positive, at least continuous and monotonic decreasing functions of
time so that they model viscoelastic fading memory. For model (13), the memory kernel is chosen to
be a power law.

3.2. Generalized Hodgkin-Huxley Model

In [51], a Lagrangian formulation and Hamilton’s principle are used to derive the
coupled equations describing neuronal electromechanics. The three ion gates m, n, and
h whose open or close states produce action potentials in the classic Hodgkin-Huxley
model [42] are assumed to behave mechanically like variable-order fractional Maxwell
linear viscoelastic materials of constitutive Equation (13). Thus, in this context, m, n, and h,
that in the Hodgkin-Huxley model are variables representing the activations of the Na+ and
K+ channels and the inactivation of the Na+ channel, respectively, become nondimensional
displacements of the dashpots in the Maxwell elements modeling the material structures
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of the ion channels. The equations of the generalized Hodgkin-Huxley model link the
electric activity of a neuronal membrane and the viscoelastic behavior of the membrane’s
ion channels as follows (these equations have simpler expressions than those in [51] since
the neuronal mechanical behavior is neglected here; also, in [51], the focus was on the
effects of traumatic mechanical events on neuronal deformation and thus only the classic
Hodgkin-Huxley model was used in the numerical simulations):

cmV(1) = I −
(

GNam3h + GNaL

)
(V − ENa)−

(
GKn4 + GKL

)
(V − EK)− GClL(V − ECl), (20)

Dδ(t)
0+ m = αm(1 − m)− βmm, (21)

Dδ(t)
0+ n = αn(1 − n)− βnn, (22)

Dδ(t)
0+ h = αh(1 − h)− βhh, (23)

with initial conditions:

V(0) = Vrest, m(0) =
αm(V(0))

αm(V(0)) + βm(V(0))
,

n(0) =
αn(V(0))

αn(V(0)) + βn(V(0))
, h(0) =

αh(V(0))
αh(V(0)) + βh(V(0))

, (24)

where:

αm =
0.32(V + 54)

1 − e−0.25(V+54)
, βm =

0.28(V + 27)
e0.2(V+27) − 1

,

αn =
0.032(V + 52)
1 − e−0.2(V+52)

, βn = 0.5e−(V+57)/40,

αh = 0.128e−(V+50)/18, βh =
4

1 + e−0.2(V+27)
. (25)

In Equation (20), cm is the specific membrane capacitance, I is an externally applied
current per unit area, ENa, EK, and ECl are the reverse potentials, and GNa, GK, GNaL, GKL,
and GClL are, respectively, the voltage-gated maximal conductances of Na+ and K+, and the
leak conductances of Na+, K+, and Cl−. The membrane potential and its first order
derivative are denoted by V(t) and V(1)(t), respectively. The resting membrane potential
is Vrest. The values of the physical parameters in Equations (20)–(23) are given in Table 1.
These values are assumed to correspond to a properly functioning neuron.

Table 1. The values, physical units and descriptions of the model’s parameters.

Parameters Values and Physical Units [Reference] Description

Vrest −65 mV [43] Normal resting potential
ENa 60 mV [43] Reversal potential of persistent sodium current
EK −88 mV [43] Reversal potential of potassium current
ECl −61 mV [43] Reversal potential of chloride current
GNa 0.3 mS/mm2 [43] Maximal conductance of sodium current
GK 0.25 mS/mm2 [43] Maximal conductance of potassium current

GNaL 0.000247 mS/mm2 [43] Conductance of leak sodium current
GKL 0.0005 mS/mm2 [43] Conductance of leak potassium current
GClL 0.001 mS/mm2 [43] Conductance of leak chloride current
cm 0.01µF/mm2 [43] Membrane capacitance
I 0.1µA/mm2 [43] Applied current

Like in the classic Hodgkin-Huxley model, Equation (20) represents Kirchhoff’s cur-
rent law. However, Equations (21)–(23) represent now evolution equations for the nondi-
mensional displacements of the m, n, and h gates. In the classic Hodgkin-Huxley model,
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Equations (21)–(23) were derived ad hoc from curve fitting to experiments and not from
first principles. Also, given that there are no published experimental characterizations of
the ion channels’ viscoelasticity, it is assumed, for simplicity, that the viscoelastic fading
memories of the ion channels are described by the same memory parameter δ(t). It is,
however, possible to use different memory parameters in Equations (21)–(23) to model
distinct patterns of viscoelastic fading memories of the channels. Furthermore, it is impor-
tant to notice that this electromechanical model (20)–(23) can describe structurally intact as
well as damaged neuronal membranes and thus predict various patterns of structurally
dependent action potentials corresponding to both functional and dysfunctional neurons
for the same externally applied current I and, for now, constant intra- and extra-cellular
ion concentrations.

Lastly, the physical units of the parameters given by Formula (25) should be the
same as those of the left-hand sides of the Equations (21)–(23), and thus all the constants
multiplying potential V are meant to remove its physical units (mV). Furthermore, based
on Formula (15) and the work in [51], these parameters have the following dimensions:

[αo] = [βo] =
[Eo]

[µδo ]
= T−δ(t), (26)

where o ∈ {m, n, h} and Eo, µδo are the modulus of elasticity and, respectively, generalized
viscosity of ion gate o. Formula (26) shows that the memory parameter δ(t) is intrinsic to
the relaxation of the ion gates, which agrees with Formula (17) in the case of a constant
fractional order δ. Thus, the relaxation time of ion gate o is given by (αo + βo)

−1/δ(t).

3.3. Generalized Pharmacokinetic Model

In this paper the pharmacokinetic model of donepezil transport found in [32] is com-
bined with the results on controlled release donepezil in [31]. In [32] mice received a
donepezil solution orally and then the donepezil amounts were extracted from homog-
enized serum and brain tissue samples collected from the mice. By fitting the data to
compartmental pharmacokinetic models using the software NONMEM 7.4 (NONlinear
Mixed Effects Modeling), a three-compartment model that best describes the data was
found. The compartments are: a depot for drug storage and distribution which for orally
administered drugs is the stomach, the blood compartment, the brain, and the peripheral
compartment. In [31], donepezil hydrochloride-encapsulated sodium alginate microspheres
for oral administration are prepared. The controlled release of donepezil in vitro from the
microspheres was fitted to a power law model. The exponent of release depended on the
cross-linker concentration and time and suggested either a Fickian release pattern if its
value was less than or equal to 0.5, or a non-Fickian (anomalous) diffusion pattern if the
value was strictly greater than 0.5 and less than 1.

Following [49], in this paper anomalous diffusion will be modeled using a temporal
Caputo fractional derivative of constant order ε ∈ (0, 1) and, thus, the generalized pharma-
cokinetic model describing the transport to the brain of controlled release donepezil is:

Dε
0+cd(t) = −k12 cd(t),

Dε
0+cblood(t) = k12 cd(t)− (k20 + k23 + k24) cblood(t) + k42 cp(t),

Dε
0+cbrain(t) =

Vblood
Vbrain

k23 cblood(t)− k30 cbrain(t),

Dε
0+cp(t) = k24 cblood(t)− k42 cp(t), (27)

where 0 < ε ≤ 1 is the dimensionless exponent of drug release, and cd, cblood, cbrain,
and cp are the drug’s (mass) concentrations in the depot, blood, brain, and peripheral
compartments, respectively. The case ε = 1 describes classic Fickian diffusion and also
corresponds to the donepezil solution available on the market that was used in [32].
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Parameter k12 gives the drug’s absorption rate through the depot to the blood, and pa-
rameters k20 and k30 are drug’s elimination rates due to biochemical processes taking place
within the blood and brain, respectively. Parameters k23, k24, and k42 are drug’s transfer
rates from the blood to the brain, and, respectively, between the blood and peripheral
compartments. The drug’s production rate in the brain is rescaled because the volumes of
drug distribution in the brain, Vbrain, and in the blood, Vblood are different [32]. The values
of these parameters are assumed to be the same as those found using data fitting in [32]
and are given in Table 2. A dimensional analysis of system (27) finds the dimension of the
rates in system (27) to be T−ε which explains the physical units in Table 2.

Table 2. The values, physical units and descriptions of the model’s parameters.

Parameters Values and Physical Units [Reference] Description

k12 0.059 min−ε [32] Absorption rate through the depot
k20 0.012 min−ε [32] Elimination rate in the blood
k23 0.014 min−ε [32] Transfer rate from blood to brain
k24 0.034 min−ε [32] Transfer rate from blood to periphery
k42 0.011 min−ε [32] Transfer rate from periphery to blood
k30 0.325 min−ε [32] Elimination rate in the brain

Vblood 279 mL [32] Volume of distribution in blood
Vbrain 18 mL [32] Volume of distribution in brain

ε {0.5, 0.658, 0.868, 1} [31,32] Exponent of release

Since system (27) is linear, and the eigenvalues of the system’s matrix with the values
in Table 2 are real numbers, the analytic solution exists and is given by [79,80]:

cd
cblood
cbrain

cp

(t) =
4

∑
i=1

ci vi Eε(λi tε), (28)

where λi, i ∈ {1, 2, 3, 4} are the eigenvalues of the system’s matrix, vi, i ∈ {1, 2, 3, 4}
are the corresponding eigenvectors, and ci, i ∈ {1, 2, 3, 4} are constants of integration.
The constants of integration are found from the following initial condition taken from [32]:

cd
cblood
cbrain

cp

(0) =


0.89 µg

mL
0
0
0

. (29)

which is calculated from an orally administered donepezil dose of 250µg.

3.4. Coupled Model

Nicotinic ACh receptors are large transmembrane proteins with complex structures
made of long twisted and folded chains of amino acids [47,48] that resemble the mi-
crostructures of viscoelastic materials [81] (incidentally, voltage-gated ion channels have
comparable structures and, thus, also exhibit viscoelastic behavior [82]). Since nicotinic
ACh receptors and collagen molecules are polymers (with different internal conformations)
and collagen molecules exhibit viscoelastic behavior [83], it is assumed that nicotinic ACh
receptors are also viscoelastic materials, and their electro-mechanic response is described by
the generalized Hodgkin-Huxley model. The binding of ACh molecules to nicotinic ACh
receptors briefly changes the internal conformations of the receptors’ structures to create
transmembrane pores for the transport of ions across the neuronal membrane (action po-
tentials). This fast structural rearrangement modulated by the ACh ligand can be modeled
as a short viscoelastic fading memory. Thus, it can be assumed that the ligand-gated ion
channels (and, based on [82], neuronal ion channels in general) are viscoelastic materials
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with short viscoelastic memory such that they produce healthy action potentials that define
a properly functioning neuron.

As mentioned in the introduction, the binding between AChE and donepezil increases
the amount of ACh in the brain. In this paper it is assumed that the amount of donepezil
in a brain with AD is proportional to the concentration of ACh and the following formula
is proposed to model donepezil’s effects on the viscoelastic behavior of the ligand-gated
ion channels:

δ(t) = δAD + cbrain(t), (30)

where δAD ∈ (0, 1) is a constant for the AD-specific longer viscoelastic fading memory
of the ligand-gated ion channels that causes abnormal action potentials (see later) and,
by an abuse of notation, cbrain represents a nondimensional and rescaled concentration of
donepezil in the brain calculated from Formula (28) such that δ(t) ∈ (0, 1]. Formula (30)
that couples the generalized Hodgkin-Huxley and pharmacokinetic models presented
earlier was chosen merely due to its mathematical simplicity since, currently, there are no
published experimental observations supporting this formula.

Remark 3. The extensions of the Picard-Lindeloff method proposed in [84,85] can be used to prove
the existence and uniqueness of solutions to systems (20)–(23) and respectively (27) for constant
fractional orders δ, ε ∈ (0, 1]. Also, the extension of the method of Green’s functions presented
in [79] can be used to prove the existence of a unique solution of the system of linear fractional
differential Equations (27). For a variable fractional order δ(t) ∈ (0, 1], the Haar piecewise-constant
approximant (12) of δ(t) can be used in combination with the extensions of the Picard-Lindeloff
method in [84,85] to straightforwardly prove the existence and uniqueness of the solution of
system (20)–(23).

4. Results

This section presents numerical simulations obtained in Matlab [70]. Matlab’s built-in
function ode15s (implementation of variable-step, variable-order numerical differentia-
tion formulas of orders 1 to 5) is used to numerically solve system (20)–(23) for δ = 1,
and Matlab’s built-in function ode45 (implementation of a single-step explicit Runge-Kutta
(4,5) formula) is used to solve system (27) for ε = 1 [86]. For constant fractional orders
δ, ε ∈ (0, 1), systems (20)–(23) and, respectively, (27) are solved numerically using Matlab’s
function fde_pi1_ex that implements the explicit product-integration rule of rectangular
type with convergence order equal to one [87]. For a variable fractional order δ(t) given
by Formula (30), system (20)–(23) is solved using the explicit Euler numerical scheme for
Equation (20) and numerical scheme (10) for Equations (21)–(23) implemented in Matlab.

4.1. Action Potentials in Health and AD

Figures 7 and 8 show plots of the solutions of system (20)–(23) with initial condi-
tions (24), parameters given by Formula (25) and in Table 1, and various constant fractional
orders δ ∈ (0, 1]. Numerical solutions were obtained using the step size ∆ t = 0.00025 ms.
The case δ = 1 corresponds to the classic Hodgkin-Huxley model which is considered the
healthy case (Figure 7a,e). It is assumed that the healthy action potentials are characterized
by positive overshoots and ability to reach the value of the resting membrane potential
given in Table 1. As δ decreases to 0, the viscoelastic memory of the ion gates gets longer
slowing down the opening or closing of the m, n, and h gates (Figure 8). This causes the
oscillations of the membrane’s potential to become delayed (Figure 7b,c,e) and eventually
cease to exist (Figure 7d,e). The amplitude of these oscillations also decreases with de-
creasing δ, and the positive overshoot stops to happen (Figure 7). Lastly, as δ gets smaller,
the peak-to-peak amplitude of the membrane’s potential gets shorter and the membrane
potential does not reach the resting potential Vrest given in Table 1 anymore.
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Figure 7. (a–d) Plots of membrane potentials for various constant fractional orders δ ∈ (0, 1]. (e) A
comparison of zoomed-in views of the plots shown in (a–d). As δ decreases to 0, the viscoelastic
memory gets longer causing the peak-to-peak amplitude of the action potential V to get shorter and
the resting potential to get higher. Also, plateau (delayed) potentials followed by higher frequency of
firing are observed for δ = 0.75, while for δ = 0.5 a first long plateau region is followed by periodic
shorter delayed potentials. Lastly, the action potentials cease to exist for values of δ closer to 0.

It is further assumed that a shorter viscoelastic memory (δ closer to 1) describes
structurally intact ion gates that generate healthy action potentials and thus this neuron is
considered functional. A longer viscoelastic memory (δ closer to 0) describes structurally
altered ion gates assumed here to be caused by the decreased amount of ACh due to AD
that generates abnormal action potentials and thus this is a dysfunctional neuron. It is also
assumed that the abnormal action potentials for δAD = 0.75 correspond to earlier stages of
AD, and the abnormal action potentials for δAD = 0.5 correspond to later stages of AD.

Figure 8. (a–d) Plots of displacements m, n, and h for various constant fractional orders δ ∈ (0, 1].
(e–h) Zoomed-in views of the plots shown in (a–d). (a–h) share the legend in (d). As δ goes to 0,
the periodic oscillations of m, n, and h gates start changing their shapes, plateau regions appear and
get longer until the gates stop opening or closing.

4.2. Transport of Controlled Release Donepezil

Figures 9 and 10 show the solutions of system (27) with initial conditions (29) and
parameters given in Table 2. The numerical solutions are obtained for a step size of
∆ t = 0.005 min. For each value of ε ∈ (0, 1], a perfect agreement between the the analytic
solution (28) and the numerical solution of system (27) is observed (Figure 9). This vali-
dates the numerical solutions obtained using Matlab’s functions fde_pi1_ex and ode45.
A comparison of the concentrations of donepezil for various value of ε in each of the
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four compartments is shown in Figure 10. As ε decreases from 1, the concentration of
controlled release donepezil gets longer tails at later times (Figure 10a–c). Since the very
slow decay of donepezil in the stomach for ε = 0.5 may elevate gastrointestinal adverse
effects (Figure 10a), the value ε = 0.658 is chosen as the optimal controlled release based
on the slow decrease of donepezil in the brain (Figure 10c).

Figure 9. Plots of concentrations of donepezil in the depot, blood, brain and peripheral compartments
for various constant values of ε. (a–d) share the legend in (d). In the legend map, (n) stands for numerical
solution and (e) for exact (analytic) solution. The subscript DPZ stands for donepezil. For each value of
ε, a perfect agreement is noticed between the exact and numerical solutions for each compartment.

Figure 10. A comparison of concentrations of donepezil for various values of ε in each compartment:
(a) depot, (b) blood, (c) brain, and (d) peripheral. The subscript DPZ stands for donepezil. The tail
of the concentration in each compartment gets longer as ε decreases. Specifically, in the brain, as ε

decreases, the maximum concentration of donepezil decreases and is reached at a later time, and the
concentration decays slower with time.
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4.3. Donepezil Effects on Action Potentials

Figure 11 shows plots of viscoelastic memories δ(t) given by Formula (30) for δAD ∈
{0.5, 0.75} and dimensionless and rescaled concentrations of controlled release donepezil
in brain given by Formula (28) for ε ∈ {0.658, 1}. For δAD = 0.5, the following cases are also
considered: (1) the initially administered donepezil dose for ε = 0.658 is doubled to 500µg,
(2) the donepezil dosage is 250µg every 120 min during the observed period of 600 min
for ε ∈ {0.658, 1}. The concentrations of donepezil in brain are rescaled by interpolating
using Matlab’s built-in function interp1 (Figure 11). It is further assumed that the shapes
of the concentrations remain the same on a time scale of ms. This assumption allows to
numerically solve system (20)–(23) for a variable fractional order δ(t) without exceeding
Matlab’s maximum array size and memory allowed by the computer used for calculations
(HP Spectre 360× laptop with 64×-based PC and 8 GB RAM), and, thus, the patterns of
the action potentials corresponding to the various shapes of δ(t) shown in Figure 11 can
be visualized. The plots in Figure 11 resemble the variable fractional orders in Figure 6b,c
so the creep and relaxation responses of viscoelastic materials with memories shown in
Figure 11 will look like those in Figure 6h,k and respectively Figure 6i,l.

Figure 11. Plots of δ(t) given by Formula (30) for δAD ∈ {0.5, 0.75} and ε ∈ {0.658, 1}. In the legend
map, (dd) stands for double dose, and (2 h) stands for the administration of donepezil every two
hours. Due to computer memory constraints, it is assumed that the shapes of δ(t) remain unchanged
on the time domain [0, 300] ms of the membrane potential.

Figures 12–17 show plots of the solutions to system (20)–(23) with initial conditions (24),
parameters given by Formula (25) and in Table 1 and variable fractional orders shown in
Figure 11. The solutions are obtained for a step size ∆ t = 0.005 ms. The plots show the
effects of controlled release donepezil on action potentials.
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Figure 12. Action potentials for viscoelastic memories δAD = 0.75 and, respectively, δ(t) given by
Formula (30) with δAD = 0.75 and controlled release donepezil for (a) ε = 0.658 and (b) ε = 1.
Plots not to scale. Donepezil intake recovers the ability of the membrane potential to have positive
overshoots and reach the normal resting potential for both values of ε.

Figure 13. (a) Comparison of action potentials for viscoelastic memory δ(t) given by Formula (30) with
δAD = 0.75 and with Fickian (ε = 1) and non-Fickian (ε = 0.658) release of donepezil. (b) Zoomed-in
view of the plots in (a). Plots not to scale. The membrane potential after donepezil treatment with
non-Fickian control release has positive overshoots and reach the normal resting potential for a longer
time and the peak-to-peak amplitude of the oscillations are larger than the membrane potential after
donepezil intake with Fickian control release.
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Figure 14. Action potentials for viscoelastic memories δAD = 0.5 and, respectively, δ(t) given by
Formula (30) with δAD = 0.5 and with controlled release donepezil for (a) ε = 0.658 and (b) ε = 1.
Plots not to scale. For a short time, donepezil intake recovers the ability of the membrane potential
to have positive overshoots for ε = 1 and reach the normal resting potential for both values of ε.
Also, the first plateau regions of the action potentials after donepezil treatment are shorter than the
first plateau region of the potential corresponding to δAD = 0.5. At later times, the action potentials
corresponding to a donepezil treatment with ε = 1 develop shapes with small delays similar to those
seen in the action potentials for the case δAD = 0.5, while the action potentials associated with a
donepezil intake with ε = 0.658 do not develop similar delays.

Figure 15. (a) Comparison of action potentials for viscoelastic memory δ(t) given by Formula (30)
with δAD = 0.5 and with Fickian (ε = 1) and non-Fickian (ε = 0.658) release of donepezil. (b) Zoomed-
in view of the plots in (a). Plots not to scale. The action potentials after donepezil intake with Fickian
release have positive overshoots and reach the normal resting potential for a short time. The first
plateau region is shorter than the one corresponding to the action potentials after donepezil treatment
with non-Fickian release and develop short plateau regions at later times. On the other hand, the ac-
tion potentials after donepezil intake with non-Fickian drug release do not have positive overshoots,
have a longer first plateau region, followed by a few shorter plateau regions, and oscillations with no
delays at later times.
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Figure 16. (a) Comparison of action potentials for viscoelastic memory δ(t) given by Formula (30)
with δAD = 0.5, non-Fickian (ε = 0.658) release of donepezil, and with either single (250µg; blue line)
or double (500µg; red line) dose of orally administered donepezil. (b) Zoomed-in view of the plots
in (a). In the legend maps, (dd) stands for double dose. Plots not to scale. The potential corresponding
to the double dose has a shorter initial delay, reaches the normal rest potential and higher amplitudes
of positive overshoots that slowly decay at later times.

Figure 17. Action potentials for viscoelastic memory δ(t) given by Formula (30) with δAD = 0.5 and
with (a) Fickian (ε = 1) and (b) non-Fickian (ε = 0.658) release of donepezil. The administered
dosage is 250µg every 120 min during the observed period of 600 min. In the legend maps, (2 h)
stands for the administration of donepezil every two hours. Plots not to scale. The action potentials
corresponding to ε = 1 start sooner, the amplitudes of the positive overshoots slowly increase with
each administration of donepezil, and there are regions with no positive overshoots which have
smaller frequencies and small delays. The action potentials corresponding to ε = 0.658 start later,
the amplitudes of the positive overshoots increase with each administration of donepezil, and there
are no regions that lack positive overshoots.

If δAD = 0.75, the intake of donepezil recovers the ability of the membrane potential
to have positive overshoots and reach the resting membrane potential Vrest in Table 1 for
a longer time (about 600 min, see Figure 10c) and both the amplitude and peak-to-peak
amplitude of the oscillations are larger when the controlled release uses ε = 0.658 instead
of ε = 1 (Figure 13). On the other hand, if δAD = 0.5 the action potentials reach the
resting potential Vrest and have positive overshoots for a shorter time (about 100 min, see
Figure 10c) if the administered donepezil is released with ε = 1. The action potentials for
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δ(t) = 0.5 + cbrain do not change significantly from those corresponding to δAD = 0.5 when
a controlled release donepezil with ε = 0.658 is administered (Figure 15).

For later stages of AD described by δAD = 0.5, an increase in donepezil dosage
(quantity and/or frequency) is needed to get shorter viscoelastic memory (see Figure 11)
and corresponding improved action potentials. Figure 16 shows action potentials for
δAD = 0.5, ε = 0.658 when a double dose of donepezil (500µg) is administered initially.
The potential experiences a shorter initial delay than the case when the administered drug
dose is 250µg, reaches the rest potential and higher amplitudes of positive overshoots
that slowly decay at later times in a manner similar to the associated δ(t) (Figure 11).
If δAD = 0.5 and the drug dose of 250µg is administered every two hours then the action
potentials corresponding to ε = 1 start sooner and although the amplitudes of the positive
overshoots slowly increase with each administration of donepezil there are still regions
with no positive overshoots, smaller frequencies and small delays (Figure 17a). If ε = 0.658,
the positive overshoots are delayed, and their amplitudes increase with each administration
of donepezil. Also, in this case, the positive overshoots are not interrupted by regions
lacking positive overshoots (Figure 17b). These observations suggest that combining
various donepezil’s release modalities and dosages may provide better treatments for AD
than treatments that use the same release approach with different donepezil dosages for all
stages of AD.

Lastly, the convergence of the numerical scheme used to solve system (20)–(23) for
a variable fractional order δ(t) was studied for the case δAD = 0.75, ε = 0.658, and the
time step sizes ∆ t1 = 0.005, ∆ t1/2 = ∆ t1/2, and ∆ t1/4 = ∆ t1/4. Let V(∆ ti) denote the
numerical solution of Equation (20) for the step size ∆ ti and i ∈ {1, 1/2, 1/4}. Then the
following relative errors were calculated [88]:

E1 =
∥V(∆ t1)− V(∆ t1/4)∥L2(R)

∥V(∆ t1/4)∥L2(R)
, E1/2 =

∥V(∆ t1/2)− V(∆ t1/4)∥L2(R)
∥V(∆ t1/4)∥L2(R)

.

The order of convergence was also calculated as:

p = log2

(
∥V(∆ t1)− V(∆ t1/2)∥L2(R)
∥V(∆ t1/2)− V(∆ t1/4)∥L2(R)

)
.

The results of these calculations are shown in Table 3. The convergence is linear since
p ≈ 1.

Table 3. Relative errors and order of convergence for the numerical scheme used to solve the
generalized Hodgkin-Huxley equations with a variable fractional order δ(t).

E1 E1/2 p

0.3557 0.1474 0.8662(≈1)

5. Discussion and Conclusion Remarks

In this paper, mathematical modeling is used to study the transport to the brain of
anomalous release donepezil and the effect of donepezil on action potentials. Caputo
fractional derivatives are used to model anomalous release patterns of donepezil and the
viscoelastic behavior of ligand-gated ion channels. A generalized pharmacokinetic model
for the transport to the brain of anomalous release donepezil is proposed and its analytic
and numeric solutions are found and shown to be in perfect agreement. A generalized
Hodgkin-Huxley model is also proposed that couples the electric activity of neuronal
membrane and the viscoelastic behavior of the ion channels. The variable-order fractional
Maxwell linear viscoelastic model is used to describe the viscoelasticity of ion channels.
The variable-order Caputo fractional derivative is chosen to model viscoelastic fading
memory since it has no memory of its past order and thus it can transfer to the output
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specific features (such as monotonicity or oscillatory behavior) of the fractional variable
order. The Haar piecewise-constant approximants of specific variable fractional orders
were used, in combination with properties of constant-order Caputo fractional derivatives,
to characterize the corresponding creep and relaxation responses of the chosen viscoelas-
tic model. The action potentials predicted by the generalized Hodgkin-Huxley model
depend on the viscoelastic fading memory of the ion channels as follows. For shorter
fading memory (fractional order closer to 1), the action potentials have shapes similar to
those predicted by the classic Hodgkin-Huxley model and thus they are considered to be
generated by a functional neuron with structurally intact ion channels. For longer fading
memory (fractional order closer to 0), abnormal patterns of action potentials are obtained
that correspond to dysfunctional neurons with structurally damaged ion channels. Based
on a qualitative visual matching of the shapes of abnormal action potentials predicted by
the proposed model and the shapes of action potentials in the presence of AD available
in the literature, two constant values of the fractional order are chosen to correspond to
earlier (δAD = 0.75) and later (δAD = 0.5) stages of AD. The coupling of the generalized
pharmacokinetic and Hodgkin-Huxley models is based on the following assumptions: the
concentration of donepezil is proportional to the concentration of ACh made available
by donepezil intake, and the temporary binding between ACh and its ligand-gated ion
channels confers the shorter viscoelastic fading memory to the channels needed to generate
healthy action potentials. By taking the variable fractional order describing the viscoelastic
memory of ion channels to be the addition of the δAD and a rescaled and dimensionless
concentration of donepezil in the brain, the effects of donepezil intake on the action poten-
tials can be observed. The lack of past order memory of the chosen variable-order fractional
derivative allows for the transfer to the action potentials of the temporal variations of the
amount of ACh. The results show that: (1) in the brain, an anomalous release donepezil
decays slower than a donepezil solution available on the market, (2) donepezil intake
temporarily recovers healthy action potentials which agrees with clinical observations [7],
and (3) for later stages of AD, combinations of various release modalities and dosages of
donepezil may provide better treatment outcomes.

Neuronal structural damage and dysfunction are pathological hallmarks of neurode-
generative disorders. Although these disorders have specific biochemical pathways of
progression, they share certain patterns of structural and functional abnormalities. For in-
stance, AD animal models showed that the accumulation of Aβ plaques and NFT can cause
myelin damage and oligodendrocyte deterioration leading to demyelienation that further
contributes to the progression of AD. The AD-associated demyelienation happens years
before the first symptoms of AD emerge and has neuroimaging presentations similar to the
demyelienation seen in multiple sclerosis [10–13]. AD and stroke are also interrelated disor-
ders [89]. Strokes cause, among others, an impaired cerebral blood flow, neural injury and
depolarization, neuroinflammation, and damage to the blood-brain barrier, which could
result in AD onset and progression years later. On the other hand, AD causes the disintegra-
tion of the blood-brain barrier that further leads to impaired diffusion and interstitial fluid
flow within the cerebral extracellular space, enhanced cerebral inflammatory and immune
responses, progression of AD, and, potentially, strokes [4,90,91]. Structural damage of ion
channels were also associated with AD and other neurodegenerative disorders [15,47,48,82].

The abnormal patterns of action potentials in the presence of AD predicted by the
proposed generalized Hodgkin-Huxley model are similar to those seen in untreated AD
and other neurodegenerative disorders. Various studies have shown hyperexcitability and
epileptiform activity in early stages of AD, followed by increasing lack of action potentials in
later stages of AD [9,14,15,17,44,45]. Figure 7 shows that, as δ decreases from 1, the current
activation happens at less negative voltages (higher resting potential), inactivation occurs
at less positive voltages (smaller positive overshoots), and the action potentials experience
decreasing amplitudes and smaller frequencies, which, by definition, correspond to a loss
of function phenotype introduced in [15]. The case δAD = 0.75 shows plateau (delayed)
potentials followed by higher frequency of firing which correspond to hyperexcitability seen
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in earlier stages of AD. Similar patterns of action potentials were observed experimentally
in transgenic Na v1.8-null knockout DRG neurons [92], abnormal Na v1.8 expression
in some neurons that may be linked to multiple sclerosis [93], and mutations of some
sodium channels that cause persistent sodium currents linked to epilepsy [94,95]. The case
δAD = 0.5 (and lower values of δ) shows an almost cessation of action potentials that
may be associated with later stages of AD [17]. Similar abnormal action potentials were
observed experimentally in neurons under spreading depolarization (that may happen in
ischemic stroke) and a blockade of astrocytic glutamate transporters [96]. The abnormal
action potentials also look similar to some of the membrane voltages predicted by the
mathematical models proposed in [44,45,97,98]. The models in [44,45] were obtained by
coupling the Hodgkin-Huxley model and ion concentration dynamics observed in AD
animal models via the Nernst equations. The models in [97,98] are not specific to AD
and are obtained by mathematical modifications of the Hodgkin-Huxley model. While a
combination of Taylor’s formula for multivariable functions and various external stimuli
is used in [97], the concept of a two-terminal resistor with memory called memristor is
introduced in [98] and the so-called memristive Hodgkin-Huxley model is then obtained by
replacing the sodium and potassium conductances in the classic Hodgkin-Huxley model
by flux-controlled memristors. A major difference between the proposed generalized
Hodgkin-Huxley model and published mathematical models is the level of complexity.
Models existing in the literature have a high level of complexity; they use many variables
and parameters to predict abnormal action potentials. On the other hand, only the memory
parameter of the generalized Hodgkin-Huxley model needs to be modified to predict
healthy and various abnormal patterns of action potentials. Neither the recovery of the
healthy patterns of action potentials after the administration of AD therapies nor the
transport of anomalous release donepezil to the brain have been reported in the literature
until now.

Lastly, the proposed generalized Hodgkin-Huxley and coupled models require experi-
mental validation. For the calibration of the models, it is important to find the values of
the moduli of elasticity, generalized viscosities, and memory parameters of the nicotinic
ACh receptors (and neuronal ion channels in general) in properly functioning neurons
and in neurons altered by the AD progression, as well as their dependencies on electric
currents and, in the case of AD, the concentration of orally administered donepezil in
the brain. Currently, there are no published viscoelastic characterizations of neuronal ion
channels. However, optical tweezers-based microrheology [99–101] and optical coherence
elastography [102] are non-invasive and contactless techniques that can be used in vivo
and in vitro to study mechanical properties of biological structures at (sub)micron levels
like ion channels. In optical tweezers-based microrheology, small particles are trapped and
manipulated using a highly focused laser beam and measurements of the light scattered by
the trapped particles moving through a material provide the viscoelastic properties of the
material. Of particular interest to the work in this paper could be the active–passive cali-
bration technique proposed in [101] that can measure viscoelastic properties of a material
over a wide frequency range with high spatio-temporal resolution. In optical coherence
elastography, the deformation in a material subjected to a mechanical force is measured
using optical coherence tomography, and then an inverse problem is solved with the known
deformation to find the viscoelastic properties of the material. Initially, these two tech-
nologies could be used with animal models of AD to find the viscoelastic properties of
retinal neurons.

Future work will explore the generalized Hodgkin-Huxley model for distinct mem-
ory parameters of the ion channels, in the presence of various external stimuli and ion
concentration dynamics. The derivation of semi-analytic solutions to the generalized
Hodgkin-Huxley model using Haar wavelets will also be investigated.
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Appendix A

The descriptions and physical units of the variables of the models presented in
Sections 3.2 and 3.3 are given in Table A1.

Table A1. The values, physical units, and descriptions of the models’ variables.

Variables Physical Units Description

t ms (Section 3.2), min (Section 3.3) time
V mV Membrane potential
m Nondimensional displacement of the activating sodium gate
h Nondimensional displacement of the inactivating sodium gate
n Nondimensional displacement of the activating potassium gate
cd µg/mL Donepezil concentration in the depot

cblood µg/mL Donepezil concentration in the blood
cbrain µg/mL Donepezil concentration in the brain

cp µg/mL Donepezil concentration in the periphery
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