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Abstract: The classification of red blood cells (RBCs) or erythrocytes into three categories based on
their shape, normal, sickle-shaped, and those with other deformations, has proven to be a crucial
tool in diagnosing and managing sickle cell disease (SCD). Manual classification techniques have
evolved into automated tools, with numerous classification methods being applied based on different
ways of representing the cells. In this work, we propose a novel methodology for representing RBCs,
defined by selecting k landmarks along the cell boundaries and characterizing shapes as points in the
Kendall space of reflection shapes, Ωk

2. Using this representation, we applied an embedding of the
Kendall space Ωk

2 into a Euclidean space, which allowed for the use of machine learning classification
algorithms. We also compared our results with those obtained using other classification methods
applied to the same dataset in the literature, highlighting the strong performance of our approach in
terms of classification accuracy.

Keywords: erythrocytes; Kendall space; machine learning algorithms; shape classification

1. Introduction

Sickle cell disease (SCD) is a severe genetic blood disorder characterized by the
presence of an abnormal form of hemoglobin, hemoglobin S (HbS), which causes red
blood cells (RBCs) to adopt a rigid crescent or sickle shape. RBCs, which are normally
circular and flexible, play a vital role in transporting oxygen throughout the body by
moving easily through tiny blood vessels. However, in individuals with SCD, the deformed
sickle-shaped cells obstruct normal blood flow, leading to pain and other complications
in various parts of the body. While there are many blood abnormalities, SCD stands out
due to its significant impact on millions of people worldwide. Diagnosing SCD relies
on the classification of RBCs based solely on their shape, distinguishing between normal
cells, sickle cells, and other deformed shapes, without consideration of the cell size. This
shape-based classification is essential for identifying the presence of sickle cells, assessing
disease severity, monitoring progression, and guiding timely interventions to improve the
quality of life for affected individuals.

The automatic classification of red blood cells based on their shape in images of
peripheral blood smear samples is a field that has developed significantly in recent years
through various mathematical and computational approaches. One of the approaches
involves using simple descriptors such as the circularity, ellipticity, or bending energy [1,2]
to describe the shape of the cells, and then applying classification methods based on these
descriptors. The utilization of descriptors based on Fourier series or the template matching
technique has also been proposed [3]. Artificial neural networks have been employed [4],
as well as shape features based on integral geometry [5]. In [6], a review of segmentation
and classification methods for red blood cells can be found. A recent model for classifying
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red blood cells that we want to highlight involves considering the contour of each cell as a
parametrized curve in R2. In this way, metrics in the shape space, which is formed by all
closed parametrized curves and has the structure of a Riemannian manifold, have been
used for classification [7,8]. However, in this model, where each shape is represented by a
parametrized curve, achieving the invariance of the curve (shape) to motions and scaling is
more feasible, while obtaining shape invariance against changes in parametrization is a
much more mathematically and computationally expensive process. Therefore, considering
that when working with databases, the boundary curves of erythrocytes are discrete
(formed by a finite number of points), in this work, we introduce the representation of
shapes using a set of landmarks from the boundary curve. This approach achieves excellent
classification results while reducing the computational cost.

At present, both machine learning and deep learning are two mainstream approaches
for classification. Regarding deep learning, transfer learning models such as lightweight
models, ResNet-50, AlexNet, and VGG have been implemented for RBC classification [9,10].
In this work, as we will explain below, we present a novel representation of the red blood
cell shape that allows us to apply machine learning classification algorithms. We also
compare our classification results with those obtained using other methods, including deep
learning approaches, applied to the same dataset.

All the previous studies highlight the growing use of advanced machine learning
algorithms in cell classification tasks, demonstrating promising results in automated analy-
sis and diagnostic support. Our work introduces a theory that, although well known, is
entirely novel in the classification of red blood cells. This theory enables the introduction of
new mathematical tools and SVM classification methods tailored to the specific challenges
of red blood cell morphology.

In numerous applications, planar shapes are characterized by a finite number of points
along their contours, and the required geometric information in a shape must also be
invariant under reflections of the landmark set. In this work, we represented each planar
shape (cell) using a set of digitized points that described its contour, provided directly by the
dataset. These points were evenly distributed along the cell boundary, ensuring a detailed
and uniform representation of each shape. To define the landmarks required for working
in Kendall’s reflection shape space [11], we adopted a mathematical approach based on
the geometry of the cell. Specifically, the mathematical landmarks were defined as the two
boundary points that determined the cell’s diameter (the pair of points with the maximum
Euclidean distance between them). The remaining points, referred to as pseudo-landmarks,
were distributed consistently along the boundary relative to the identified diameter. This
approach ensured a systematic correspondence between points across different shapes,
even in the absence of anatomical homology. In our application, we aimed to classify red
blood cells into three categories: normal, sickle-shaped, and those with other deformations.
Each cell was thus described by k landmarks in R2, which corresponded consistently across
all cells.

The reason we considered invariance to reflections and, consequently, worked in
the Kendall space of reflection shapes is that the blood images used were taken from
samples prepared by smearing or spreading. As a result, the same red blood cell in the
three-dimensional blood sample, if rotated 180 degrees around an axis, can produce a
two-dimensional projection that is a reflection shape of the one obtained without rotating
the red blood cell. Therefore, the 2D reflections do not alter the shape of the cell.

We analyzed a dataset comprising 202 normal cells, 210 sickle cells, and 211 cells
with other cellular deformations. These cells with other deformations, although they also
exhibit morphological alterations, are not directly relevant to sickle cell disease and their
specific identification does not provide additional information for the diagnosis, monitoring,
or treatment of the disease. Therefore, they were grouped into a generic category of “other
deformations”. In line with the results of [12], but considering shape invariance with
respect to the orthogonal group O(2) instead of the special orthogonal group SO(2), we
considered the embedding of the Kendall space of reflection shapes Ωk

2 into the Euclidean
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space Rk(k−1)/2. Then, we considered the extrinsic distance induced by the Euclidean
distance of this embedding and the Euclidean distance transformed by the kernel, resulting
from the embedding of Ω2

k into a reproducing kernel Hilbert space. Using these distances,
we applied various machine learning algorithms to perform the supervised classification
and unsupervised clustering of the dataset and conduct a classification evaluation.

On the other hand, we present a new identification of the submanifold M = i(Ω2
k)

within Rk(k−1)/2. Additionally, we defined a new sample mean on M, derived from the
extrinsic sample mean in Rk(k−1)/2 using the Euclidean distance. The corresponding shape
was then obtained via the inverse function i−1.

This paper is organized as follows. In Section 2, we present an overview of the
Kendall space of reflection shapes Ωk

2 and introduce the new methodology we used for the
classification of red blood cells. This methodology involved an embedding and a novel
characterization of the Ωk

2 space. We also explain how each cell in the database was repre-
sented as a point in Ωk

2 and detail the classification algorithms applied in both supervised
classification and unsupervised clustering. Finally, in Sections 3 and 4, we discuss the
classification results obtained and present the conclusions of the study, respectively.

2. Materials and Methods

In this section, we begin by reviewing Kendall’s reflection shape space Ωk
2 [11]. Next,

in Theorem 1, we define an embedding of Ωk
2 into a Euclidean space, inspired by [12],

but also considering invariance under reflections. The main novelty is in Proposition 1,
which provides a new characterization of the space Ωk

2, from which we define a new
extrinsic mean. Finally, we detail the cell dataset used in this work and the proposed
classification methods.

2.1. Kendall Spaces

Although the erythrocyte size is important in various blood pathologies, in the case of
sickle cell disease, the detection of sickle cells primarily depends on their shape. Therefore,
the classification of red blood cells into the three categories was based solely on the shape
of the cells, without considering their size.

Initially, a 2D shape is represented by a configuration matrix X of size k × 2, consisting
of the Cartesian coordinates of the k landmarks outlining a 2D planar domain. However,
as the object’s shape encompasses all geometric information invariant to translations,
rotations, and changes in scale (similarity transformations), we eliminate translations and
scale changes from X by multiplying it with the Helmert submatrix, H [11], and normalizing
it by its Frobenius norm. Thus, the pre-shape of the configuration matrix X is given by a
(k − 1)× 2 matrix:

Z =
HX

||HX|| (1)

The pre-shape space Sk
2, defined as the set of all possible pre-shapes, is a hypersphere

of unit radius in R2(k−1). Finally, to eliminate rotations and reflections, the 2D shape is
obtained by taking the quotient of ZX over all possible orthogonal transformations of
the plane. Thus, the 2D shape space, Ωk

2, is the quotient space of Sk
2 under orthogonal

transformations, i.e.,
Ωk

2 = Sk
2/O(2). (2)

Therefore, if π denotes the natural projection to the equivalence class, π : Sk
2 → Ωk

2,
a shape [X]R is an orbit associated with the action of the orthogonal group O(2) on the
pre-shape; therefore, a shape is invariant under isometries in R2 [11].

On the other hand, given a configuration matrix X representing a shape [X]R, another
matrix belonging to the same equivalence class [X]R is given by HTZ.

The space of reflection planar shapes, Ωk
2, like the space of planar shapes, Σk

2, is a
smooth manifold of dimension 2k − 4.
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2.2. A Kernel Method in Ωk
2

In [12], an embedding of the Kendall space Σk
2 into a Euclidean space is defined. When

reflection invariance is considered, this embedding leads to the following embedding,

i : Ωk
2 → R

k(k−1)
2 , from which we will introduce an extrinsic distance and a kernel method

in Ωk
2.

Theorem 1. Let Z be a (k−1)×2 pre-shape of a given reflection shape [X]R and v = {v1 v2 · · · vk−1}
with vi ∈ R2, i ∈ {1, · · · , k − 1}, the set of vectors defining Z.

Then, the map is

i : Ωk
2 −→ R

k(k−1)
2

[X]R 7−→ i([X]R) =
{
< vi, vj >

}
,

(3)

where i, j = 1, . . . , k − 1, i ≤ j and < , >, which denotes the scalar product, is injective.

Proof. This is similar to the proof presented in [12] for the case of shapes in the Kendall space
Σk

m, but notes that the generating set of polynomials invariant under the action of the group
O(n), unlike the group SO(n), contains only scalar products and not determinants.

The extrinsic distance between two shapes, [X1] and [X2], is given by the equation

de([X1]R, [X2]R) := ∥i([X2]R)− i([X1]R)∥, (4)

where ∥ · ∥ denotes the norm in Rk(k−1)/2.

Finally, we consider the embedding of the Euclidean space Rk(k−1)/2 into a reproducing
kernel Hilbert space (RKHS) and work with the distance defined by the kernel, in addition
to the Euclidean distance.

Proposition 1. Let K : RM ×RM → R be a positive definite kernel. Then,

K̃ : Ωk
m × Ωk

2 → R, ([X]R, [Y]R) 7→ K̃([x]R, [Y]R) := K(i([X]R), i([Y]R))

is a positive definite kernel on Ωk
2.

In this paper, we use the Gaussian kernel K : Ωk
2 × Ωk

2 −→ R, defined as

K([X1]R, [X2]R) = exp
(
−γd2

e ([X1]R, [X2]R)
)

. (5)

The Gaussian kernels defined in the shape space Σk
2 are the Procrustes Gaussian

kernel [13] and the Projection Gaussian kernel [14], considering the 2D Kendall shape space
Σk

2 as a Grassmannian manifold.

2.3. An Extrinsic Mean Shape

In this section, we introduce a characterization of the submanifold M = i(Ωk
2) in

Rk(k−1)/2. Subsequently, we define the extrinsic mean as the projection onto M of the usual
arithmetic mean in Rk(k−1)/2.

Proposition 2. Let M ⊂ Rk(k−1)/2 be given by the vectors(
ai, bij

)
∈ Rk(k−1)/2, (6)

where i < j with i, j ∈ {1, 2, · · · , k − 1}, such that

1. ∑k−1
i=1 ai = 1, and ai > 0 for i = 1, . . . , k − 1.

2. a1 bij = b1jb1i +
√
(a1aj − b2

1j)(a1ai − b2
1i), i = 2, . . . , k − 1, i < j.
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Then M = i(Ωk
2).

Proof. Firstly, we observe that the dimension of M is dim(M) = 2k− 4, therefore coinciding
with the dimension of Ωk

2. We need to demonstrate that Im(i) = M.

Let
V =

(
x2

i + y2
i , xixj + yiyj

)
=
(
⟨vi, vi⟩, ⟨vi, vj⟩

)
∈ Im(i). (7)

Let us define ai = x2
i + y2

i . Then, ai ≥ 0, and since none of the Helmertized landmark
coordinates coincide with the origin (Equation (3.7) of [11]), we have ai > 0.

Moreover, since the pre-shape Z ∈ Sk
2, we have ∑k−1

i=1 ai = 1.

Let
bij = ⟨vi, vj⟩ = ⟨(xi, yi)), (xj, yj)⟩ = ||vi|| ||vj|| cos θij. (8)

Since cos θij = cos(θ1j − θ1i), we obtain

bij =
√

ai
√

aj cos(θ1j − θ1i).

Using the expression for the cosine of the difference of angles, we obtain

bij =
√

ai
√

aj(cos(θ1j) cos(θ1i) + sin(θ1j) sin(θ1i))

=
√

ai
√

aj

(
cos(θ1j) cos(θ1i) +

√
(1 − cos2(θ1j))(1 − cos2(θ1i))

)
.

From Equation (8), we have

bij =
√

ai
√

aj

 b1j√
a1
√aj

b1i√
a1
√

ai
+

√√√√(1 −
b2

1j

a1aj

)(
1 −

b2
1i

a1ai

),

and then condition 2.
Therefore, V ∈ M, and we have demonstrated that Im(i) ⊂ M. Now, let V =

(
ai, bij

)
∈ M,

which satisfies conditions 1 and 2. We look for [X] ∈ Ωk
2 such that i([X]) = V. We suppose that

the pre-shape of X is defined as

Z =



√
a1 0

b12√
a1

√
a1a2−b2

12√
a1

...
...

b1k−1√
a1

√
a1ak−1−b2

1k−1√
a1

. (9)

Then, ||Z|| = 1 and i([X]) = V, so M ⊂ Im(i).

Next, we define a new extrinsic mean in space Ωk
2.

Consider a sample of shapes, [X1]R, . . . , [Xn]R ∈ Ωk
2, and denote i([X1]R) = V1, . . . ,

i([Xn]R) = Vn ∈ M ∈ Rk(k−1)/2. The Euclidean sample mean

V̄ =
∑n

i=1 Vi

n
= {āi, b̄ij}

does not belong, in general, to M.
To define a sample mean shape in Ωk

2, we first consider the following minimiza-
tion problem:

Minimize d2
E(V̄, M); that is, minW∈M d2

E(V̄, W), where dE denotes the Euclidean dis-
tance in Rk(k−1)/2.
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We aim to minimize the function

f (ai, bij) =
k−1

∑
i=1

(ai − āi)
2 +

k−1

∑
i=1
i<j

(bij − b̄ij)
2,

subject to conditions 1 and 2 of Proposition 2.
Once we have obtained W ∈ M, which gives the minimum, the pre-shape Z of X is

obtained from Equation (9), and the corresponding sample mean shape will be the shape
[X] ∈ Ωk

2 such that X = HTZ.

2.4. Image Database

Our approach was applied to the erythrocytesIDB image database (accessible at
http://erythrocytesidb.uib.es). This dataset consists of images of peripheral blood smear
samples obtained from patients with sickle cell disease in the Special Hematology De-
partment of the General Hospital “Dr. Juan Bruno Zayas Alfonso” in Santiago de Cuba.
The database provides the contours of 623 red blood cells, each represented by 295 points in
R2, distributed approximately equidistantly along the boundary of each cell. A first-grade
specialist in the Clinical Laboratory analyzed the images and classified them as circular,
elongated, or cells with other deformations. We utilized the contours provided in the
database, as optimizing the segmentation process was not the purpose of this study. Addi-
tional details about the sample preparation, image acquisition, segmentation, and other
procedures are available on the image database homepage. The dataset contains 202 images
of normal cells, 210 of sickle cells, and 211 of cells with various other deformations. Figure 1
presents three sample images from the database. It is important to note that the class of
erythrocytes with other deformations includes cells with minor irregularities and shapes
resembling both normal and sickle cells, which could lead to misclassification and reduced
interpretability. Deformations of red blood cells are associated with several significant dis-
eases. In some of these conditions, such as thalassemias, the presence of microcytic (small)
and hypochromic erythrocytes is a central characteristic, significantly impairing oxygen
transport. Therefore, in these diseases, the size of the erythrocytes plays a crucial role.
However, in the case of sickle cell anemia, it is the sickle-shaped form of the erythrocytes
that primarily impacts the disease’s progression.

The contours of all 623 cells in the database were uniformly characterized by 295 points
in R2. To determine the major axis of each cell, we calculated the maximum distance among
all pairs of the 295 points defining the contour of each cell. Among the two points defining
this major axis, the one with the largest x-coordinate was chosen as the first landmark,
ensuring a consistent reference point for all cells. Using this initial landmark as the starting
reference, the remaining points were treated as pseudo-landmarks, thereby establishing
correspondence between the landmarks of all cells. This approach, combined with the
distinctive shapes of normal and sickle cells and their consistent representation, allowed
each cell to be regarded as a shape in the Kendall reflection shape space Ωk

2.
As we will discuss in Section 3, we performed a comparison between the classification

results obtained using 295 landmarks per cell and those obtained using 295/5 = 59 land-
marks per cell (i.e., once the first landmark was selected from the major axis of the cell, we
only considered 59 equidistant points from this landmark, disregarding the rest). Since the
difference in the classification results was not significant, we used k = 59 landmarks in the
classification process.

http://erythrocytesidb.uib.es
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Figure 1. Examples of erythrocytes categorized as normal (left), sickle (center), and exhibiting other
deformations (right). Top: the original cell; bottom: the perimeter of segmented regions (depicted
in blue).

2.5. Supervised Classification

To perform the supervised classification, we used the default parameters provided
by the R package, as our primary goal was not to optimize the models but rather to treat
erythrocytes as shapes in Kendall’s shape space and, for the first time, apply machine
learning classification models by embedding Kendall’s space into a Euclidean space. In this
context, we did not use a validation dataset. Consistent with other studies using the same
dataset, the set of 623 cells was randomly divided such that 80% of the cells in each class
were used for training and 20% for testing. Consequently, the test set consisted of 40 normal
cells, 42 sickle cells, and 42 cells with other deformations.

Although in this paper we used the default parameters for each classification method,
we performed a 5-fold cross-validation process to ensure the reliability of the results. Addi-
tionally, for the SVM method, we repeated the classification by modifying the parameters
to further strengthen the robustness of the results.

For the classification, we considered the four machine learning algorithms outlined
below. For all algorithms, we calculated the pre-shapes:

Zi =
HXi

∥HXi∥
,

where the Helmert submatrix is obtained using the R command helm(k). Next, we obtained
the vectors i([Xi]R) in Rk(k−1)/2 from Equation (3).

2.5.1. Algorithm 1: k-Nearest Neighbors (k-NN)

k-Nearest Neighbors (k-NN) is a simple, non-parametric supervised learning algo-
rithm used for classification tasks. It works by identifying the k-nearest data shapes
(neighbors) to a given observation based on the Euclidean distance. The algorithm assigns
a class label to the observation based on the majority class of its nearest neighbors. In
our case, the algorithm looked at the 5 closest neighbors. However, in Section 3, we will
justify this choice by presenting a graph of the error rate, i.e., the proportion of incorrect
predictions, for different values of the number of neighbors k.

2.5.2. Algorithm 2: Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a supervised learning algorithm used for
classification tasks. It works by finding the hyperplane that best separates different classes
in the feature space. The goal is to maximize the margin between the closest shapes of the
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classes (support vectors) and the hyperplane. In our case, we considered the SVM function
in R (from the e1071 package) with the radial basis function (RBF) kernel and the default
parameters of the cost (C = 1) and γ = 0.0005844535. These parameter values suggest that
the model aims for a balance between generalization and fitting the training data. In the
Results Section, Section 3, we will analyze how variations in these parameters have little
effect on the classification accuracy, as long as γ remains within certain limits.

2.5.3. Algorithm 3: Naive Bayes

Naive Bayes is a probabilistic classification algorithm based on Bayes’ theorem, which
assumes that the features used for classification are independent of each other given the
class label. The model calculates the probability of each class given the input features and
assigns the class with the highest probability to the observation. The default parameter
values used in the model are as follows:

Laplace Smoothing (laplace): This parameter, set to zero by default, controls the degree
of smoothing applied to avoid zero probabilities.

Kernel Usage (usekernel): Set to FALSE by default, this parameter determines whether
kernel-based estimations are used for the distributions of continuous variables. When set
to FALSE, it assumes the variables follow normal (Gaussian) distributions.

The Distribution Weighting Factor (fL): Set to 1 by default, this parameter affects the
weight of observed data in the estimation of distributions.

2.5.4. Algorithm 4: Random Forest

Random Forest is an ensemble learning method primarily used for classification tasks.
It works by constructing a multitude of decision trees during training and outputting the
mode of the individual trees for classification. In our case, 100 trees were grown in the forest
to ensure a robust model. We used the R library randomForest (library(randomForest)).
The remaining default values used in the model are as follows: The number of variables
per split (mtry), set to 41: this parameter determines how many variables are considered
when searching for the best split at each tree node. The minimum node size (nodesize), set
to 1: this parameter specifies the minimum number of observations required in a node for
it to be eligible for further splitting. Finally, the maximum number of nodes (maxnodes)
was set to NULL (default); this parameter defines an upper limit on the total number of
nodes a tree can have. When left as NULL (the default value), no explicit limit is imposed.

2.6. Unsupervised Clustering

Since we had an embedding of the space Ωk
2 into a Euclidean space, based on the

distances defined in Section 2.2, we proposed using three k-means algorithms to perform
the unsupervised clustering of the cells into three groups: normal cells, sickle cells, and cells
with other deformations. Therefore, the number of clusters considered in the algorithms
was k = 3.

2.6.1. Algorithm 1: Extrinsic Distance

In the first algorithm, once we had all the cells characterized by the landmarks defined
based on their diameter, we calculated the pre-shapes Zi and we obtained the vectors
i([Xi]R) in Rk(k−1)/2 from Equation (3). Finally, we used the extrinsic distance defined in
Equation (4) and applied the standard R functions for k-means clusters (kmeans) [15].

Note that in this algorithm, we used the Euclidean sample mean V̄ = ∑n
i=1 Vi

n instead
of its projection onto the manifold M.

2.6.2. Algorithm 2: Classification Using Known Templates

In the second algorithm, since normal cells approximate a circle and elongated cells an
ellipse, we calculated the extrinsic distances considered in the second algorithm from the
623 cells to a circle and to an ellipse whose major axis was three times the minor axis. We
then associated each cell with these two values and performed k-means clustering.
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In the two previous algorithms, the parameters used in the k-means method included,
in addition to the number of clusters set to k = 3, the initialization parameter (nstart),
which was set to its default value of 25. This parameter specifies how many times the
algorithm initializes with different configurations of centroids. Additionally, the maximum
number of iterations was also set to its default value of 100. This parameter defines the
maximum number of iterations the algorithm performs to adjust the centroids and assign
data points to clusters.

2.6.3. Algorithm 3: Kernel k-Means

In the third algorithm, we considered the embedding of the shape space into a repro-
ducing kernel Hilbert space (RKHS) [12], and we operated with the distance defined by
the kernel instead of the Euclidean distance. This approach offered several advantages,
including the enhanced separability of classes in the transformed feature space, thereby
facilitating the classification task. Additionally, it allowed for flexibility in kernel selection,
although we specifically proposed the default kernel (rbfdot), which corresponds to a
Gaussian kernel, with the kernel parameter γ set to 8 in Equation (5).

Therefore, once we obtained the vectors i([Xi]R) in Rk(k−1)/2, we applied the kkmeans
function of the kernlab package in R.

The rest of the parameters used in this case were the number of clusters set to 3,
initialization (nstart) set to 1, and the number of iterations set to 100.

All R scripts used in this work are available upon request.

3. Results

First, we will verify that the results obtained when using 295 landmarks along the
contour of each cell (Table 1) and those obtained with 59 landmarks (Table 2) are similar.
This will be demonstrated through the representation of the confusion matrix for the
three classes {N, S, OD} and the accuracy for each supervised classification algorithm.
The accuracy results in both tables highlight that the Random Forest method is the most
sensitive to a high number of landmarks, as being a tree-based model, it increases the
complexity and the likelihood of overfitting. Therefore, given the reduced computational
cost associated with using 59 landmarks, we will proceed with this smaller number of
landmarks for subsequent analyses.

Table 1. Confusion matrix and measures for supervised classification with k = 3 and 295 landmarks.

Alg. 1 Alg. 2 Alg. 3 Alg. 4

N S OD N S OD N S OD N S OD

N̂ 40 0 10 39 0 2 39 0 3 38 0 3
Ŝ 0 42 1 0 40 0 0 42 1 0 42 1
ÔD 0 0 31 1 2 40 1 0 38 2 0 36

Acc 91.12 95.97 95.97 95.16

The metrics used to evaluate the results were the sensitivity or True Positive Rate
(TPR), the precision (P), the specificity or True Negative Rate (TNR), and the F1 score (F1).
The TPR is the number of correct positive predictions for each class divided by the total
number of objects in that class. The precision is the number of objects correctly classified in
a class divided by the total number of instances classified as positive in that class. The TNR
is the number of correct negative predictions for each class divided by the total number of
objects that do not belong to that class. The F1 score is the harmonic mean of the precision
and sensitivity, providing a balanced measure between both metrics.

Moreover, the accuracy metric (Acc) measures the proportion of correct predictions
made by the model out of the total number of predictions. The SDS score, introduced
in [16], is calculated as the ratio of the sum of true positives across the three classes and the
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number of sickle cells incorrectly classified as other deformations (and vice versa) to the
sum of this numerator and the total number of incorrect classifications involving normal
cells. This score serves as an indicator of the method’s effectiveness in supporting the
analysis of the studied disease.

To justify the number of neighbors selected for applying the k-NN algorithm, in
Figure 2, we present the error rate (the proportion of cells in the dataset that were misclas-
sified) for different values of the number of neighbors. As observed, for values greater than
five, the error increases.

Figure 2. Error rate as a function of the number of neighbors selected in Algorithm 1.

When analyzing the results from the supervised classification algorithms (Table 2), we
observe that Alg. 1 (k-NN) and Alg. 2 (the SVM) both demonstrate strong performance in
distinguishing between normal cells and sickle cells, with no misclassifications between
these two classes. However, a few cells with other deformities (ODs) were misclassified
as either normal or sickle cells, particularly with k-NN, while the SVM shows a notable
reduction in these misclassifications. In the SVM method, we performed the classification
by varying the parameters C and γ to analyze how these changes affected the classification.
As we can see in Figure 3, for values of C between 0.01 and 100 and γ between 0.0001 and
0.005, the accuracy of the classification remains above 90%. The fact that the accuracy stays
consistent despite the variation in these two parameters reinforces the robustness of the
model and its ability to generalize.

Table 2. Confusion matrix and measures for supervised classification with k = 3 and 59 landmarks.

Alg. 1 Alg. 2 Alg. 3 Alg. 4

N S OD N S OD N S OD N S OD

N̂ 40 0 9 40 0 3 39 0 3 38 0 1
Ŝ 0 42 1 0 42 2 0 41 1 0 42 0
ÔD 0 0 32 0 0 37 1 1 38 2 0 41

TPR 100 100 76.19 100 100 88.10 97.50 97.62 90.48 95 100 97.62
TNR 89.29 98.78 100 96.43 97.56 100 96.43 98.78 97.56 98.81 100 97.56
P 81.63 97.67 100 93.02 95.45 100 92.86 97.62 95 97.44 100 95.35
F1 89.89 98.82 86.49 96.38 97.67 93.67 95.12 97.62 92.68 96.20 100 96.47

Acc/SDS 91.94/92.74 95.97/97.58 95.16/96.77 97.58/97.58
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Figure 3. Classification accuracy with the SVM method when varying the parameters.

Alg. 3 (Naive Bayes) and Alg. 4 (Random Forest), however, provide superior sen-
sitivity (the True Positive Rate) for cells with other deformities. Alg. 4 (Random Forest),
in particular, excels across the board, achieving the highest overall accuracy (97.58%) and
maintaining a perfect balance between sensitivity and specificity across all classes, as in-
dicated by its SDS score (97.58). This algorithm also reduces misclassification errors for
cells with other deformities, showing the highest TPR (97.62%) for this challenging class
and achieving perfect precision (100%) for sickle cells.

In summary, Alg. 4 (Random Forest) offers the best overall performance, combining
high accuracy, excellent sensitivity, and balanced performance across all cell types. It
outperforms the other methods with the default search parameters, particularly in handling
cells with other deformities, making it the most reliable choice for supervised classification
in this context. Alg. 2 (the SVM) also shows strong results, especially for normal and sickle
cells, but does not match the overall effectiveness of Random Forest.

To evaluate the proposed classification models, we utilized two important tools: the
ROC (Receiver Operating Characteristic) curve and the AUC (Area Under the Curve)
score. These metrics provide insight into the separability of the classes across all possible
thresholds, effectively showing how well the model distinguishes each class. For each
group, we calculated a ROC curve and an AUC score by considering that group as the
positive class and all other groups as the negative class (a “One-vs-Rest” approach).

While we computed the ROC curves for all four algorithms used in supervised clas-
sification, Figure 4 displays only the ROC curves for the k-NN method, as the curves for
the other methods were very similar. As seen in the results, the ROC curves for all three
classes exhibit a very good fit. Moreover, the AUC scores for the three groups across all
four classification methods were consistently above 0.99. These results indicate that all
three models can be considered excellent, as an AUC value near one signifies a high level
of class separability and strong classification performance.

Normal group Sickle group Other deformations group

Figure 4. ROC curves for the k-NN method.
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When comparing the results of our methods with those obtained using other ap-
proaches in the literature, such as shape descriptors like the Circular Shape Factor (CSF)
or features derived from Fourier methods (see Table 3 in [7]), we find that our methods
generally achieve better percentages across all considered metrics. Moreover, when com-
paring our results to those obtained using parametric curve representations of shapes [8], it
is notable that the classification of cells in those studies only considered k-NN algorithms.
In contrast, by embedding shapes into a Euclidean space, our approach allowed us to em-
ploy a variety of classification algorithms. Comparing Tables 1 and 2 in [8] with Table 2 in
our work, we observe that the classification results obtained with our metrics are generally
superior. For instance, the maximum overall accuracy they report is 94.2%, while with
Algorithms 2, 3, and 4, we achieve an accuracy clearly exceeding 95%.

Results of Unsupervised Clustering

In this section, {N, S, OD} represent the same three classes as in the preceding section,
and we used the same metrics to develop the unsupervised clustering. The confusion
matrices corresponding to the four algorithms are presented in Table 3.

Table 3. Confusion matrix and measures for unsupervised clustering with k = 3.

Alg. 1 Alg. 2 Alg. 3

N S OD N S OD N S OD

N̂ 200 0 77 201 0 77 199 0 59
Ŝ 0 202 7 0 203 4 0 206 11
ÔD 2 8 127 1 7 130 3 4 141

TPR 99.01 96.19 60.19 99.50 96.67 61.61 98.51 98.10 66.82
TNR 81.71 98.30 97.57 81.71 99.03 98.06 85.85 97.34 98.30
P 72.20 96.65 92.70 72.30 98.07 94.20 77.13 94.93 95.27
F1 83.51 96.42 72.99 83.75 97.38 74.50 86.52 96.49 78.55

Acc/SDS 84.91/87.32 85.71/87.48 87.64/90.05

Table 3 presents the performance of three unsupervised clustering algorithms (Alg. 1,
Alg. 2, and Alg. 3) evaluated on the dataset. The analysis reveals that Alg. 3, which uses
kernel k-means, consistently outperforms the others, particularly in classifying cells with
other deformities (ODs). Alg. 3 achieves the highest overall accuracy (87.64%) and excels in
key metrics like the precision and F1 score across all classes, demonstrating its robustness
and effectiveness in this task.

Alg. 2 also performs well, particularly in classifying normal and sickle cells, with slightly
lower performance in the OD class. Alg. 1 lags behind the other two, with lower accuracy
and precision, especially for OD cells, though it still provides reasonable results for normal
and sickle cells. Overall, Alg. 3 is the most reliable and balanced choice for accurate
classification across all cell types.

When cells are considered as closed parameterized curves in the shape space, account-
ing for their parameterization, the confusion matrices found in Table 3 of [8] apply. In that
study, because working with intrinsic Fréchet means in the space of parameterized curves is
complex, unsupervised clustering was performed using the Partitioning Around Medoids
(PAM) method.

In general, the metrics of our three methods yield better results for normal and sickle
cells. However, for cells with other deformities, the methods tend to misclassify some
as sickle and especially as normal cells. While this is noteworthy, since cells with other
deformities could indicate other hematological pathologies, the primary goal of our classifi-
cation is to detect the presence and percentage of sickle cells. Thus, the most critical error
is the misclassification of sickle cells, whether by underestimating or overestimating their
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percentage. In this regard, as shown in Table 3, our metrics indicate excellent performance
in accurately classifying sickle cells.

4. Discussion

There are numerous approaches in the literature for classifying red blood cells into
three categories: healthy, sickle cells, and those with other deformities. Recently, one ap-
proach has involved considering cell boundaries as parameterized curves and working in a
shape space that is invariant under rigid motions and reparameterizations. In this paper,
we present a new approach that avoids the complexities of reparameterization by defining
mathematical landmarks along the cell boundaries. Each cell’s shape is then identified
as a point in the differentiable manifold known as the Kendall space of reflection shapes.
To facilitate the application of machine learning classification methods, we proposed an em-
bedding of the Kendall space into a Euclidean space. This new classification methodology
was applied to a database of red blood cells, and the results from various algorithms show
excellent classification performance. Specifically, in supervised classification, the Support
Vector Machine (SVM) and Random Forest algorithms achieved overall accuracy rates of
95.97% and 97.58%, respectively, with both obtaining a DS score of 97.58%. In the case of
unsupervised clustering, the kernel k-means method produced the best results.

When comparing our results with existing approaches in the literature, nearly all the met-
rics are comparable to, if not superior to, those previously reported. A significant advantage of
our method is the use of a Euclidean space with only 59 landmarks, as opposed to 295 points
defining the curve boundaries, which greatly reduces the computational complexity.

In Table 4, we compare the accuracy obtained in the supervised classification using
our methods to the accuracy reported in other studies that also classify red blood cells into
three groups. These comparisons are based on the same dataset and utilize the same data
split of 80% for training and 20% for testing.

Previous studies in this domain have employed various approaches. For instance,
Ref. [7] focuses on the planar shape space of parameterized curves, using a distance invari-
ant only under arc-length parameterizations, while Ref. [5] applies the classical k-Nearest
Neighbor (k-NN) technique with contour descriptors derived from integral geometry meth-
ods. Similarly, Ref. [17] evaluates three widely used supervised classifiers—Naive Bayes,
k-NN, and the Support Vector Machine (SVM)—based on a set of nine numerical shape
descriptors. Scenario 1 in [9] explores lightweight models with variations in layers and
filters, using the original erythrocytesIDB image database as the input. Notably, the best
accuracy in this scenario was achieved with Method 2, incorporating a multiclass SVM clas-
sifier. Furthermore, Ref. [18] identifies optimal classification techniques and features for cell
morphology analysis, while Ref. [8] investigates the planar shape space of parameterized
curves using the elastic metric derived from the square root velocity function.

As shown in Table 4, the accuracy achieved with our methods is comparable to,
and often exceeds, the performance reported in these studies. This highlights the robustness
and effectiveness of our approach.

This study presents a new approach by representing red blood cell shapes as points
in the Kendall space of reflection shapes and characterizing this space as a subset of a
Euclidean space. This representation allows for the application of machine learning clas-
sification methods. These methods yield very remarkable classification results compared
to other approaches using the same red blood cell database. However, the proposed
methodology also has certain limitations.

This study primarily focuses on the shape of red blood cells. While this is sufficient for
sickle cell anemia, where the detection of sickle cells primarily depends on their distinctive
shape, for other diseases, deformations or changes in the cell size may play a key role.
Furthermore, the determination of landmarks at the boundaries of red blood cells is based
on the cell diameter. Although this approach is effective for red blood cells, given the
particular geometry of healthy cells and those affected by sickle cell anemia, it may not be
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suitable for applications in other fields where shapes have different characteristics. These
limitations may certainly lead to new approaches for future work.

Table 4. Comparison of accuracy results with previous methods employed on the erythrocytesIDB dataset.

Method Accuracy (%)

Gual-Arnau et al. (2015) Image Anal Stereol. [7] 93.42
Gual-Arnau et al. (2015) Med. Biol. Eng. Comput. [5] 96.10
Rodrigues et al. (2016) Workshop de Visao Computacional. [17] 94.59
De Faria et al. (2018) Workshop de Visao Computacional. [19] 93.67
Alzubaidi et al. (2020) Electronics. (Scenario 1) [9] 90.80
Petrović et al. (2020) Comput. Biol. Med. [18] 95.20
Epifanio et al. (2020) Image Anal Stereol. [8] 95.10
Our methods (Table 2) 91.94-95.97-95.16-97.58
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