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Abstract: Artificial intelligence (AI) is employed in fluid flow models to enhance the simulation’s
accuracy, to more effectively optimize the fluid flow models, and to realize reliable fluid flow
systems with improved performance. Jeffery fluid flow through the interstice of a cone-and-disk
system is considered in this study. The mathematical description of this flow involves converting
a partial differential system into a nonlinear ordinary differential system and solving it using a
neurocomputational technique. The fluid streaming through the disk–cone gap is investigated under
four contrasting frameworks, i.e., (i) passive cone and spinning disk, (ii) spinning cone and passive
disk, (iii) cone and disk rotating in the same direction, and (iv) cone and disk rotating in opposite
directions. Employing the recently developed technique of artificial neural networks (ANNs) can be
effective for handling and optimizing fluid flow exploits. The proposed approach integrates training,
testing and analysis, and authentication based on a locus dataset to address various aspects of fluid
problems. The mean square error, regression plots, curve-fitting graphs, and error histograms are
used to evaluate the performance of the least mean square neural network algorithm (LMS-NNA).
The results show that these equations are consistently aligned, and agreement is, on average, in the
order of 10−8. While the resting parameters were kept static, the transverse velocity distribution, in all
four cases, exhibited an incremental decreasing behavior in the estimates of magnetic and Jeffery fluid
factors. Furthermore, the results obtained were compared with those in the literature, and the close
agreement confirms our results. To train the model, 80% of the data were used for LMS-NNA, with
10% used for testing and the remaining 10% for validation. The quantitative and qualitative outputs
obtained from the neural network strategy and parameter variation were thoroughly examined
and discussed.

Keywords: Jeffrey fluid flow; devices consisting of cones and disks; artificial neural network (ANN);
study of heat transfer; Buongiorno model

1. Introduction

A certain class of non-Newtonian fluids, characterized by their stress–relaxation at-
tributes, cannot be described using viscous models. The Jeffery fluid model best captures
the non-Newtonian nature of such media with a characteristic memory time scale, also
known as relaxation time. It was first proposed by H. Jeffery in 1922. A Jeffery fluid is char-
acterized by its elasticity, which makes it suitable for applications involving heat transfer.

Jeffery fluids are commonly used in polymer processing, such as plastic extrusion
and injection molding. Khadrawi et al. [1] studied basic viscoelastic fluid flow problems
using the Jeffery model. The elasticity of Jeffery fluids helps in the efficient transfer of
heat during melting and molding processes. A Jeffery fluid can be used as a heat transfer
medium in heat exchangers, where the non-Newtonian behavior of the fluid enhances
the heat transfer rate, leading to improved efficiency. Jeffery fluids are also used in the
food-processing industry, especially in processes, like the mixing, heating, and cooling of
various food products. Their elasticity allows for precise temperature control and uniform
heat distribution during cooking, baking, and other food-processing operations. Hayat
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et al. [2] analyzed peristaltic transport for the flow of a Jeffrey fluid. Jeffery fluids are used
in solar energy systems, such as solar water heaters and solar thermal power plants. Their
non-Newtonian behavior enhances heat transfer efficiency in heat storage systems and heat
exchangers, maximizing the utilization of solar energy.

The cone-and-disk system has a wide range of practical and technical applications
across diverse domains. These applications encompass the precise control of fluid distri-
bution through the deployment of conical diffusers, the precise measurement of viscosity
via viscometers, and its contribution to the advancement of medical devices, as broadly
documented in citation [3]. The study of heat transfer in the context of fluid flow through
the gap formed by a cone and a disk is of paramount significance, marked by its com-
plexity and wide-ranging relevance across engineering and scientific developments [4].
This unique configuration plays a pivotal role in crucial industrial processes, including
heat exchangers and mixing devices, while also serving as a fundamental component in
rheological studies [5]. Its versatile applications underscore its significance as a focal point
of research and innovation. Gul et al. [6] studied fluid flow in the canonical region of
cone–disk geometry by taking into account two consistent constituents and two inconsis-
tent constituents. The authors demonstrated that cooling is optimized for this setup when
the disk rotates and the cone remains static under meticulously maintained conditions of
uniform superficial temperature. Srilatha et al. [7] elaborated on thermal and concentric
transportations for fluid streaming through the cone-and-disk system and discussed the
thermophoretic motion of particles. They also proved that thermal transportation improves
when the cone is fixed and the disk revolves. A nanofluid flow induced by a cone-and-disk
system was studied by Moatimid et al. [4]. Their study revealed decreasing patterns in
both the temperature and radial velocity, while the azimuthal velocity corresponded to
auspicious effects. Regarding the mechanical system of a cone-and-disk setup, thermal
exchange between the fluid and surfaces is one of the most salient considerations [8,9].
In recent decades, this phenomenon has gained much attention in various engineering,
technological, and industrial applications, such as heat exchange systems, mixers, and
various rheological studies [10].

Jeffrey fluids are in a class of non-Newtonian fluids characterized by a unique com-
bination of both viscous (fluid-like) and elastic (solid-like) behaviors when subjected to
deforming stresses. Due to their viscoelastic nature, these fluids show nonlinear sensitiv-
ity to tangential stresses and can be influenced by factors such as the rate of distortion.
These heat-transferring media are incorporated into complex flow geometries in various
fields of engineering and chemical, thermal, and applied sciences. The response of Jeffrey
fluid streaming to various influencing sources is mathematically described with a non-
Newtonian framework known as the Jeffrey fluid model [11]. In contrast to Newtonian law,
which exhibits linear regression between shear stresses and deformations, the Jeffery fluid
model demonstrates the viscoelastic attributes of a medium through its shear-thinning
behavior and can be implemented as an appropriate tool in rheological analysis, polymer
processing, and biological modeling [12–14]. Agarwal et al. [15] used computational anal-
ysis to analyze the viscoelastic fluid flow on an extending sheet immersed in a porous
medium and characterized by micro-rotational and thermal radiative effects. As a result,
they highlighted the unfavorable effects of Jeffery flow parameters and porosity parameters
on fluid flow and heat transfer rates. In addition, the influence of expanding boundaries
in a porous space on viscoelastic fluids was examined in [16]. The authors observed the
velocity distribution to be an increasing function of the Jeffery factor. Regarding the thermal
performance using Newtonian and non-Newtonian fluid models, optimizing the thermal
transportation through various materials has attracted tremendous attention; see [17–19]
and the references therein.

State-of-the-art artificial neural networks (ANNs) represent a novel breakthrough in
the fields of intelligent retrieval, robotics, machine learning, and cybernetics [20]. Currently,
their promising reliability and efficiency for multi-argument mathematical problems have
encouraged researchers to logically optimize and simulate complex fluid flows in various
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departments of fluid dynamics and mechanical engineering [21]. One of the significant
advantages of ANNs is their ability to precisely model the complicated supervising cor-
relations of fluid simulations, which are based on several flow inputs covering physical
parameters, boundary constraints, and stream patterns. An extensive dataset is processed
through hidden neural layers to forecast meaningful variations in fluid streaming and
provide a complete insight picture of fluid dynamics [22]. In addition, the privilege of
ANNs is their generalized feasibility, regardless of whether the arguments are sparse or
turbulent. The design phase of the scheme involves meticulously networking the base
frameworks, selecting the mathematical activation functions, and developing schematic
algorithms to supplement the certainty and robust structure of ANN models. However, the
incorporation of domain expertise and the integration of ANNs with physical frameworks
can enhance their efficiency in addressing a broad spectrum of vicious flow optimization
problems in practical engineering applications [23]. Recent research trends are almost all
focused on ANNs [24–29].

The interaction between fluid dynamics and particle behavior is complex due to the
effects of the Brownian and thermophoretic diffusivity of suspended particles in fluid
flow [30]. On one hand, Brownian motion is a stochastic process defined as the random
diffusion of particles suspended in a fluidic medium as a result of thermal agitation and
governs many mechanisms, such as mixing processes, particle dynamics, and cellular
motion. On the other hand, thermophoresis, also called the Soret effect, is referred to in
particle dynamics in response to the temperature gradient, with a direct dependency on the
particles and the medium’s morphology. These phenomena can significantly influence the
local temperature and concentric distributions of coarse-grained particles in deformable
space, leading to an augmented dispersion of concentration and thermal convection. The
simultaneous consequences of these phenomena yield a complex coupled formulation
of particle–fluid interaction, making pivotal contributions to important fields, including
those involving thermal, mechanical, industrial, biological, aerosol, colloidal, and nano
mechanisms, where aptly handling particle dynamics through fluidic streams provides a
basis for the comprehension and optimization of these phenomena and their exploitable
applications [31–39].

To tackle problems that have been difficult to handle in most areas of applied sci-
ence, researchers have used artificial intelligence-based computer solver applications. The
application of artificial neural networks (ANNs) has become more common in science
and engineering fields, such as fluid mechanics, where artificial intelligence (AI) has been
proven to be beneficial. In fluid mechanics and other fields, such as aviation, automotive
industries, and weather prediction, using AI is essential for predicting fluid flow pat-
terns. For many challenges in several fields, such as nonlinear circuits, nuclear physics,
thermodynamics, astrophysics, and magnetohydrodynamics (MHD), scholars have been
able to estimate solutions using computational methods based on ANNs and the learning
samples of supervised and/or unsupervised techniques. Examples of this include the
transport model [6], COVID-19 models [40,41], and fluid dynamics [42]. According to the
studies mentioned above, intelligent computing techniques that use ANNs can handle fluid
mechanics-related problems.

The above considerations and literature review reveal that no efforts have been made
regarding Jeffrey fluid flows in the canonical separation of a cone-and-disk system (CDS);
thus, this serves as the primary motivation for our current investigation. In considering
Jeffrey nanofluid flow in a cone-and-disk system for the first time, this study aims to
address the following aspects:

(i) The Jeffrey fluid model is an essential part of heat transfer processes because it
provides a precise description of the non-Newtonian and elastic behaviors of fluids,
which have not yet been studied with the cone-and-disk geometry.

(ii) Studies in the literature have been restricted to a general model that takes into account
a Newtonian fluid. In this study, four different scenarios are studied: (i) a static cone
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and rotating disk, (ii), a static disk and rotating cone, (iii) the cone and disk rotating in
the same direction, and (iv) the devices rotating in opposite directions.

(iii) Brownian diffusivity and the thermophoresis mechanism are used to regulate the
thermal performance. These have not been studied for this particular system in terms
of a Jeffrey fluid model.

(iv) ANN analysis, a new technique, is used to solve this kind of complex model.

2. Problem Formulation

A Jeffery fluid streaming through the region within a cone–disk system is considered
herein. Mathematically, the flow configuration is described using the cylindrical frame-
work (r, θ, z), with r, θ, and z symbolizing the horizontal (radial), azimuthal, and normal
(axial) orientations, respectively, whereas geometrically, the disk is oriented at z = 0 and
the cone is assembled at z = r tan γ, with γ as the separation angle between the con-
stituents. Meanwhile, the CDS is allowed to rotate axially with angular velocities ω and Ω,
respectively. The effect of the simultaneous motion of the cone and disk on fluid flow is
investigated while considering the following four distinct scenarios: (i) allowing the disk
to rotate while the cone is stationary, (ii) allowing the cone to spin while the disk is held
at rest, (iii) both the cone and disk gyrating in parallel directions, and (iv) both the cone
and disk gyrating in opposite directions. In addition, the thermal performance, adhering
to the superficial boundaries, is examined for the consequences of Brownian motion and
the thermophoresis process. Unsteady streaming confined to 0 ≤ z ≤ r tan γ is illustrated
in Figure 1.
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Assimilating the above-mentioned assumptions and considerations, the governing
model yields the following [3,4,42–44]:

∂ru + ur−1 + ∂zw = 0, (1)
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u∂ru + w∂zu − v2r−1 = −∂r p + υ
1+λ1

(
∂rru + r−1∂ru − ur−2 + ∂zzu

)
−

λ∗
1+λ

(
2u∂rrru + 2w∂rzzu + 2∂ru∂rru + 2∂rw∂rzu − 2ur−2∂ru − 2wr−2∂zu − 2u2r−3

+∂zu∂rrw + ∂zw∂rzw + 2u∂rzzu + 2w∂zzzw + ∂zu∂rzu + ∂zw∂zzu

)
,

(2)

u∂rv + w∂zv − uvr−1 = υ
1+λ1

(
∂rrv + r−1∂rv − vr−2 + ∂zzv

)
−

λ∗
1+λ

(
2u∂rrrv + 2w∂rrzv − wr−2∂zv + ∂ru∂rrv + ∂rw∂rzv − r−1∂ru∂rv + vr−2∂ru
−2uvr−3 − r−1∂rw∂zv + 2u∂rzzv + 2w∂zzzv + ∂zu∂rzv + ∂zw∂zzv

)
,

(3)

u∂rw + w∂zw = −∂z p + υ
1+λ1

(
∂rrw + r−1∂rw + ∂zzw

)
−

λ∗
1+λ

(
2u∂rrrw + u∂rrzu + w∂rzzu + 2w∂rrzw + ∂ru∂rzu + ∂rw∂zzu + ∂ru∂rrw
+∂rw∂rzw + ur−1∂rrw + wr−1∂rzw + 3u∂rzzu + 3w∂zzzw + 2∂zu∂rzw + 2∂zw∂zzw

)
,

(4)

u∂rT + w∂zT = α∂zzT + 2τ
DT
T∞

(u∂zT∂rzT + w∂zT∂zzT) + τ

(
DB(∂zC∂zT) +

DT
T∞

(∂zT)2
)

, (5)

u∂rC + w∂zC = DB∂zzC +
DT
T∞

(u∂rzzT + w∂zzzT) +
DT
T∞

∂zzT, (6)

with the following boundary constraints:

u = w = 0, v = ω r, T = Tw , C = Cw, at z = 0,
u = w = 0, v = Ω r, T = T∞ , C = C∞, at z = r tan γ.

(7)

In Equations (1)–(7), (u, v, w), p, T, and C represent the velocity components along
the (r, θ, z) directions, pressure, temperature, and concentration, respectively. In addi-
tion, λ∗ and λ denote the corresponding delay and relaxation times, while υ = µ

ρ , α = k
ρcp

,
DB, and DT denote the momentum, thermal, Brownian, and thermophoresis diffusivities,
where ρ, µ, k, and ρcp signify the density field, dynamic viscosity, thermal conductivity, and
heat capacity of the Jeffrey fluid, accordingly. The subscripts w and ∞ are used to denote
the relative boundary constraints.

For similarity equations, consider the following transformation:

u = υ f
f (η)
r = Uw f (η), v = υ f

g(η)
r = Uwg(η), w = υ f

h(η)
r = Uwh(η),

p =
ρυ2

f P

r2 = U2
wρP, η = z

r , T = T∞ + Θ(Tw − T∞), C = C∞ + ϕ(Cw − C∞).
(8)

where Uw is used to show the surface velocity. Using Equation (8) in Equations (1)–(6), we
obtain the following:(

1 + η2) f ′′ + 3η f ′ + (1 + λ)
(
η f f ′ − h f ′ + f 2 + g2)

−λ1

[
2( f )3 + 4η f ′ f 2 + η2 f 2 f ′′ + h2 f ′′ − g2 f − ηg2 f ′

−4h f f ′ − 2ηh f f ′′ + 2 f g2 + 2η f gg′ − 2hgg′ + f g2

]
= 0,

(9)

(1 + η)g′′ + 3η f ′ − (1 + λ)(η f g′ + hg′ + 2g f )

−λ1

[
4ηg′ f 2 + η2g′′ f 2 − 4hgg′ − 2ηhgg′′+
g2g′′ − 2g f 2 + 2ηg f f ′ − ηg′g2

]
= 0,

(10)

(
1 + η2)h′′ +(1 + λ)(3η f h′ + ηh′ f − h(h′ − 1 − f ))

− λ1

[
2h f 2 + η2h f 2 + η2h′′ f 2 − h′′ h2

−4h f h′ − 2ηh f h′′ − hg2 − ηhg2

]
= 0,

(11)

(
1 + η2

)
Θ′′ + ηΘ′ − Pr(h − η f )Θ′ +

(
1 + η2

)
PrNbΘ′Φ′ +

(
1 + η2

)
PrNt

(
Θ′)2

= 0, (12)(
1 + η2

)
Φ′′ + ηΦ′ − Sc(h − η f )Φ′ +

Nb
Nt

((
1 + η2

)
Φ′′ + ηΦ′

)
= 0. (13)
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Below is an explanation of the boundary constraints in their transfer form:

f (0) = h(0) = 0, g(0) = Reω, Θ(0) = Φ(0) = 1,
f (η0) = h(η0) = 0, g(η0) = ReΩ, Θ(η0) = Φ(η0) = 0.

(14)

Here, λ1 = λ∗Uw
2

v f
is the relaxation time parameter, λ is the delay parameter,

Nt = τDT∇T
v f T∞

= the thermophoresis factor, Nb = τDB∇C
v f

= the Brownian motion fac-

tor, Pr =
µ f (cp) f

k f
= the Prandtl number, Sc =

v f
DB

= the Schmidt number, ReΩ = r2Ω
v f

= the

local Reynolds number at the cone surface, and Reω = r2ω
v f

= the local Reynolds number at
the disk surface.

Quantities of Interest

The primary parameters with salient implications for predicting the corresponding
fluid transfer, heat transfer, and mass transfer rates include the local radial and tangential
skin friction (denoted by C f and Cg, respectively), local Nusselt number (Nu), and local
Sherwood number (Sh). These quantities are mathematically expressed as

C fd,c
= τr

ρ f Uw
2 , where τr =

µ f
1+λ1

[∂zu + λ2(u∂rzu + v∂zzu)]z=0, r tan γ

Cgd,c =
τθ

ρ f Uw
2 , where τθ =

µ f
1+λ1

[
∂v
∂z + λ1(v∂rzv + u∂zzv)

]
z=0, r tan γ

, (15)

Nud,c =
rqw

k f (Tw−T∞)
, where qw = −k f (∂zT)

∣∣∣
z=0, r tan γ

Shd,c =
rJw

DB(Tw−T∞)
, where Jw = −DB(∂zC)|z=0, r tan γ

, (16)

respectively, where the symbols d and c describe the localized quantities in the vicinity of
the disk (z = 0) and cone (z = r tan γ), respectively.

3. Framework of Artificial Neural Networks (AANs)

The goal of artificial neural networks (ANNs) is to replicate biological neural networks,
and ANNs were recently established as a hybrid machine learning algorithm (MLA). Over
the last few years, the supervised learning algorithm (SLA), one of the three variants of
MLAs, has emerged as a promising tool for the mathematical and statistical simulation of
models, inspiring various applications in applied sciences because their handling process
shares similarities with human brain algorithms. Artificial neurons, also known as nodes
or numerical units, are represented in SLAs through edges that resemble the structure
of neurons and synapses. A prototype called the multilayer perceptron (MLP) network
has flourished for its ability to model convoluted functions using the most common ANN
design. An SLA is a multilayered structure of input and output layers that are interlinked
through a hidden layer, performing the required computations and displaying the outcomes,
whilst weight adjustments are made through backpropagation.

The Levenberg–Marquardt learning algorithm (LMLA) is used to support the back-
propagation neural network (BPNN), abbreviated as LMLA-BPNN, and is a training process
involving an input signal that uses neural networks (NNs). The LMLA is specifically de-
signed to minimize sum-of-square error expressions. Upon introducing an input pulse
(a training or sample dataset), the comprehensive insight is stored within inter-neural
links, known as “strengths” or “corresponding edges”, which are supervised by associative
networks of hidden films called “weights”. Iteratively, these weights, which are consid-
ered two-dimensional arrays, are called upon when an input is fed to the NN to assess
its estimates (output), providing a new testing input for the forthcoming iteration. The
LMLA-BPNN is structured as an “input layer” that receives an input pulse (a training
or sample dataset) introduced to the NN and is assembled into a “hidden layer”, where
the basic units responsible for simulation employ a systematic arrangement of “weighted
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connections”, to which the output layer is coupled, returning the final result. The effective
minimization of errors is achieved through an iterative assessment of the LMLA-BPNN. To
estimate the behavior of viscoelastic fluid flow in CDS geometry, the LMS-NNA, which
implements the proposed ANN, is employed in this study. Moreover, weight adjust-
ments are backpropagated and constructed using analogies and the interdependence of the
yield target.

An ANN algorithm is used to envision the efforts of g(η) against the Jeffrey fluid
factor λ and magnetic parameter M while considering the four cases under considera-
tion, i.e., (i) ReΩ = 1, Rew = 0, (ii) ReΩ = 0, Rew = 1, (iii) ReΩ = 2, Rew = 1, and
(iv) ReΩ = 1, Rew = −1. Since the apt optimization of the dataset, which is employed for
training mechanisms, is directly dependent on the anticipation certainty of the ANN, the
LMLA-BPNN is successfully incorporated.

Optimizing the data used during development is vital for the ANN technique to
provide precise estimates [45]. The testing phase uses 10% of the data, while the validation
phase uses 10%, and the outstanding 80% is used to train the ANN to its full potential.
The development of the ANN model requires meticulous data optimization to ensure
accurate predictions [45,46]. Figure 2a demonstrates the ANN structure, and Figure 2b
shows activation function outputs, which have a range between 1 and 0. The behavior of
this function is smooth and S-shaped but not linear.
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The researcher chose the Levenberg–Marquardt training algorithm (LMTA) to design
the ANN model because it is the most efficient and widely used training method in the
literature [47]. The Tan-Sig and Pure lin functions were used for the hidden and output
nodes in the design of this ANN [48]. The transfer function, which transforms the loaded
dataset into results in the absolute stage of MLPs and BPNNs, is expressed as follows:

f̃ (x) =
1

1 + exp(−x)
(17)
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Improving the network performance is the next challenge for ANN schemes. The
functions for the mean squared error (MSE) and the coefficient of determination R-value
are expressed as follows:

MSE =
1
n ∑

i≥n

(
Xei − XANN(i)

)2
, (18)

R =

√√√√√√√1 −
∑

i≥n

(
Xei − XANN(i)

)2

∑
i≥n

(Xei )
2 , (19)

respectively [49–53]. Moreover, the error rate estimates also contribute to measuring the
validness of the ANN design, for which the presumed and intended data are related:

% Error rate =
(Xexp − XANN(i)

Xexp

)
× 100 (20)

4. Analyzing Numerical Results

Figure 3a–e display visual representations of the ANN models. The parameters M and
λ have been taken into account to target the fluid velocity g(η) in the cone-and-disk system
in this scenario. All ANN outcomes are shown in the figures and table. Figure 3a was
created to display the MSE for the situation, where Rew = 0, ReΩ = 1 with a fixed disk and
a spinning cone, maintaining 1000 epochs with an exceptional authentication representation
of 1.6847 × 10−9. The context of Rew = 0, ReΩ = 1 is explained in detail in Figure 3b, with
respect to the ‘mu’, gradient, and justification. The performance of the first scenario with
20 bins can be compared using the error histogram in Figure 3c. Errors in fitness evaluation
graphs for network models are caused by disparities between the reference and target
solutions. The current problem’s specific curve-fitting statistics are provided in Figure 3d.
Evaluating the results of the regression reveals the accuracy of the numerical outcomes.
The regression analysis for Rew = 0, ReΩ = 1 is shown in Figure 3e.

Figure 4a–e show how the ANN models perform during training when there are
changes in the magnetic factor M versus g(η). These figures show that 1.3231 × 10−10 at
epoch 597 achieves the optimal authentication presentation. The LMS-NNA is depicted
in Figure 5a–e to explain g(η) against the Jeffrey fluid parameter λ in the scenario where
Rew = 1, ReΩ = 0. These figures show that 2.1258 × 10−9 achieved its optimal authenti-
cation presentation at epoch 597. The LMS-NNA is depicted in Figure 6a–e, which show
g(η) versus M for the scenario where Rew = 1, ReΩ = 0. To demonstrate the LMS-NNA,
Figure 7a–e were created to explain the velocity g(η) against λ for the situation where
Rew = 1, ReΩ = 2. It can be seen from these outputs that the substantiation performance
6.2883 × 10−10 was accomplished at epoch 1000.

The LMS-NNA outputs are displayed in Figure 8a–e, showing the g(η) and M relation
in the case where Rew = 1, ReΩ = 2. This figure explains the differences between
g(η) and M by examining the MSE performance, transition workout, error estimation,
fitting function, and regression outputs. It is clear that 2.2169 × 10−10 achieved the best
validation performance at epoch 1000. In Figure 9a–e, the rotation of both devices in
opposite directions is depicted in accordance with the LMS-NNA approach for the proposed
model. Here, g(η) versus λ is analyzed. The analysis considers MSE outcomes, transition
analysis, error estimation, the fitting function, and regression outputs. It can be seen
from these outputs that 1.8409 × 10−8 achieved its optimal validation performance at
epoch 1000. Figure 10a–e show the same idea about the velocity g(η) versus magnetic
field when the two devices rotate in opposite directions. Figure 11 shows the variations
in the Nt, Nb, λ1 parameters that were used to investigate the heat transfer rate. The
thermophoretic parameter Nt, as well as the Brownian motion parameter Nb, increase the
heat transfer, while the Jeffrey fluid parameter λ1 decreases it.
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Figure 3. (a–e) The proposed fluid model Rew = 0, ReΩ = 1 where g(η) is plotted using the
LMS-NNA for λ.
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for λ.
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for M.
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Figure 8. (a–e) The proposed fluid model Rew = 1, ReΩ = 2 where g(η) is plotted using the
LMS-NNA for M.
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Figure 9. (a–e) The proposed fluid model Rew = −1, ReΩ = 1 where g(η) is plotted using the
LMS-NNA for g(η).
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Figure 10. (a–e) The proposed fluid model Rew = −1, ReΩ = 1 where g(η) is plotted using the
LMS-NNA for M.
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Figure 11. The variation in the heat transfer rate using Nt, Nb, λ1.

The velocity term g(η) is used in obtaining MSE results, transition analysis, error
estimation, the function of fitting, and regression analysis. Table 1 lists the computational
values for the ANN models, including the MSE, performance, gradient, and mu values,
across different epochs, considering the four different cases. In these cases, the cone is at
rest and the disk rotates, the cone rotates and the disk is static, and the disk and cone rotate
in either the same or opposite directions. A validation of the present work is demonstrated
in Table 2. A very close agreement was reached after considering the four possible cases of
cone and disk rotation.

Table 1. Outcomes of the proposed model using the ANN strategy.

Cases
MSE

Performance Gradient Mu Epoch
Training Validation Testing

1 3.24 × 10−10 3.67 × 10−9 2.453 × 10−9 1.1 × 10−10 1.2 × 10−7 10−7 1000
2 2.43 × 10−10 4.32 × 10−10 2.34 × 10−10 2.3 × 10−10 8.5 × 10−8 10−7 597
3 3.5 × 10−9 5.64 × 10−9 3.2 × 10−9 3.4 × 10−9 2.4 × 10−7 10−7 497
4 4.67 × 10−11 1.34 × 10−11 4.65 × 10−11 3.21 × 10−11 4.6 × 10−8 10−8 909
5 4.31 × 10−10 4.32 × 10−10 2.45 × 10−9 3.5 × 10−10 5.4 × 10−6 10−8 1000
6 2.54 × 10−10 1.32 × 10−10 3.67 × 10−10 3.6 × 10−10 3.4 × 10−7 10−7 1000
7 3.68 × 10−8 2.45 × 10−8 2.56 × 10−8 4.5 × 10−8 2.1 × 10−7 10−6 1000
8 2.165 × 10−9 3.24 × 10−9 2.43 × 10−9 1.5 × 10−9 1.7 × 10−6 10−7 1000

Table 2. A comparison of the present work with the existing literature, considering common factors.

Mustafa [3] Gul et al. [4] Current Outputs

Four Models ReΩ, Rew, Θ’(0) Θ’(η0) Θ’(0) Θ’(η0) Θ’(0) Θ’(η0)

1
ReΩ = 1,
Rew = 0, 4.376528 5.276516 4.376427 5.276632 4.376431 5.276671

2
ReΩ = 0,
Rew = 1, 4.1862734 5.162854 4.1863266 5.162923 4.186356 5.162952

3
ReΩ = 1,
Rew = 1, 3.7235190 4.328610 3.7236278 4.328723 3.723687 4.328742

4
ReΩ = −1,
Rew = 1, 5.2532413 6.024516 5.2533256 6.024627 5.253372 6.024661



Math. Comput. Appl. 2024, 29, 98 18 of 24

For the four salient cases, i.e., (i) ReΩ > 0, Rew = 0 , (ii) ReΩ = 0, Rew > 0,
(iii) ReΩ > 0, Rew > 0 , and (iv) Rew < 0, ReΩ > 0, taken into consideration, the be-
haviors of the transverse component of the velocity field through the cone–disk space
against the preceding Jeffrey fluid parameter λ and magnetic parameter M are examined.
The effects of the earlier factors are plotted in Figures 12a, 13a, 14a, and 15a, while the latter
are depicted in Figures 16a, 17a, 18a, and 19a, respectively. The impacts regarding g(η) in
response to increases in λ and M, in a situation where the cone is still and the disk ro-
tates uniformly ((i) Rew = 0, ReΩ = 1), can be seen in Figures 12a and 16a, respectively.
Figure 12a portrays the declining aspects of λ. It is worth mentioning that the Jeffrey fluid
factor usually quantifies the non-Newtonian rheology of fluids, which, when discussing
the transverse velocity g(η), measures the resistance offered in response to shear stresses.
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This implies that a higher range of λ is unfavorable for the deformation of the media,
offering a higher resistance to the flow rate in the transverse direction. Put another way, the
fluid becomes more vicious and, thus, limits the rate g(η) as λ increases. This explanation is
the basis for Figure 12a. Moreover, the adverse tendency of M in the context of g(η) can be
clearly seen in Figure 16a. This behavior can be elaborated via the reinforced and tempered
magnetic field through the flow expanse. Magnetic effects are responsible for inducing
normal-oriented Lorentz forces, which, in turn, restrict streaming along the transverse orien-
tation. Henceforth, increments in M strengthen these restraining sources while compelling
the fluid molecules to line up alongside the magnetic field lines. This, contrary to axial
regulations, discourages the advection of the fluidic streams in transverse directions and,
consequently, causes g(η) to decrease throughout the canonical gap. Likewise, the resistant
nature of the Jeffrey fluidic material and magnetic source results in adverse outcomes re-
garding the transverse flow rate in the resting ternary situations, i.e., (ii) ReΩ = 0, Rew = 1,
(iii) ReΩ = 2, Rew = 1, and (iv) ReΩ = 1, Rew = −1. Figures 13a, 14a and 15a portray the
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declining aspects of g(η) in response to increases in λ, while the decreasing impacts of M
on g(η) can be seen in Figures 17a, 18a and 19a sequentially. Part (b) of all Figures 12–19
shows how to analyze the absolute error (AE) in ANN (artificial neural network) models
to verify their conformity to correctness criteria. Each model’s calculated absolute error
values are positioned within the specific predefined ranges of 10−7–10−3 and 10−8–10−4 for
their respective ANN configurations. These numerical error results show the commendable
level of accuracy found in the considered ANN models, demonstrating their strength and
consistency when compared to the reference results.
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5. Conclusions

The Boungiorno description is utilized in this study to analyze the streaming of a
viscoelastic fluid within the gap of a cone–disk configuration. The supervising model
is transformed into a nonlinear system of ordinary differential equations, which is then
handled using a neurocomputational technique to assess its solution. Four distinct scenarios
are investigated to examine the effects of the simultaneous motion of the cone and disk on
fluid flow, with one component rotating while the other is held at rest, i.e., (i) a spinning
disk and stationary cone or (ii) vice versa, and by having the components co-rotate in
(iii) parallel or (iv) opposite directions. The optimized stimulations and outcomes regarding
the considered flow problem are assessed using an artificial neural network (ANN). Its
effectiveness is demonstrated via the results of our study, summarizing the potential to
revolutionize fluid flow control across a wide range of engineering fields. Meanwhile, by
using coupling processes like training, testing, and validation in reference to the sampling
datasets, the design methodology successfully employs a structured sequence to address
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various aspects of the transfer rates. The execution efficiency of the least mean square
neural network algorithm (LMS-NNA) is investigated by incorporating various statistical
aids, i.e., the mean square error (MSE), regressive graphs, uncertainty histograms, and
curve-fitting plots. This analysis of the fluid stream problem leads to the following key
points and conclusions:

• The non-Newtonian behavior of Jeffery fluids enhances the heat transfer rate, leading
to improved efficiency in heat-exchanger systems.

• The food-processing industry uses Jeffrey fluids to control the heating and cooling of
various food products.

• The present work is validated with the existing literature, as shown in Table 2. Four
possible cases of cone and disk rotation are considered, and very close agreement
is obtained.

• Training, testing and analysis, and authentication were achieved for the velocity field,
temperature distribution, and concentration profile. On average, these equations
exhibited a close configuration and settlement consistent with these results at 10−8.

• The LMS-NNA’s exceptional accuracy is demonstrated through the fact that the es-
timated error (AE) between the reference and targeted data falls within the range
of 10−4 to 10−5.

Future work: The current work is extendable to other non-Newtonian fluids, including
Oldroyed B fluids, Williamson fluids, and Carreau–Yasuda fluids. Experimental analysis
using this theoretical approach will be very helpful in mechanical engineering.
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