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Abstract: The ability of a cell to keep its volume constant irrespective of intra- and extracel-
lular conditions is essential for cellular homeostasis and survival. The purpose of this study
is to elaborate a theoretical model of cell volume homeostasis and to apply it to a simulation
of human aqueous humor (AH) production. The model assumes a cell with a spherical
shape and only radial deformation satisfying the property that the cell volume in rest con-
ditions equals that of the cell couplets constituting the ciliary epithelium of the human eye.
The cytoplasm is described as a homogeneous mixture containing fluid, ions, and neutral
solutes whose evolution is determined by net production mechanisms occurring in the
intracellular volume and by water and solute exchange across the membrane. Averaging
the balance equations over the cell volume leads to a coupled system of nonlinear ordinary
differential equations (ODEs) which are solved using the θ-method and the Matlab function
ode15s. Simulation tests are conducted to characterize the set of parameters corresponding
to baseline conditions in AH production. The model is subsequently used to investigate the
relative importance of (a) impermeant charged proteins; (b) sodium–potassium (Na+/K+)
pumps; (c) carbonic anhydrase (CA) in the AH production process; and (d) intraocular
pressure. Results suggest that (a) and (b) play a role; (c) lacks significant weight, at least for
low carbon dioxide values; and (d) plays a role for the elevated values of intraocular pres-
sure. Model results describe a higher impact from charged proteins and Na+/K+ ATPase
than CA on AH production and cellular volume. The computational virtual laboratory
provides a method to further test in vivo experiments and machine learning-based data
analysis toward the prevention and cure of ocular diseases such as glaucoma.

Keywords: homeostasis; cell volume; homogeneous mixtures; mathematical modeling;
aqueous humor production
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1. Introduction
The mechanical integrity of a cell is essential to its function and the tissues and organ

systems that it supports [1,2]. Cell volume stabilization is a fundamental function to
preserve the mechanical integrity of a cell [3]. Cell volume stabilization over time is based
on the balance among forces acting on the cell membrane from both intra- and extracellular
sides, which emanate from electrochemical and fluid–mechanical mechanisms [4]. The
experimental characterization of force equilibrium at the nanoscale level is a highly complex
task, on the one hand, because of the difficulty of performing measurements in vivo (see [5])
and, on the other hand, the presence of two regimes of mechanical behavior in living cells,
on short and long time scales (see [6]). In fact, a combination of experimentation and
theoretical analysis shows that living mammalian cytoplasm behaves as an equilibrium
material on short time scales whereas it behaves as an out-of-equilibrium material on long
time scales [6].

Based on these considerations, in this article we address the theoretical study of cell
volume dynamics and apply the formulation to the process of the production of aqueous
humor (AH) in the eye. AH is a slowly moving fluid that is continuously produced by the
ciliary body of the eye, whose main function is to keep the anterior segment of the eye clean
from metabolic wastes and to preserve the spherical shape of the eyeball by establishing
the intraocular pressure (IOP) (see [7–10]).

The clinical motivation of our work is the fact that an elevated value of intraocular
pressure (IOP) is an established risk factor for glaucoma. Therefore, keeping IOP within
normal levels (10 to 21 mmHg) is central to prevent the occurrence and progression of
neurodegenerative diseases of the retina such as glaucoma [11–13]. IOP is the result of
the balance between the production and drainage of aqueous humor (AH) in the anterior
segment of the eye. AH is produced by the ciliary epithelium (CE) double cell layer,
which lines the ciliary processes of the ciliary body, and is drained out from the anterior
chamber of the eye throughout the trabecular meshwork and uveoscleral outflow pathways.
In this article, we focus our attention on the process of AH production with the goal
of characterizing the fluid–mechanical and electrochemical conditions under which the
cells constituting the CE maintain their volume, allowing at the same time stationary
water flow from the ciliary body toward the posterior and anterior chamber of the eye.
Understanding these conditions endows clinicians with a supporting tool to identify the
causes of a pathological increase (or decrease) in AH production which may give rise to a
potentially pathological increase in IOP, the final aim being to devise effective therapies
for its reduction [14]. In this respect, the development of a mathematical model and of a
computational virtual laboratory (CVL) for the simulation of AH production has been the
object of investigation in recent years (see [15–18]).

In this article, we propose a theoretical formulation based on homogeneous mixtures
including neutral and charged solutes (see [19] (Chapter 13)) and utilizing a model re-
duction procedure from three spatial dimensions to zero spatial dimensions. The model
resulting from the reduction is a coupled system of highly stiff, nonlinear, ordinary dif-
ferential equations (ODEs) which are solved using the θ-method and the Matlab function
ode15s. Simulation tests are run to characterize the values of model parameters in baseline
conditions in AH production. The model is subsequently used to investigate the relative im-
portance of (a) impermeant charged proteins; (b) the sodium–potassium pump; (c) carbonic
anhydrase; and (d) intraocular pressure in the AH production process. Results suggest
that (a) and (b) play a role; (c) does not have a significant weight, at least for low CO2

values; and (d) plays a role for elevated values of intraocular pressure, as in the case of
hypertensive patients.
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2. Materials and Methods
In Section 2.1, we describe the cellular mechanisms of AH production. In Section 2.2,

we describe the geometrical representation of the cell volume and surface; in Section 2.3, we
describe the heterogeneous structure of the cell membrane; and in Section 2.4, we provide
a conceptual scheme of the transport of water and solute across the cell membrane. In
Section 2.5, we introduce a continuum model of the cell based on the theory of mixtures to
describe the spatial and temporal response of the cell volume to the concomitant action
of fluid and electrochemical forces. In Section 2.6, we derive a reduced-order model of
the cell volume that comprises ordinary differential and algebraic equations. Finally, in
Sections 2.7 and 2.8, we describe the compact form of the reduced-order model and its
numerical approximation, respectively. In Appendices A and B, we provide the expressions
of the fluid velocity, molar flux densities, and net production rates that are involved in
cellular metabolism.

2.1. Cellular Mechanisms of Aqueous Humor Production

Aqueous humor (AH) is a slowly moving fluid that is (1) continuously produced by
the ciliary body epithelium of the eye (CE); (2) flows from the posterior to the anterior
chamber of the eye; and (3) is drained out from the eye throughout two main outflow
pathways (see [7–10]). The sequence (1) AH production, (2) AH flow, and (3) AH outflow
is schematically represented in Figure 1. The main function of AH is to keep the anterior
segment of the eye clean from the metabolic waste of the surrounding tissues and to
preserve the spherical shape of the eyeball by establishing the intraocular pressure (IOP) as
the value of the AH fluid pressure. This corresponds to the volumetric flow rate of AH that
is produced by the ciliary body and equals the volumetric flow rate of AH that is drained
out by the outflow pathways in the anterior segment of the eye (see [20]).
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Figure 1. Schematic representation of the processes involved in AH dynamics. (1): AH production;
(2): AH flow; (3): AH outflow. Reprinted from R. Ramakrishnan et al, Diagnosis & Management of
Glaucoma, Chapter 9 Aqueous Humor Dynamics, 10.5005/jp/books/11801_9, (2013) [20]; used in
accordance with the Creative Commons Attribution (CC BY) license.

Aqueous humor (AH) is a slowly moving fluid that is (1) continuously produced by 84

the ciliary body epithelium of the eye (CE); (2) flows from the posterior into the anterior 85

chamber of the eye; (3) is drained out of the eye throughout two main outflow pathways 86

(see [7–10]). The sequence: (1) AH production; (2) AH flow; and (3) AH outflow is 87

schematically represented in Figure 1. The main function of AH is to keep the anterior 88

segment of the eye clean from the metabolic waste of the surrounding tissues and to 89

preserve the spherical shape of the eyeball by establishing the intraocular pressure (IOP) as 90

the value of AH fluid pressure in correspondance of which the volumetric flow rate of AH 91

that is produced by the ciliary body equals the volumetric flow rate of AH that is drained 92

out by the outflow pathways in the anterior segment of the eye (see [21]). 93

Figure 2. Left panel: ciliary body epithelium, light micrograph. It consists of two epithelial cell
layers: a non-pigmented inner layer and an outer pigmented layer. Under the epithelium there is a
highly vascularized stroma. Reprinted from [22]; used in accordance with the Creative Commons
Attribution (CC BY) license. Right panel: compartment representation of the CE cell couplet.
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Figure 1. A schematic representation of the processes involved in AH dynamics. (1): AH production;
(2): AH flow; (3): AH outflow. Reprinted from R. Ramakrishnan et al., Diagnosis & Management of
Glaucoma, Chapter 9 Aqueous Humor Dynamics, 10.5005/jp/books/11801_9, (2013) [21]; used in
accordance with the Creative Commons Attribution (CC BY) license.

The left panel of Figure 2 is a micrograph photo of a histology of the CE. The CE is a
double layer of apex-to-apex connected cells (pigmented cell, PE, and nonpigmented cell,
NPE) which have cuboidal and columnar shapes, respectively (see [22]). The CE cell couplet
is schematically illustrated in the compartment-based representation shown in the right
panel of Figure 2. This scheme may be used to characterize the various cellular mechanisms
that concur in the process of AH production (see [9,20]). The first mechanism is the
transport of the “metabolic fuel”, a mixture constituted by water, solutes, ions, and proteins,
by blood flow in the ciliary capillary (CC). The second mechanism is the ultrafiltration
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of the metabolic fuel across the fenestrations in the CC wall. The third mechanism is the
motion of the metabolic fuel across the stromal tissue. Then, the metabolic fuel divides
across two different pathways. The first pathway is the intracellular transport throughout
the CE cell couplet; the second pathway is the paracellular transport throughout the lateral
interstitial space separating two neighbouring CE cell couplets. In its motion across the CE,
the osmolarity gradient that is established between the cytoplasm of the NPE cell and the
interstitial space, on the one hand, and between the NPE cell and the posterior chamber
(PC), on the other hand, gives rise to a water efflux into the PC which eventually drains out
through the trabecular meshwork and uveoscleral outflow pathways.

Figure 2. Left panel: a light micrograph of the ciliary body epithelium. It consists of two epithelial
cell layers: a non-pigmented inner layer and an outer pigmented layer. Under the epithelium, there is
a highly vascularized stroma. Reprinted from [23]; used in accordance with the Creative Commons
Attribution (CC BY) license. Right panel: a compartmental representation of the CE cell couplet.

2.2. Geometrical Description of the Cell

Figure 3 illustrates the “equivalent cell”, representing a simplified model of the CE cell
couplet illustrated in Section 2.1. The “equivalent cell” has the property that its volume is
equal to the volume of the PE/NPE cell couplet, and the reason supporting the choice of a
spherical shape is that the PE/NPE cell couplet acts as a functional syncytium [8] so that the
process of AH production can be mathematically described as the collective contribution of
all the cell couplets that constitute the CE. Despite its over-simplified geometry, we believe
that our model may serve as a basis for extension to future closer representations of the
morphology and physiology of the CE.

Figure 3. The “equivalent cell”. Solid line: initial cell configuration. Dashed line: deformed cell
configuration. The cyan arrows indicate water flow. The cell is increasing its volume (cell swelling).



Math. Comput. Appl. 2025, 30, 13 5 of 38

Let t ≥ 0 denote the time variable (units: s). We denote by Ωt := Ω(t) the three-
dimensional (3D) body representing the cell at the time t and Vt := V(t), the volume of the
cell at the time t, such that V0 = 4πR3

c /3 is the value of the cell volume at the time t = 0,
with Rc being the cell radius in the initial (undeformed) configuration (units: m). From
the point of view of Continuum Mechanics, the body is a deformable, electrically charged,
homogeneous mixture comprising a fluid constituent, with Nα moving charged solute
constituents (ions) and Nβ moving neutral solute constituents (see [19] (Chapter 13)). The
cell volume also contains impermeant charged proteins whose chemical valency and molar
density are such that electroneutrality holds in ionic homeostasis conditions (see [3,24]).
The boundary of Ωt is denoted by ∂Ωt and n is the outward unit normal vector for ∂Ωt.
The surface of the cell at the time t is denoted by St := S(t), such that S0 = 4πR2

c is the
value of the cell surface at the time t = 0. In the remainder of this article, we denote by x the
spatial coordinate vector of any point in the cell with respect to a fixed system of reference.
We also refer to the interior of Ωt as the intracellular region (shortly, in), to the exterior
of Ωt as the extracellular region (shortly, out), and to the surface of Ωt as the membrane
(shortly, m).

Assumption 1. We assume that cell deformation occurs only in the radial direction and that it
does not depend on the position on the cell surface.

Assumption 2. We assume that the electric potential, solute concentrations, and fluid pressure in
the extracellular region are given functions of space and time.

The solid line and dashed line in Figure 3 illustrate the initial and deformed config-
urations of the cell, respectively. In agreement with Assumption 1, both configurations
are spherical.

2.3. Porous and Lipid Structure of Cell Membrane

The intra- and extracellular regions are separated by a 3D membrane whose thickness,
tm, is such that the ratio δ := tm/Rc is ≪ 1. In the limit δ → 0, the geometrical representa-
tion of the 3D membrane degenerates into the two-dimensional (2D) manifold ∂Ωt. The
membrane surface can be represented as a heterogeneous porous medium whose solid
constituent is lipid material. The lipid surface is impermeable to water and solutes, whereas
the pore surface allows the exchange of fluid and solutes between intra- and extracellular
regions. The pore surface contains a variety of membrane proteins, denoted by mp. Each
membrane protein, mp, is characterized by a dimensionless function, Φmp, henceforth
referred to as the surface fraction, defined as

Φmp(t) :=
Smp(t)
S(t) S(t) > 0, t ≥ 0, (1a)

where Smp(t) is the total area occupied by the protein mp at the time t.

Assumption 3. Let St > 0. We assume that

dΦmp(t)
dt

= 0 t > 0. (1b)

Equation (1b) implies that

Φmp(t) = Φmp(0) =
Smp(0)
S(0) t ≥ 0. (1c)
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The first type of membrane protein that we introduce in this article is an aquaporin
(AQP), which is a specialized protein for rapid transmembrane water exchange between
intracellular and extracellular regions (see [25–27]). The quantity ΦAQP represents the AQP
surface fraction. Other membrane proteins on the cell surface comprise carrier proteins,
which permit neutral solute exchange through the cell membrane by the mechanism of
facilitated diffusion (see [28,29]), and ion channels, ion exchangers, and ion pumps, which
permit charged solute exchange through the cell membrane (see [30]). The total surface
fractions for each considered membrane protein are defined as

Φcarr = ∑
β∈Sβ

Φcarr
β , (2a)

Φch = ∑
α∈Sα

Φch
α , (2b)

Φexch = ∑
α∈Sα

Φexch
α , (2c)

Φpump = ∑
α∈Sα

Φpump
α , (2d)

in such a way that the total pore surface fraction is

Φp
tot = Φcarr + Φch + Φexch + Φpump + ΦAQP. (3)

The remainder of the cell surface is occupied by the lipid constituent of the membrane,
whose surface fraction is

Φlip = 1 − Φp
tot. (4)

Assumption 3 implies that the membrane protein surface fractions in (2) do not depend on
the time and also that the lipid surface fraction does not depend on the time because of (4).

2.4. Water and Solute Transport Across the Cell Membrane

In this section, we provide a conceptual scheme of the transport of water and solute
across the cell membrane and we refer to [26,31] for more details about the subject.

Figure 4 illustrates a schematic representation of a zoomed view of the cell membrane
and of the intra- and extracellular regions. The scheme shows water molecules and solutes
(neutral and charged) in motion across the membrane.

Assumption 4. Based on the scheme in Figure 4, we make the following assumptions:

A1. Water is transported across the membrane, in a selective manner, via aquaporins;

A2. Water and solutes are co-transported across the membrane via ionic channels and carrier proteins;

A3. Water velocity inside ionic channels and carrier proteins is the same as water velocity
inside aquaporins.
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Figure 4. A schematic representation of the structure of the cell membrane. AQP: aquaporin (cyan).
The ion channel is drawn in green. Water molecules (red and dark blue), charged solutes (magenta),
and neutral solutes (brown) are illustrated. The lipid constituent is drawn in yellow. The AQP is
selective to water molecules whereas the ion channel permits the co-transport of ions and water.

2.5. Continuum-Based Model of Cell

This section is structured with four subsections devoted to fluid motion, neutral and
charged solutes, and electric potential.

2.5.1. Fluid Motion

Assumption 5. We assume that water flow is slow and inertial forces can be neglected with respect
to viscous effects.

According to Assumption 5, the motion of water flow across the cell membrane can be
described by the linear Stokes equation system (see [19] (Section 10.5.1)):

∇ · v = 0, (5a)

∇ ·T+ b = 0, (5b)

T = −pI+ 2µ f∇Sv, (5c)

where v (units: m s−1) and p (units: N m−2) are the fluid velocity and pressure inside the
aquaporin, respectively, T is the fluid stress tensor (units: N m−2), b is the force density
acting on the fluid (units: N m−3), µ f is the fluid dynamic viscosity (units: N m−2 s = Pa s),
and ∇S is the symmetric gradient operator. Equation (5a) expresses mass conservation
in a local form; Equation (5b) expresses linear momentum balance in a local form; and
Equation (5c) is the constitutive law for a Newtonian fluid.

2.5.2. Neutral Solutes’ Motion

We denote by Sβ the set of neutral solutes, with card(Sβ) = Nβ. Each solute, β ∈ Sβ,
is described by its number density, nβ, and molar density, cβ (units: mol m−3= mM). The
advection–diffusion model is adopted to represent the motion of neutral solutes across the
cell membrane (see [19] (Chapter 12)):

∂cβ

∂t
+∇ · jβ = Pβ − Cβ β = 1, . . . , Nβ, (6a)

jβ = cβv − Dβ∇cβ β = 1, . . . , Nβ. (6b)

Equation (6a) expresses mass balance in a local form for each solute, β ∈ Sβ. The vector jβ

is the molar flux density of the solute β (units: mol m−2 s−1= mM m s−1), accounting for
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a passive advective contribution due to water motion inside the carrier protein channel
(see Assumption 4-A2) and a diffusive contribution expressed by Fick’s law in which Dβ

is the diffusion coefficient of the solute β (units: m2 s−1). The scalar functions Pβ and Cβ

represent the production and consumption rates of cβ (units: mol m−3 s−1= mM s−1).

2.5.3. Charged Solutes’ Motion

We denote by Sα the set of charged solutes (ions) with card(Sα) = Nα. Each ion, α ∈ Sα,
is described by its number density, nα, molar density, cα, charge number, zα, diffusion
coefficient, Dα, and electric mobility, µel

α (units: m2 V−1 s−1). The number and molar
densities are related by the equation nα = NAvcα (units: m−3), where NAv = 6.02214076 ·
1023 mol−1 is Avogadro’s constant. The diffusion coefficient and the electric mobility are
proportional through Einstein’s relation:

Dα =
µel

α Vth
|zα|

α = 1, . . . , Nα, (7)

where Vth = (KBT)/q is the thermal voltage (units: V) and KB, T, and q denote Boltzmann’s
constant, absolute temperature, and electron charge, respectively. The Nernst–Planck (NP)
model is adopted to represent ion transport and exchange across the cell membrane (see [19]
(Chapter 13)):

∂cα

∂t
+∇ · jα = Pα − Cα α = 1, . . . , Nα, (8a)

jα = jp
α + ja

α α = 1, . . . , Nα, (8b)

jp
α = jp,edw

α + jp,exch
α α = 1, . . . , Nα, (8c)

jp,edw
α = cαvα − Dα∇cα α = 1, . . . , Nα, (8d)

vα = v + µel
α
|zα|
zα

E. (8e)

Equation (8a) expresses mass balance in a local form for each ion α ∈ Sα. Equation (8b)
is the constitutive law to describe ion transport and contains two main contributions to
the vector jα which is the molar flux density of the ion α. The first contribution accounts
for passive ion transport and is represented by the ion molar flux density jp

α . The second
contribution, which is a novel aspect introduced by the model proposed in the present
work, accounts for active ion transport and is represented by the ion molar flux density ja

α.
The vector jp,edw

α is the velocity-extended NP equation for ion electrodiffusion and accounts
for a passive advective contribution and a diffusive contribution expressed by Fick’s law
(see [19] (Chapter 13)). The vector field vα is the generalized drift velocity of the ion α due
to water motion inside the ion channel (see Assumption 4-A2) and Faraday’s law under
quasi-static approximation (see [19] (Chapter 14))

E = −∇ψ, (8f)

where E and ψ are the electric field (units: V m−1) and electric potential (units: V), respec-
tively. The vector jp,exch

α expresses passive ion exchange mediated by transporters and
co-transporters. The scalar functions Pα and Cα represent the production and consumption
rates of cα.
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2.5.4. Electric Potential

In the classical VE-PNP equation system, the Poisson equation,

∇ · (−εm∇ψ) = ρel , (9)

is used to determine the spatial distribution of the electric potential, with εm denoting the
dielectric permittivity of the medium (units: F m−1) and ρel denoting the electric charge
density (units: C m−3). Since, in the present article, we are interested in the study of the
spatial and temporal distribution of the electric potential ψ across the cell membrane, we
replace (9) (which, for a given ρel , is an elliptic equation) with the following differential
system:

∇ · Jtot = 0, (10a)

Jtot = Jdisp + Jcond
tot , (10b)

Jdisp =
∂

∂t
(εmE) =

∂

∂t
(−εm∇ψ), (10c)

Jcond
tot = F ∑

α∈Sα

zαjα, (10d)

where F is Faraday’s constant (units: C mol−1). Equation (10a) is a consequence of
Maxwell’s equations (see [19,32] (Chapter 4)) and expresses the continuity of the total
electric current density Jtot (units: C m−2 s−1= A m−2), given by the sum of the total con-
duction current density Jcond

tot and the displacement current density Jdisp, in which the
electric field E is expressed as a function of the electric potential ψ via Equation (8f). The
adoption of System (10) to determine the electric potential ψ is a novel aspect of this article
and extends to the time-dependent case of the approach originally proposed in [33] to
enforce electroneutrality in the mathematical study of cellular electric activity.

2.6. Reduced-Order Cell Model

This section is structured with five subsections devoted to the derivation of the
reduced-order model for the cell surface normal velocity, cell volume, neutral and charged
solute molar densities, and electric potential.

2.6.1. Time Evolution of Normal Velocity Across Single AQP

We make the following assumption about the geometry of the AQP shown in Figure 4.

Assumption 6. The AQP is geometrically represented as a cylinder, ωp, with radius rp and axial
length tm, as depicted in Figure 5.

Moreover, we make the following assumption:

Assumption 7. We assume the following:

1. The fluid velocity only has the axial component Vs;
2. Vs = vp,n(t)η(r), with t ≥ 0 and r ∈ [0, rp];
3. η(r) = 2

[
1 − (r/rp)2] (Poiseuille flow);

4. The force density only has the axial component bs;
5. bs = bp,s(s, t), with s ∈ [0, tm] and t ≥ 0.
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Figure 5. A three-dimensional schematic representation of an aquaporin. The cylindrical domain ωp

is the pore channel, tm is the membrane thickness, and rp is the aquaporin radius.

Inserting Assumption 7 into Equation (5), we obtain the following expression of the
normal fluid velocity inside the pore channel of the AQP:

vp,n(t) =
r2

p

8µ f

[
−∂p(s, t)

∂s
+ bp,s(s, t)

]
s ∈ [0, tm], t ≥ 0. (11a)

Integrating (11a), we obtain

p(s, t) = p(0, t)−
8µ f vp,n(t)

r2
p

s +
∫ s

0
bp,s(ξ, t) dξ s ∈ [0, tm], t ≥ 0, (11b)

For any function, U = U(t), we define the transmembrane difference operator:

∆U(t) := Uin(t)− Uout(t) t ≥ 0. (11c)

Setting s = tm in (11b) and applying the definition (11c) to the variables p and Π, we obtain

vp,n(t) = Lp[∆p(t)− ∆Π(t)] t ≥ 0, (11d)

where

Lp :=
r2

p

8µ f tm
(11e)

is the hydraulic conductivity of the membrane (units: m(Pa s)−1) and

Π(t) :=
∫

bp,s(ξ, t) dξ + C (11f)

is the total osmo-oncotic pressure, with C being an arbitrary integration constant. Rela-
tion (11d) is Starling’s equation [34] and represents the mathematical expression of the
normal fluid velocity across a single aquaporin.
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2.6.2. Time Evolution of Cell Surface Normal Velocity

In order to determine the motion of the whole cell surface, we need to define an
average normal fluid velocity to represent the collective contribution of the AQPs. For this
purpose, we denote by σAQP the surface density of aquaporins, defined as the number,
NAQP, of AQPs per square meter, and by S tot

AQP(t) the total surface area occupied by the
AQPs. Using Assumption 3, we obtain

ΦAQP =
S tot

AQP(0)

S0
=

σAQP S0 πr2
p

S0
= σAQPπr2

p. (12a)

Let us introduce the total water volumetric flow rate across the cell surface (units: m3 s−1),

Qw(t) :=
∫

∂Ωt
v(x, t) · n d(∂Ωt) = vp,n(t)S tot

AQP(t) t ≥ 0, (12b)

and the average normal fluid velocity across the cell surface,

⟨v(x, t) · n⟩(t) :=
Qw(t)
St

=
S tot

AQP(t)

St
vp,n(t) = ΦAQPvp,n(t) t ≥ 0, (12c)

where ΦAQP is given by (12a) and vp,n is given by (11d).
The pore fluid velocity vp,n is typically quite large (even thousands of µm s−1; see [35])

to favor a fast transmembrane exchange of water molecules. The average normal fluid
velocity ⟨v · n⟩, instead, is considerably smaller (less that 1µm s−1; see [36]). For this reason,
in the remainder of this article, we introduce the following definition.

Definition 1. Let us denote by vcell,n the cell surface normal velocity. We set

vcell,n(t) := ⟨v(x, t) · n⟩ = ΦAQPvp,n(t) x ∈ ∂Ωt, t ≥ 0, (13)

where vp,n is defined in (11d).

2.6.3. Time Evolution of Cell Volume

The time evolution of Vt is described by the cell mass balance equation in an integral
form (see [19] (Chapter 6)):

dM(t)
dt

= −
∫

∂Ωt
ρwv(x, t) · n d(∂Ωt) +

∫
Ωt

Rw(x, t) dΩt t ≥ 0, (14)

where ρw is the mass density of water (units: Kg m−3), M(t) =
∫

Ωt
ρw dΩt is the mass of

the cell at the time t (units: Kg), and

Rw(x, t) := Pw(x, t)− Cw(x, t) x ∈ Ωt, t ≥ 0 (15)

is the intracellular water mass density net production rate, with Pw and Cw being the water
mass density production and consumption rates, respectively (units: Kg m−3 s−1).

Assumption 8. We assume that

Pw(x, t) = Pw(t)Φ(x) x ∈ Ωt, t ≥ 0, (16a)

Cw(x, t) = Cw(t)Φ(x) x ∈ Ωt, t ≥ 0, (16b)
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where Pw and Cw represent the time-dependent intracellular water mass density production and
consumption rates, and the shape function Φ is such that∫

Ωt
Φ(x) dΩt = Vt. (16c)

Using Assumption 4-A1, using Definitions 1 and 8 in the right-hand side of (14), and
noting that S(t) = γ(V(t))2/3, with γ := (36π)1/3, we obtain the following reduced-order
model of cell volume motion:

dV(t)
dt

= −γ jv,n(t)(V(t))2/3 +Rw(t)V(t) t > 0, (17a)

jv,n(t) := vcell,n(t) = ΦAQPvp,n(t) t > 0, (17b)

V(0) = V0, (17c)

where vp,n is given by (11d) and

Rw(t) := kw,prod(t)− kw,cons(t) t ≥ 0 (17d)

is the water volume net production rate (units: s−1), with kw,prod(t) := Pw(t)/ρw and
kw,cons(t) := Cw(t)/ρw set for every t ≥ 0.

2.6.4. Time Evolution of Neutral Solutes

The time evolution of neutral solute molar density is described by the mass balance
equation in an integral form:

∫
Ωt

∂cβ

∂t
dΩt = −

∫
∂Ωt

jβ,n d(∂Ωt) +
∫

Ωt
Rβ dΩt β ∈ Sβ, (18)

where jβ,n is the normal molar flux density of cβ over the cell surface St, and

Rβ(x, t) := Pβ(x, t)− Cβ(x, t) x ∈ Ωt, t ≥ 0 (19)

is the net production rate of the intracellular solute β, with Pβ and Cβ being the production
and consumption rates, respectively (units: mM s−1).

Assumption 9. We assume that

cβ(x, t) = cβ(t)Φ(x) x ∈ Ωt, t ≥ 0, (20a)

jβ,n(x, t) = jβ
n(t)ηβ(x) x ∈ ∂Ωt, t ≥ 0, (20b)

where cβ and jβ
n are time-dependent intracellular neutral solute molar densities and normal molar

flux densities on the cell surface, respectively, and the shape function ηβ is such that∫
∂Ωt

ηβ(x) d(∂Ωt) = Φcarr
β St, (20c)

where Φcarr
β is the surface fraction of the carrier protein that allows the transmembrane exchange of

the neutral solute β. We also assume that equations similar to (16) apply to Pβ and Cβ.
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Using Assumption 9 in (18), we obtain the following reduced-order model for each
neutral solute molar density:

dcβ(t)
dt

= −γ jtot
β,n(t)(V(t))

−1/3 +Rβ(t) β ∈ Sβ, t > 0, (21a)

jtot
β,n(t) := Φcarr

β jβ
n(t) β ∈ Sβ, t > 0, (21b)

cβ(0) = cβ
0 , (21c)

where cβ
0 is the initial value of the intracellular neutral solute molar density, β ∈ Sβ, and

Rβ(t) := Pβ(t)− Cβ(t) β ∈ Sβ, t > 0, (21d)

is the net production rate of the solute β (units: mM s−1).

2.6.5. Time Evolution of Charged Solutes

The time evolution of the charged solute molar density is described by the mass
balance equation in an integral form:

∫
Ωt

∂cα

∂t
dΩt = −

∫
∂Ωt

jα,n d(∂Ωt) +
∫

Ωt
Rα dΩt α ∈ Sα, (22)

where jα,n is the normal molar flux density of cα on the cell surface St, and

Rα(x, t) := Pα(x, t)− Cα(x, t) x ∈ Ωt, t ≥ 0 (23)

is the net production rate of the intracellular ion α, with Pα and Cα being the production
and consumption rates, respectively (units: mM s−1).

Assumption 10. We assume that

cα(x, t) = cα(t)Φ(x) x ∈ Ωt, t ≥ 0, (24a)

jα,n(x, t) = jch
α,n(t)η

ch
α (x) + jexch

α,n (t)ηexch
α (x) + jpump

α,n (t)ηpump
α (x) x ∈ ∂Ωt, t ≥ 0, (24b)

where cα is the time-dependent intracellular molar density of the ion α ∈ Sα; the functions jch
α,n and

jexch
α,n are time-dependent normal molar flux densities on the cell surface representing passive ion

transport and exchange, respectively; the function jpump
α,n is a time-dependent normal molar flux

density on the cell surface representing ion exchange through active pumps; and the shape functions
ηch

α , ηexch
α , and η

pump
α are such that∫

∂Ωt
ηch

α (x) d(∂Ωt) = Φch
α St, (24c)∫

∂Ωt
ηexch

α (x) d(∂Ωt) = Φexch
α St, (24d)∫

∂Ωt
η

pump
α (x) d(∂Ωt) = Φpump

α St, (24e)

where Φch
α , Φexch

α , and Φpump
α are the surface fractions of the membrane protein associated with the

passive transport, passive exchange, and active pump-mediated exchange of the ion α, respectively.
We also assume that equations similar to (8) apply to Pα and Cα.
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Using Assumption 10 in (22), we obtain the following reduced-order model for each
charged solute molar density:

dcα(t)
dt

= −γ jtot
α,n(t)(V(t))

−1/3 +Rα(t) α ∈ Sα, t > 0, (25a)

jtot
α,n(t) :=

[
Φch

α jch
α,n(t) + Φexch

α jexch
α,n (t) + Φpump

α jpump
α,n (t)

]
α ∈ Sα, t > 0, (25b)

cα(0) = cα
0 , (25c)

where cα
0 is the initial value of the intracellular charged solute molar density, α ∈ Sα, and

Rα(t) := Pα(t)− Cα(t) α ∈ Sα, t > 0, (25d)

is the net production rate of the ion α (units: mM s−1).

2.6.6. Time Evolution of Membrane Potential

For any t ≥ 0, the membrane potential is defined as

ψm(t) := ψin(t)− ψout(t). (26)

The time evolution of the membrane potential is described by the charge balance equation
in an integral form:

∫
∂Ωt

−εm
∂

∂t

(
∂ψ

∂n

)
d(∂Ωt) = −

∫
∂Ωt

Jcond,n d(∂Ωt) (27)

where ∂ψ
∂n and Jcond,n are the normal derivative of the electric potential and the normal total

conduction current density on the cell surface St, respectively.

Assumption 11. We assume that the electric potential is a piecewise linear continuous function
across the cell membrane thickness (see Figure 6).

Figure 6. Transmembrane electric potential.

Using Assumption 11 in the left-hand side of (27), we obtain

∫
∂Ωt

−εm
∂

∂t

(
∂ψ

∂n

)
d(∂Ωt) = cm

dψm(t)
dt

ΦlipS(t) t ≥ 0, (28)

where

cm :=
εm

tm
(29)
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is the cell specific capacitance (units: F m−2). The right-hand side of (27) is given by the
following expression:

−
∫

∂Ωt
Jcond,n d(∂Ωt) = −Itot

cond(t) t ≥ 0, (30)

where Itot
cond is the total conduction current flowing across the cell membrane at the time t

(units: A), defined as

Itot
cond(t) =

[
∑

α∈Sα

F zα jtot
α,n(t)

]
S(t) t ≥ 0. (31)

Replacing (28) and (30) in (27), we obtain the following reduced-order model for the
membrane potential:

dψm(t)
dt

= −
(

Φlip cm

)−1
jψ
n (t) t > 0, (32a)

jψn (t) := jtot
cond,n(t) t > 0, (32b)

ψm(0) = ψm,0, (32c)

where

jtot
cond,n(t) := ∑

α∈Sα

Fzα jtot
α,n(t) t ≥ 0 (32d)

is the normal total conduction current density over the cell surface defined in (25b), and
ψm,0 is the initial value of the membrane potential.

2.7. Compact Form of Reduced-Order Cell Model

Let us introduce the vector of dependent variables:

Y(t) :=


V(t)
cβ(t)
cα(t)
ψm(t)

 t ≥ 0, (33)

where

cβ(t) :=
[
cβ,1(t), . . . , cβ,Nβ

(t)
]T

t ≥ 0, (34)

cα(t) := [cα,1(t), . . . , cα,Nα(t)]
T t ≥ 0, (35)

are the column vectors containing the time values of the neutral and charged solute molar
densities.

Let us define the vector of source terms:

F(t, Y(t)) :=


−γ jv,n(t)(V(t))2/3 +

(
kw,prod(t)− kw,cons(t)

)
V(t)

−γ jtot
β,n(t)(V(t))

−1/3 +
(
Pβ(t)− Cβ(t)

)
−γ jtot

α,n(t)(V(t))
−1/3 + (Pα(t)− Cα(t))

−
(

cm Φlip
)−1

jψ
n (t)

 t ≥ 0, (36)

where jtot
β,n and jtot

α,n are column vectors of the sizes Nβ and Nα, respectively, containing
the time values of the neutral and charged solute normal molar flux densities, whereas
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Pβ (and Cβ) and Pα (and Cα) are column vectors of the sizes Nβ and Nα, respectively,
containing the time values of the intracellular neutral and charged solute production (and
consumption) terms.

Finally, let us define the column vector containing the initial condition of the model:

Y0 :=


V0

cβ
0

cα
0

ψm,0

, (37)

where cβ
0 and cα

0 are column vectors of the sizes Nβ and Nα, respectively, which con-
tain the values of the initial conditions for the intracellular neutral and charged solute
molar densities.

The equation system constituting the model of cell volume motion can be written in a
compact form as

dY(t)
dt

= F(t, Y(t)) t > 0, (38a)

Y(0) = Y0. (38b)

System (38) comprises differential equations and algebraic equations, represented by
the constitutive laws for the normal molar flux densities of neutral and charged solutes
and for the production and consumption rates of water and solutes. The expressions of the
normal fluid velocity on the cell surface and normal molar flux densities are provided in
Appendix A whereas the expressions of the production and consumption rates are provided
in Appendix B.

2.8. Numerical Approximation

The mathematical model proposed in this article was implemented within a computa-
tional virtual laboratory (CVL) for the simulation of cell volume motion.

The θ-method (see [19] (Chapeter 3)) and the Matlab tool ode suite were used for the
numerical approximation of (38) (see [37]). In the case of the θ-method, the values θ = 1
and θ = 0.5 were utilized, with θ = 1 corresponding to the Backward Euler (BE) method
and θ = 0.5 corresponding to the Crank–Nicolson (CN) method. In the case of the Matlab
tool ode suite, the functions ode15s or ode23tb were utilized because they are specifically
tailored to solve stiff problems like the object of the present article (see [38] (Chapter 11)).
The function ode15s is endowed with a variable-order Backward Differentiation Formulae
(BDF) method, whereas the function ode23tb uses the trapezoidal rule coupled with a BDF
of the order 3.

The CVL allows the user to consider physical situations of increasing complexity,
starting from the solution of the sole Cauchy problem (17) in which the fluid velocity is a
given function of time and the production and consumption terms are functions of the time
and cell volume. Simulation complexity can be increased by adding charged and neutral
solutes, intracellular reactions, and transmembrane ion exchange mechanisms, as well as
the presence of impermeant protein charges in both intra- and extracellular regions. This
hierarchy of scenarios is investigated in Section 3 where the accuracy and reliability of the
model predictions is verified against analytical solutions and available data.

3. Results
In this section, we validate the proposed CVL through the solution of case studies

characterized by increasing complexity. In Section 3.1, we consider a reduced version of
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the model described in the previous pages, solely accounting for the cell volume equation.
In Section 3.2, we use the full model and the concept of the “equivalent cell” introduced in
Section 2.2 to simulate the process of AH production.

3.1. The Basic Configuration

This case study is mathematically represented by the sole model for cell volume
motion (17).

Assumption 12. We make the following assumptions:

1. vp,n(t) = v for all t ≥ 0, with v being a given constant;
2. kw,prod(t) = κa for t ≥ 0, with κa being a given positive constant (units: s−1);

3. kw,cons(t) = κd
V(t)
Vre f

for t ≥ 0, with κd (units: s−1) and Vre f (units: m3) being given
positive constants.

Replacing the assumptions about the water volume production and consumption rates
in (17d), we obtain

Rw(t) = κa − κd
V(t)
Vre f

t ≥ 0. (39)

Replacing Assumptions 12 and (39) in (17a), we obtain the following Cauchy problem:

dV(t)
dt

= −γ ΦAQPv(V(t))2/3 +

(
κa − κd

V(t)
Vre f

)
V(t) t > 0, (40a)

V(0) = Vre f , (40b)

where Vre f = (4π/3)R3
cell is the cell volume in resting conditions.

The equilibrium points of System (40) are the solution of the following nonlinear
algebraic equation:

f (x) = −γ ΦAQPvx2/3 + V1/3
re f x(κa − κdx) = 0, (41)

where x := V∞/Vre f is the dependent variable and V∞ is the stationary value of the
cell volume.

Figure 7 (left panel) shows a graph of f , corresponding to the following values of the
input data: Rcell = 10 · 10−6m; ΦAQP = 0.5; v = −30 · 10−6m s−1; κa = 1s−1; and kd = 3s−1.
System (40) admits two equilibrium points: V∞,1 = 0m3 and V∞,2 = 1.6124Vre f = 6.754 ·
10−15m3. We have

d f
dx

∣∣∣∣∣
x=0

= +∞,
d f
dx

∣∣∣∣∣
x=1.6124

= −9.86 · 10−5m s−1,

from which we can conclude that V∞,2 is the only stable equilibrium point of System (40).
The theoretical conclusions of the stability analysis are confirmed by Figure 7 (left panel)
which shows the normalized cell volume computed by solving System (40) in the time
interval [0, 10] s with the following values of the model parameters: Rcell = 10 · 10−6 m;
ΦAQP = 0.5; v = −30 · 10−6 m s−1; κa = 1 s−1; and kd = 3 s−1. Cell volume dynamics
were studied using the BE method with a uniform time partition made of 105 elements.
Consistent with the physical configuration illustrated in Figure 3, the cell tends to increase
its volume by more than 60% because of the inflow of water from the extracellular region.
The cell volume reaches a stationary limit because of intracellular water consumption
dominating over intracellular water production.
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Figure 7. Left panel: a plot of f (x). Right panel: a plot of V(t)/Vre f in the time interval [0, 10] s. The
values of the input data are as follows: Rcell = 10 × 10−6 m, ΦAQP = 0.5; v = −30 × 10−6 m s−1;
κa = 1 s−1; and kd = 3 s−1.

Figure 8 (left panel) illustrates the temporal evolution of cell volume in the case where
the values of v are [−30 − 18, −6, +6, +18, +30]× 10−6 m s−1. The results suggest that
the cell switches between swelling and shrinking as fluid velocity changes its sign from
negative to positive. Interestingly, the BE method gives rise to positive cell volumes for each
t ≥ 0 and for each considered value of v. This outcome is the consequence of the positivity
principle enjoyed by the BE method when applied to the linear equation y′(t) = −λy(t) for
t ≥ 0, with λ being a given positive constant. The difference between using the BE method
(θ = 1) and another θ-method with θ ∈ [0, 1) is illustrated in Figure 8 (right panel) which
shows a comparison between the BE method (red line) and the Crank–Nicolson method
(CN, blue line) in the solution of (40) when the time interval is [0, 1] s, the fluid velocity is
v = 100 × 10−6 m s−1, and the number of time elements is 10, corresponding to the time
step ∆t = 0.1 s. The values of the remaining model parameters are the same as in the
previous example. The results indicate that the solution computed by the CN method is
affected by spurious unphysical oscillations, unlike that computed by the BE method. Such
oscillations can be removed by increasing the number of discretization time elements, at
the price of increasing the computational effort.

Figure 8. Left panel: a plot of V(t)/Vre f in the time interval [0, 10] s. The value of fluid velocity
(expressed in ¯ms−1) is indicated for each computed normalized cell volume. Right panel: a plot of
V(t)/Vre f in the time interval [0, 1] s.

Figure 9 (left panel) illustrates the temporal evolution of the water volume net pro-
duction rate Rw in the time interval [0, 10] s with the fluid velocity varying in the range
[−30 + 30] · 10−6 m s−1. We see that the stationary value of Rw, for each considered
normal fluid velocity in the range [−30 + 30] · 10−6 m s−1, changes from negative to
positive, with the magnitude for vn = −30 · 10−6 m s−1 being three times larger than
for vn = +30 · 10−6 m s−1. Figure 9 (right panel) illustrates the temporal evolution
of the cell normalized volume in the time interval [0, 1] s (ten times smaller than be-
fore) in the case where R(t) = 0 for t ≥ 0 and the fluid velocity varies in the range
[−30 + 30] · 10−6 m s−1. We see that in the absence of intracellular regulatory mechanisms,
the model System (40) predicts an abnormal increase in cell volume for a highly negative
value of normal fluid velocity.
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Figure 9. Left panel: a plot of the water volume net production rate Rw(t) in the time interval
[0, 10] s. Right panel: a plot of V(t)/Vre f in the time interval [0, 1] s in the case where R(t) = 0 for
every t ∈ [0, 1] s. Fluid velocity varies in the range [−30 + 30]× 10−6 m s−1. The arrow indicates
velocity increase from negative to positive values.

3.2. Cell Homeostasis in the Ciliary Epithelium of the Eye

This case study is mathematically represented by the Cauchy problem (38) in which
the cell represents one of the pigmented/nonpigmented couplets in the ciliary epithelium
(CE) of the ciliary body of the eye (see [7,8,39]). The aim of this study is to apply the model
proposed in this article to characterize the homeostatic configuration of the cell under
the physiological conditions of the system. According to the data reported in [7], such
conditions correspond to the following:

C1. The volume of the CE, equal to 8 µL;

C2. The number of cell couplets, Ncells,CE, constituting the CE, equal to 4 million;

C3. The intraocular pressure, equal to 15 mmHg;

C4. The AH volumetric flow rate, equal to 2.75 µL min−1.

Assumption 13. We make the following assumptions:

1. The considered sets of the neutral and charged solutes are

Sβ = {CO2, H2CO3}, (42)

Sα =
{

Na+, K+, H+, Cl−, HCO−
3
}

; (43)

2. The molar densities of the neutral and charged solutes are given constants denoted by cβ,ex,
β ∈ Sβ, and cα,ex, α ∈ Sα;

3. The hydraulic pressure difference is a given constant denoted by ∆p = pin − pex, where pin
and pex are the values of the intracellular and extracellular fluid pressure, respectively;

4. No transmembrane ion exchangers are considered so that Φexch = 0;
5. The model of carrier membrane proteins is described in Section A.3;
6. The model of ion channels is described in Section A.4;
7. The model of the net production rates for the neutral and charged solutes is described in

Section B.1;
8. The model of the net production rate in cell volume regulation is described in Section B.2.

The values of all model parameters that were used in the computer simulations
illustrated in this section are listed in Table 1.

The vector containing the initial condition data is

Y0 =
[
2 × 10−15, 0, 0, 10, 140, 5.0119 × 10−5, 7, 10−4, −8.0097 × 10−2

]T

units:
[
m3, mM, mM, mM, mM, mM, mM, mM, V

]T
.
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The vectors containing the extracellular values of the solute molar density are

cβ =
[
0.5, 1.3 · 10−3

]T
units: [mM, mM]T ,

cα =
[
130, 5, 3.1623 · 10−5, 150, 9.9

]T
units: [mM, mM, mM, mM, mM]T .

The values of the remaining model parameters can be found in Sections B.1, B.2 and B.3.
Computations were performed using the Matlab solver ode15s, setting both relative and
absolute tolerances equal to 10−12.

Table 1. Model parameters: symbol, value, and units.

Symbol Value Units

T 298.15 K

Rcell 7.816 × 10−6 m

tM 7.5 × 10−9 m

cM 5.9 × 10−3 F m−2

pin 20 mmHg

pex 15 mmHg

∆p 5 mmHg

σβ [0.1, 0.1]T [·]

σα [0.3, 0.3, 0.3, 0.3, 0.3]T [·]
σX 1 [·]
Pβ [0.228, 0.1467]T m s−1

Pα [0.0013, 0.2613, 1.1587, 0.5227, 0.1467]T m s−1

Φcarr
β 10−3[0.1352, 0.1352]T [·]

Φch
α 10−4[0.0126, 0.0785, 0.0031, 0.0196, 0.1539]T [·]

ΦAQP 1.3515 × 10−4 [·]
Φpump

α [0.0011, 0.0011, 0, 0, 0]T [·]
Φlip 0.9974 [·]

3.2.1. Electroneutrality and Impermeant Charged Proteins

Electroneutrality is essential in the maintainance of cell volume as a function of time
and of phenomena occurring in the intracellular and extracellular regions (see [3] and
references cited therein). The computation of the total electric charge densities ρmob,in

and ρmob,ex due to mobile ions inside and outside the cell in resting conditions yields
the following:

ρmob,in = F ∑
α∈Sα

zαcα,in(0) = 1.3797 × 107 C m−3,

ρmob,ex = F ∑
α∈Sα

zαcα = −9.5519 × 105 C m−3.

These results indicate that the intracellular region (at t = 0) is characterized by a high
excess of positive charge whereas the extracellular region (at t = 0) is characterized by a
high excess of negative charge. This charge difference gives rise to a large osmotic pressure
difference across the cell membrane which may eventually lead to the disruption of cell
integrity. To neutralize the excess of positive and negative charge, we need the presence of



Math. Comput. Appl. 2025, 30, 13 21 of 38

internally sequestered impermeant charges inside and outside the cell. Denoting by cX and
zX the molar density and charge number of the impermeant charge, we have

cX,in = 143 mM zX,in = −1, (44a)

cX,ex = 9.9 mM zX,ex = +1. (44b)

These results indicate that a high molar density of fixed anions is sequestered inside the
cell cytoplasm whereas a much smaller molar density of cations is required to make the
extracellular solution electroneutral.

Assumption 14. We assume that the number of moles of the intracellular impermeant charge nX

is constant during the time evolution of the cell.

Let cX(0) denote the intracellular molar density of the impermeant charge at the time
t = 0 (units: mM). By the definition of molar density, we have

cX(0) =
nX
V0

. (45)

Using Assumption 14 and (45), we can express the intracellular impermeant charge molar
density for any time, t ≥ 0, as

cX,in(t) =
nX
V(t) = cX(0)

V0

V(t) t ≥ 0. (46)

The simulations illustrated in the next sections were conducted using the values of zX and
cX in (44) and the constitutive Equation (46).

3.2.2. Fast-Time-Scale Cell Evolution

We investigated the evolution of the cell in the time interval [t0, tend], where t0 = 0 s
and tend = 50 × 10−12 s.

Figure 10 (left panel) illustrates the time evolution of the intracellular protonated
hydrogen (blue curve) and the corresponding intracellular pH (red curve). Hydrogen fast
diffusion from the intracellular side into the extracellular side determines a sharp decrease
in cH+ ,in so that the cytoplasm solution turns into a very basic condition (the maximum
value of the intracellular pH is 12.5). Figure 10 (right panel) illustrates the time evolution
of the average cell normal surface velocity (blue curve) and the corresponding percentage
variation, ∆V%, in the cell volume with respect to the initial condition (red curve). The cell
surface velocity is positive and very small in magnitude (less than 0.02 µm s−1) so the vol-
ume of the cell experiences a very little decrease (maximum magnitude equal to 2× 10−11%)
with respect to resting conditions. Figure 10 (middle panel, bottom) illustrates the time
evolution of the total AH volumetric flow rate QAH throughout the CE (units: µL min−1).
The quantity QAH(t) is computed for every t ∈ [t0, tend] using the following relation

QAH(t) = (Ncells,CEvcell,n(t)S(t))60 × 109 units: µL min−1 t ∈ [t0, tend]. (47)

In less than 50 ps, QAH reaches almost 72% of the volumetric flow rate that is physiologically
expected in a normal-tension individual (see condition C4).
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Figure 10. Left panel: blue curve, cH+ ,in(t); red curve, pH,in(t), t ∈ [0, 50 · 10−12] s. Right panel: blue
curve, vcell,n(t); red curve, ∆V%(t), t ∈ [0, 50 · 10−12] s. Middle panel (bottom): total AH volumetric
flow rate QAH(t) for t ∈ [0, 50 · 10−12] s.

3.2.3. Medium-Time-Scale Cell Evolution

We investigated the evolution of the cell in the time interval [t0, tend], where t0 = 0 s
and tend = 5 s.

Figure 11 (top left panel) illustrates the time evolution of the intracellular CO2 (blue
curve) and H2CO3 (red curve) molar densities. In less than 0.5 s, the hydration process
gives rise to a significant production of carbon dioxide and carbonic acid, which is eventu-
ally followed by a stationary condition corresponding to the dynamic equilibrium of the
reaction (A8a). The consequence of the CO2 hydration can also be seen from Figure 11 (top
right panel) which illustrates the time evolution of the intracellular H+ molar density and
the corresponding pH (blue and red curves, respectively). Protonated hydrogen concentra-
tion increases significantly until almost t = 0.125 s because of carbonic acid dissociation
(forward reaction in (A8b)). Then, the association reaction (backward reaction in (A8b))
with bicarbonate gives rise to a decrease in cH+ ,in until a stationary condition is reached. In
such a condition, the value of the intracellular pH (almost 6) indicates that the cytoplasm
solution is acidic. Figure 11 (bottom left panel) illustrates the time evolution of the average
cell normal surface velocity (blue curve) and the corresponding percentage variation ∆V%

of the cell volume with respect to the initial condition (red curve). As in the fast-scale
cell evolution, the cell surface velocity is positive and very small in magnitude (less than
0.02 µm s−1). In this case, however, the much larger time duration of the analysis (5 s
instead of 50 ps) allows the cell to decrease by a larger percentage amount with respect to
resting conditions (less than 0.5% instead of 2 × 10−11%). Figure 11 (bottom right panel)
illustrates the time evolution of the total AH volumetric flow rate QAH throughout the CE
(units: µL min−1). In 5 s, QAH reaches more than 78% of the volumetric flow rate that is
physiologically expected in a normal-tension individual.
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Figure 11. Top left panel: blue curve, cCO2,in(t); red curve, H2CO3,in(t), t ∈ [0, 5] s. Top right panel:
blue curve, H+

in(t); red curve, pHin(t), t ∈ [0, 5] s. Bottom left panel: blue curve, average cell normal
surface velocity, vcell,n(t); red curve, percentage volume variation, ∆V%(t), t ∈ [0, 5] s. Bottom right
panel: total AH volumetric flow rate QAH(t) for t ∈ [0, 5] s.

3.2.4. Long-Time-Scale Cell Evolution

We investigated the evolution of the cell in the time interval [t0, tend], where t0 = 0 s
and tend = 5400 s. The value of tend corresponds to the time that is needed by the eye to
completely replace the AH content of the anterior chamber (see [7,9]).

Figure 12 (top left panel) illustrates a zoomed view of the time evolution of the
membrane potential in the time interval t ∈ [0, 10] s. After an initial ultra-fast transient due
to the mismatch between the intracellularly applied initial conditions and the conditions
in the extracellular bath, the cell reaches a stationary state of −85.9 mV, corresponding to
an after-hyperpolarization of −5.9 mV. Figure 12 (top right panel) illustrates a zoomed
view of the time evolution of the intracellular molar densities of sodium (blue curve),
potassium (red curve), and chlorine (green curve) for t ∈ [0, 120] s. The concentration
of sodium experiences a significant depletion (from 10 to 5.4 mM) because of the NaK
ATPase pump activity. Similarly, the concentration of potassium increases from 140 mM
up to a stationary value of almost 144 mM. The green curve in Figure 12 (top right panel)
indicates that the concentration of intracellular chlorine experiences a depletion from 7 mM
to 5.3 mM. This can be explained by Figure 12 (middle left panel) which illustrates a zoom
of the chlorine molar flux density jCl− ,n(t) (units: mM m s−1) for t ∈ [0, 10] s. The positive
value of jCl− ,n indicates that chlorine is swept out of the cell cytoplasm with a progressively
reducing magnitude over time. Figure 12 (middle right panel) illustrates a zoom of the time
evolution of the average cell normal surface velocity (blue curve) and the corresponding
percentage variation ∆V% of the cell volume with respect to the initial condition (red curve)
for t ∈ [0, 120] s. As in the previous conditions, the cell surface velocity is positive and
very small in magnitude (less than 0.015 µm s−1). The stationary cell volume percentage
decrease with respect to resting conditions is less than 0.57 %. Figure 12 (bottom center
panel) illustrates a zoom of the time evolution of the total AH volumetric flow rate QAH

throughout the CE (units: µL min−1) for t ∈ [0, 300] s. The stationary value of QAH is
2.75017 µL min−1, with a percentage error of −0.0062% with respect to the physiological
value of 2.75 µL min−1.
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Figure 12. Top left panel: a zoom of the membrane potential ψm(t) (units: mV) in the time interval
t ∈ [0, 10] s. Top right panel: a zoom of cNa+ ,in(t) (blue curve), cK+ ,in(t) (red curve), and cCl− ,in(t)
(green curve) (units: mM) in the time interval t ∈ [0, 120] s. Middle left panel: a zoom of the chlorine
molar flux density jecw

Cl−
(t) (units: mM m s−1) in the time interval t ∈ [0, 10] s. Middle right panel:

a zoom of vcell,n(t) (blue curve) and ∆V%(t) (red curve) in the time interval t ∈ [0, 120] s. Bottom
center panel: a zoom of the total AH volumetric flow rate in the time interval t ∈ [0, 300] s.

4. Discussion
The development of a mathematical model and of a CVL for the simulation of the

process of the production, flow, and outflow of AH has been subject of investigation in
recent years (see [15–18]). Our proposed formulation is characterized by the following
features: (F.1) it is based on the use of homogeneous mixtures including neutral and
charged solutes (see [19] (Chapter 13)); (F.2) it is defined at the level of the single cell;
and (F.3) it utilizes a model reduction procedure from three spatial dimensions to zero
spatial dimensions. Feature (F.1) confers a solid theoretical foundation to the proposed
model. Features (F.2) and (F.3) make the model structure simple and the computational
schemes fast and suitable for adoption in a clinical environment. The model is a consistent
generalization of previous approaches [3,4] as it shares with them the same conceptual,
simplifying assumption of working at the level of the single cell. This assumption is applied
here to evaluate the collective behaviour of the cells in the CE of the eye in the process of
the production of AH. The model that we propose in these pages also has limitations: (L.1)
the dependence of all the variables from the spatial coordinate is neglected; (L.2) several
important transmembrane mechanisms regulating solute exchange are not considered
in the simulations; (L.3) the statistical variability of the parameters is not accounted for.
Limitation (L.1) is a consequence of the use of the 3D-to-0D reduction procedure. Limitation
(L.2) is a choice to prevent the proliferation of model parameters, thereby rendering the
analysis of simulation predictions more easily. Limitation (L.3) is a consequence of the
choice of using a mechanistic (continuum-based) approach. We intend to remove all these
limitations in future extensions of the formulation considered in the present article.

In the next sections, we use the CVL developed in the present article to address specific
questions of clinical importance in the study of AH production and its relation to ocular
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diseases. In Section 4.1, we assess the impact of oncotic pressure due to impermeant charge.
In Section 4.2, we assess the impact of Na+/K+ ATPase. In Section 4.3, we assess the impact
of the carbonic anhydrase enzyme. In Section 4.4, we assess the impact of IOP.

4.1. The Impact of Oncotic Pressure Due to Impermeant Charge

In this simulation, we solve System (38) in the time interval [0, 600] s with the same
set of parameters as in Section 3.2, except the reflection coefficient σX which is set equal to
[0:0.2:1] (Matlab vector notation). By doing so, the weight of the contribution of the oncotic
pressure difference (A5h) to the total osmo-oncotic pressure difference (A5k) increases
progressively from 0% (σX = 0) to 100 % (σX = 1), thereby allowing us to investigate the
impact of oncotic pressure difference on the AH simulation.

Figure 13 (left panel) illustrates the time evolution of the total volumetric flow rate
QAH(t) as a function of the time t in the interval t ∈ [0, 600] s. The results indicate that
the smaller σX is, the larger the predicted total volumetric flow rate of AH is. In particular,
the value of QAH predicted by the model which is compatible with the given intracellular
and extracellular fluid pressures (pin = 20 mmHg and pex = 15 mmHg, respectively) is
obtained for σX = 1. To better understand the effect of properly including impermeant
charge in AH modeling, we illustrate in Figure 13 (right panel) the time evolution of the
total osmo-oncotic pressure difference ∆Π(t) in the interval t ∈ [0, 600] s. We see that the
magnitude of ∆Π largely exceeds the contribution from hydrostatic pressure difference
∆p = 5 mmHg for every value of σX ∈ [0:0.2:1]. Moreover, for every σX ∈ [0:0.2:1], the
oncotic pressure difference ∆ΠX is always positive whereas the total osmotic pressure
difference ∆Πosm is always negative, so, as σX increases, the magnitude of the total osmo-
oncotic pressure difference decreases to reach the value of −1500 mmHg.

Figure 13. Left panel: total AH volumetric flow rate QAH for t ∈ [0, 600] s as a function of σX .
The black dashed line indicates the physiological value of QAH, equal to 2.75 µL min−1, when IOP
= 15 mmHg. Right panel: the total osmo-oncotic pressure difference ∆Π(t) for t ∈ [0, 600] s as a
function of σX .

4.2. The Impact of Na+/K+ ATPase

In this simulation, we solve System (38) in the time interval [0, 5400] s with the same
set of parameters as in Section 3.2, except the amplification coefficient MATP in (A12e)
which is set equal to [0:0.5:2] (Matlab vector notation). By doing so, the weight of the
contribution of the sodium–potassium pump to the electrochemical balance of the cell
increases progressively from 0% (MATP = 0) to 100 % (MATP = 2), with respect to the
working conditions of Section 3.2, thereby allowing us to investigate the impact of Na+/K+

ATPase on the AH simulation.
Figure 14 illustrates the time evolution of the total volumetric flow rate QAH(t) as a

function of the time t in the interval t ∈ [0, 600] s. The results indicate that for MATP < 1
(corresponding to values of cATP < cATP,re f ), the predicted total volumetric flow rate of AH
is negative. This means that the pump does not have enough energy to move sodium out
from the cell and potassium into the cell, so the accumulation of sodium in the cytoplasm
attracts chlorine from the extracellular region, eventually leading to the inversion of fluid
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flow. The predicted total volumetric flow rate of AH becomes positive for MATP = 1.
This means that the pump does have enough energy to move sodium out from the cell
and potassium into the cell, preventing chlorine accumulation in the cell cytoplasm. For
increasing values in ATP concentration (MATP > 1), water flux is favored, reaching a
physiological level when MATP = 2.

Figure 14. Total AH volumetric flow rate QAH for t ∈ [0, 5400] s as a function of MATP. The black
dashed line indicates the physiological value of QAH, equal to 2.75 µL min−1, when IOP = 15 mmHg.

4.3. The Impact of Carbonic Anhydrase

In this simulation, we solve System (38) in the time interval [0, 5400] s with the
same set of parameters as in Section 3.2, except the amplification coefficient ACA in
Equations (A9c) and (A9d) which is set equal to [0:1:5] (Matlab vector notation). By doing
so, the weight of the contribution of the CA enzyme to improve the reaction rate of CO2

hydration increases progressively from 0% (ACA = 0) to 100 % (ACA = 5), with respect to
the working conditions of Section 3.2, thereby allowing us to investigate the impact of the
CA enzyme on the AH simulation. The six computed total AH volumetric flow rates over
the considered time interval do not show any visible difference with respect to the change in
ACA. Therefore, to investigate the impact of CA on AH production, we define the reference
AH volumetric flow rate qre f = qre f (t) as the function of time predicted by the model for
ACA = 0. Then, we evaluate the maximum percentage variation between each of the other
five AH volumetric flow rates predicted by the model and qre f . The results show that the
maximum percentage variation ranges between 6.2963 × 10−3% and 6.3129 × 10−3%. At
the same time, the value of the predicted total AH volumetric flow rate for t ∈ [500, 5400] s
varies between 2.7501731 µL min−1 and 2.7501736 µL min−1. Correspondingly, the per-
centage difference between these values and the physiological value of 2.75 µL min−1

(for IOP = 15 mmHg) ranges between 6.2945 · 10−3 % and 6.3127 · 10−3 %. All the above
obtained results indicate that QAH(t) is practically independent of the concentration of the
CA enzyme. Further tests with higher values of the amplification parameter ACA do not
show significant variation of the predicted value of QAH(t); this probably to be ascribed to
the low value of the intracellular carbon dioxide molar density (cf. Figure 11).

4.4. The Impact of IOP

In this simulation, we solve System (38) in the time interval [0, 5400] s with the same
set of parameters as in Section 3.2, except the value of IOP which is taken in the range
[15, 150] mmHg. By doing so, we investigate the response of the model in the case of highly
hypertensive patients. In the remainder of this section, we denote by QAH,b = 2.75 µLmin−1
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the value of the AH volumetric flow rate at the baseline condition IOP = 15 mmHg and by
QAH(IOP) the value of the AH volumetric flow rate predicted by the model corresponding
to a given value of IOP in the range [15, 150] mmHg. We define by

∆Q%(IOP) =
QAH,b − QAH(IOP)

QAH,b
× 100 IOP ∈ [15, 150]mmHg

the percentage difference between the AH volumetric flow rate in baseline conditions and
the AH volumetric flow rate predicted by the model corresponding to a given value of IOP
in the range [15, 150] mmHg.

Figure 15 is the graph of ∆Q%(IOP) for IOP in the interval [15, 150] mmHg. The trend
is linearly increasing with IOP and indicates that the AH volumetric flow rate predicted by
the model decreases with respect to baseline conditions as IOP increases. This agrees with
observations in patients affected by Graves’ disease (also known as Thyroid Eye Disease,
TED). TED is a chronic, autoimmune, inflammatory orbital disease, causing an increase in
the volume and swelling of the soft orbital tissue behind the globe, for which an increase in
IOP, as a consequence of an increase in the episcleral vein pressure, determines a reduction
in the aqueous humor outflow facility (see [40,41]). The results in Figure 15 also agree with
the following expression for fluid velocity:

v f = Lp(pin(t)− pex(t)− ∆Π(t)) t ≥ 0, (48)

where pin(t) = pin = 20 mmHg for t ≥ 0 is the intracellular fluid pressure (corresponding
to the estimated fluid pressure in the CE upon assuming 25 mmHg in the ciliary capillaries),
pex(t) is the considered value of IOP in the interval [15, 150] mmHg for t ≥ 0, and ∆Π(t) is
the total osmo-oncotic difference for t ≥ 0. Since ∆Π(t) turns out to be negative with respect
to t, as IOP increases, we see from (48) that v f diminishes, which explains the fact that
QAH(IOP) also diminishes as IOP increases. For IOP = 30 mmHg, which is a typical value
of intraocular pressure in hypertensive individuals (see [42]), we have ∆Q%(30) = 1.09%,
and for IOP = 50 mmHg, we have ∆Q%(30) = 2.54%.

Figure 15. Plot of ∆Q%(IOP) for IOP in interval [15, 150] mmHg, with t ∈ [0, 5400] s.
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5. Conclusions
In this article, we proposed, analyzed, and numerically investigated a reduced-order

mathematical description of cellular volume homeostasis. The model accounts for intracel-
lular reactions and transmembrane mechanisms for neutral and charged solute exchange.
Hydrostatic and osmo-oncotic pressure differences were used in conjunction with Starling’s
Law to compute the velocity of the fluid which drives the motion and radial deformation
of the cell volume.

The model was implemented within the context of a CVL that was applied to the study
of the process of AH production in the human eye. The scope of the simulations was to test
the potential of the CVL to assess the relative quantitative importance of the biophysical
mechanisms that underlie AH production, from the perspective of their use as supporting
tools to integrate and complement in vivo experiments and artificial intelligence-based
methodologies for the analysis of data with a statistically significant number of patients.

This study identified for the first time three novel sources of influence on AH pro-
duction that contribute understanding to previously established models. The first source
of influence is that impermeant charged proteins and Na+/K+ ATPase are important
on the level of AH production. The second source of influence is that AH production is
independent of CA concentration, at least for low values of CO2 concentration. The third
source of influence is that AH production decreases with an increase in IOP.
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Appendix A. Normal Fluid Velocity and Solute Molar Flux Densities

In this section, we provide the expressions of the normal fluid velocity on the cell
surface and solute molar flux densities in (36).

Appendix A.1. Normal Fluid Velocity Inside the Pore Channel of the AQP

Let us proceed by proving Equation (11a). The expression of the fluid stress tensor in
cylindrical coordinates is

T =


−p(r, s, θ, t) 0 µ f

∂Vs(r,t)
∂r

0 −p(r, s, θ, t) 0

µ f
∂Vs(r,t)

∂r 0 −p(r, s, θ, t)

, (A1a)

so its divergence is the following vector:

∇ ·T =


1
r

∂
∂r (−rp(r, s, θ, t))

1
r

∂
∂θ (−p(r, s, θ, t))

1
r

∂
∂r

(
rµ f

∂Vs(r,t)
∂r

)
− ∂p(r,s,θ,t)

∂s

. (A1b)

The linear momentum Equation (5b) becomes

1
r

∂

∂r
(−rp(r, s, θ, t)) = 0, (A1c)

1
r

∂

∂θ
(−p(r, s, θ, t)) = 0, (A1d)

1
r

∂

∂r

(
rµ f

∂Vs(r, t)
∂r

)
− ∂p(r, s, θ, t)

∂s
+ bp,s(s, t) = 0. (A1e)

Equations (A1c) and (A1d) imply that p does not depend on r and θ, i.e., p = p(s, t).
Equation (A1e) becomes

1
r

µ f vp,n(t)
∂

∂r

(
r

dη(r)
dr

)
− ∂p(s, t)

∂s
+ bp,s(s, t) = 0. (A1f)

Replacing the expression of η in (A1f) yields

1
r

µ f vp,n(t)
∂

∂r

(
−4r2

r2
p

)
− ∂p(s, t)

∂s
+ bp,s(s, t) = 0,

from which we obtain

−
8µ f

r2
p

vp,n(t)−
∂p(s, t)

∂s
+ bp,s(s, t) = 0.

Rearranging the above equation, we obtain the following expression for the normal fluid
velocity in the AQP:

vp,n(t) =
r2

p

8µ f

[
−∂p(s, t)

∂s
+ bp,s(s, t)

]
,

which is Equation (11a).
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Appendix A.2. Normal Fluid Velocity on the Cell Surface

To determine the normal fluid velocity on the cell surface, we consider the following
two cases:

(B.C.1) The hydraulic pressure difference ∆p(t) is given (units: Pa).

(B.C.2) The total water volumetric flow rate across the cell surface Qw,cell(t) is given (units:
m3 s−1).

In case (B.C.2), we recall the definition of the water volumetric flow rate across the cell
surface:

Qw,cell(t) =
∫
St

v f l(x, t) · n d(St) t ≥ 0. (A2)

Since Qw,cell(t) is given and equal to Qw,cell(t), we obtain

vcell,n(t) =
Qw,cell(t)
S(t) =

Qw,cell(t)
γ(V(t))2/3 t ≥ 0, (A3)

where we use the fact that S(t) = γ(V(t))2/3.
In case (B.C.1), we use (11d) to obtain

vcell,n(t) = ΦAQPvp,n(t) = ΦAQPLp[∆p(t)− ∆Π(t)] t ≥ 0. (A4)

To determine vcell,n, we need to provide a mathematical model for the total osmo-oncotic
pressure difference ∆Π. Let us define the electrochemical potential of the ion α:

φec
α = ψ +

Vth
zα

ln

(
cα

cre f

)
α ∈ Sα, (A5a)

where cre f is a reference molar density. Let us introduce the pressure differences:

∆Πα(t) :=
∫ tm

0
−σαFzαcα(s, t)

∂φec
α (s, t)
∂s

ds α ∈ Sα, t ≥ 0, (A5b)

∆Πβ(t) :=
∫ tm

0
−σβRT

∂cβ(s, t)
∂s

ds β ∈ Sβ t ≥ 0, (A5c)

∆ΠX(t) :=
∫ tm

0
−σXRT

∂cX(s, t)
∂s

ds t ≥ 0. (A5d)

The quantities ∆Πα and ∆Πβ are the osmotic pressure differences associated with the
charged solute α ∈ Sα and neutral solute β ∈ Sβ, respectively, whereas ∆ΠX is the oncotic
pressure difference associated with the impermeant charge cX. The quantity R is the gas
constant (units: J mol−1 K−1), and σα, σβ, and σX are the membrane reflection coefficients
associated with the ion α, solute β, and impermeant fixed charge cX , respectively. We notice
that each coefficient is in the range [0, 1], with the value 0 corresponding to a completely
permeable membrane and the value 1 corresponding to a completely impermeable mem-
brane. To evaluate the integral on the right-hand side of (A5b), we replace cα(s, t) with its
spatial average:

⟨cα⟩(t) :=

∫ tm
0 cα(s, t) ds

tm
t ≥ 0. (A5e)
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Postponing to Section A.4 the computation of (A5e) and replacing it in (A5b), we obtain

∆Πα(t) = σαFzα⟨cα⟩(t)∆φec
α (t) α ∈ Sα t ≥ 0, (A5f)

∆Πβ(t) = σβRT∆cβ(t) β ∈ Sβ t ≥ 0, (A5g)

∆ΠX(t) = σXRT∆cX(t) t ≥ 0. (A5h)

We define the total osmotic pressure difference as

∆Πosm(t) = ∑
α∈Sα

∆Πα(t) + ∑
β∈Sβ

∆Πβ(t) t ≥ 0, (A5i)

and the oncotic pressure difference as

∆Πonc(t) = ∆ΠX(t) t ≥ 0. (A5j)

Then, we define the total osmo-oncotic pressure difference as

∆Π(t) = ∆Πosm(t) + ∆Πonc(t)

= ∑
α∈Sα

σα

[
Fzα⟨cα⟩(t)ψm(t) + RT⟨cα⟩(t) ln

(
cα,in(t)
cα,ex(t)

)]
+ RT ∑

β∈Sβ

σβ∆cβ(t) + σXRT∆cX(t) t ≥ 0. (A5k)

Relation (A5k) is the generalization of Eq. (31) in [4].

Appendix A.3. Neutral Solutes

Let us consider a carrier protein whose geometrical structure is the same as that of the
pore ωp, illustrated in Figure 5, in the case of an AQP. To determine the normal molar flux
density of the solute β inside ωp, we make the following assumptions.

Assumption 15. We assume the following:

1. The molar flux density of the neutral solute β only has the axial component jβ,s;
2. For any t ≥ 0, the quantity jβ,s is spatially constant inside ωp, i.e., jβ,s = jβ,n(t), with t ≥ 0

and s ∈ [0, tm].

Using Assumption 15, Assumption 4-A3, and the fact that vp,n is spatially constant
in the constitutive Equation (6b) gives the following second-order equation for the solute
molar density inside the carrier protein channel:

vp,n(t)
∂cβ(s, t)

∂s
− Dβ

∂2cβ(s, t)
∂s2 = 0 t ≥ 0, s ∈ [0, tm], (A6a)

whose solution is

cβ(s, t) = A(t) + B(t) exp

(
vp,n(t)

Dβ
s

)
t ≥ 0, s ∈ [0, tm], (A6b)

with A = A(t) and B = B(t) being time-dependent arbitrary functions. Inserting (A6b)
into the constitutive Equation (6b) yields

jβ,n(t) = vp,n(t)A(t) t ≥ 0. (A6c)
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To determine A(t), we need to enforce the following boundary conditions:

cβ(0, t) = cβ,in(t), cβ(tm, t) = cβ,ex(t) t ≥ 0, (A6d)

where cβ,in(t) and cβ,ex(t) are the intra- and extracellular values of the neutral solute molar
density for any t ≥ 0. Using (A6d) in (A6b), we obtain the following expression of the
normal molar flux density of β inside the carrier protein channel:

jβ,n(t) = −Pβ

[
cβ,ex(t)Be(Xβ(t))− cβ,in(t)Be(−Xβ(t))

]
t ≥ 0, (A6e)

where Pβ := Dβ/tm is the membrane permeability of the neutral solute β (units: m s−1),

Be(W) :=
W

eW − 1
W ∈ R

is the inverse of the Bernoulli function, and

Xβ(t) :=
vp,n(t)

Pβ
t ≥ 0. (A6f)

Appendix A.4. Charged Solutes

We can proceed in the same way as in Section A.3 to obtain the following expression
for the normal molar flux density of the ion α ∈ Sα inside an ionic channel.

jedw
α,n (t) = −Pα

[
cα,ex(t)Be(Xα(t))− cα,in(t)Be(−Xα(t))

]
t ≥ 0, (A7a)

where Pα := Dα/tm is the membrane permeability of the charged solute α and

Xα(t) :=
vp,n(t)

Pα
+ zα

ψm(t)
Vth

t ≥ 0. (A7b)

Using the definition (8e) of the generalized drift velocity of the ion α in (A7b), we find the
spatial distribution of cα inside the ionic channel:

cα(s, t) = Ã(t) + B̃(t) exp
(

vα,n(t)
Dα

s
)

t ≥ 0, s ∈ [0, tm], (A7c)

where Ã = Ã(t) and B̃ = B̃(t) are time-dependent arbitrary functions, and vα,n(t) is the
average normal component of vα = vα(x, t) on the cell surface, with x ∈ ∂Ωt and t ≥ 0.
Replacing (A7c) in (A5e), we obtain

⟨cα⟩(t) = cα,in(t)ξin(t) + cα,ex(t)ξex(t) t ≥ 0, (A7d)

where

ξin(t) =
Be(−Xα(t))− 1

Xα(t)
t ≥ 0, (A7e)

ξex(t) =
1 − Be(Xα(t))

Xα(t)
t ≥ 0. (A7f)

We illustrate in Figure A1 a graphical representation of ⟨cα⟩(τ) (red solid line) com-
pared to the arithmetic value carith

α (τ) = (cα,in(τ) + cα,ex(τ))/2 for τ = [0 : 20] (Matlab
vector notation); Xα(τ) = τ − 10, cα,in(τ) = 1 mM; and cα,ex(τ) = 5 mM. We see that ⟨cα⟩
and carith

α are comparably close only if |Xα| ≃ 0, which corresponds to a diffusive regime of
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transport inside the channel. Conversely, their distance increases for larger values of |Xα|,
which corresponds to an advection-dominated regime of transport inside the channel. On
the basis of these considerations, the adoption of (A7d) instead of the customary choice
carith

α (as performed, for example, in [4]) is expected to warrant an accurate and robust
model simulation.

Figure A1. Red solid line: a plot of ⟨cα⟩ for τ = [0 : 20] and Xα(τ) = τ − 10, with τ being a
dimensionless time. The endpoint values of cα are cα,in(τ) = 1 mM and cα,ex(t) = 5 mM for every
τ ∈ [0 : 20]. Black dashed line: the arithmetic average of cα.

Appendix B. Mathematical Modeling of Cellular Metabolism

The following conceptual scheme of cellular metabolism is considered in this article:

1. Glucose is absorbed by mitochondria to produce ATP and CO2.
2. ATP provides the energy needed by the Na+/K+ pump to export three sodium ions

and import two potassium ions.
3. The carbonic anhydrase enzyme (CA) catalizes the hydrolysis of CO2, which is a

waste product of mitochondrial metabolism.
4. Specialized exchangers supervise the transmembrane transport of the proton (H+)

and bicarbonate (HCO−
3 ), which are the products of CO2 hydrolysis.

Figure A2 illustrates the intracellular reactions and transmembrane transport mecha-
nisms that are involved in cellular metabolism.

In the following, we provide the expressions of:

1. The production and consumption rates for the neutral and charged solutes involved
in the CA enzyme-mediated carbon dioxide conversion into carbonic acid and its
subsequent dissociation into protonated hydrogen and bicarbonate;

2. The production and consumption rates in cellular volume regulation;
3. The molar flux densities representing the mathematical model of transmembrane

sodium and potassium solute exchange throughout Na+/K+ ATPase.
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Figure A2. Schematic representation of intracellular reactions and transmembrane transport mech-
anisms. MIT: mitochondrium. ATP: adenosinetriphosphate. CA: carbonic anhydrase. Exchangers
perform multiple ion transport across membrane.

Appendix B.1. Mathematical Model of CA-Mediated CO2 Hydrolysis

In this section, we illustrate the mathematical modeling of the CA enzyme-mediated
CO2 hydrolysis. This process can be conveniently represented as the following two-step
chemical reaction (see [43,44]):

STEP 1: CO2 + H2O H2CO3. (A8a)

STEP 2: H2CO3 H+ + HCO−
3 . (A8b)

STEP 1 is the conversion of intracellular carbon dioxide into carbonic acid under the me-
diation of the CA enzyme, which is a very fast catalyzer of the CO2 hydration process
(see [45,46]). STEP 1 is characterized by the quantities khydr and kdehydr (units: s−1) depend-
ing on the molar density of the carbonic anhydrase enzyme (CA) and representing the rate
constants of the forward and backward reactions in STEP 1, respectively.

Assumption 16. Let cCO2(aq),in
denote the molar density of intracellular CO2 that is hydrated by

water molecules. We assume that each CO2 molecule that is produced by mitochondria’s respiration
is hydrated by a corresponding water molecule. This allows us to denote by cCO2,in the molar density
of the intracellular cCO2(aq)

.

Using the Law of Conservation of Mass and Assumption 16, the net production rates
in the mass balance equation for β = CO2 and β = H2CO3 have the following expressions:

RCO2(t) = kdehydrcH2CO3,in(t)− khydrcCO2,in(t) t ≥ 0, (A9a)

RH2CO3(t) = −RCO2(t) t ≥ 0. (A9b)

The hydration and dehydration rate constants experimentally depend on the amount of CA
that is present in the compartment where the hydration reaction takes place (see [47]). Fol-
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lowing [43,44], in this article, we use the following model for the hydration and dehydration
rate constants:

khydr = ACAkhydr,re f , (A9c)

kdehydr = ACAkdehydr,re f , (A9d)

where ACA is a nonnegative given constant, whereas khydr,re f = 0.037 s−1 and kdehydr,re f =

13.7 s−1 are experimental reference values measured at T = 25 ◦C, reported in [48]. Taking
ACA > 1 is a way to represent the catalyzing effect of CA compared to the uncatalyzed
reaction corresponding to ACA = 1. In the numerical simulations illustrated in Section 3.2,
we set ACA = 5.

STEP 2 is the dissociation of intracellular carbonic acid into bicarbonate and protonated
hydrogen and is characterized by the quantities kdiss (units: mM−1 s−1) and kassoc (units:
mM−2 s−1), the rate constants of the forward and backward reactions in STEP 2, respectively.
The dissociation reaction of H2CO3 is extremely rapid, so the values of the forward and
backward rate constants in STEP 2 are very large. In the numerical simulations illustrated in
Section 3.2, we use the data of [43,44] and set kdiss = 1016 s−1 and kassoc = kdiss/Keq, where
Keq = 0.2804 mM is the equilibrium constant of STEP 2. Using the Law of Conservation of
Mass, we obtain the following expressions for the net production rates in the mass balance
equations for α = H+ and α = HCO−

3 :

Rα(t) = kdisscH2CO3(t)− kassoccH+(t)cHCO−
3
(t) α =

{
H+, HCO−

3
}

, t ≥ 0. (A10)

Assumption 17. We assume that the ions α ∈
{

Na+, K+, Cl−
}

are non-reacting (see [49]
(Section 8.3.3)). Therefore, we have Rα(t) = 0, with t ≥ 0.

Appendix B.2. Net Production Rate in Cell Volume Regulation

The mechanisms which govern intracellular water production/consumption are the
object of considerable debate and investigation because of their importance in cell life and
survival. One example is provided by the process of normotonic cell shrinkage which is
the major hallmark of cellular apoptosis [50]. Another example is provided by the TCA
cycle (Krebs cycle) in cellular respiration, whose products of metabolism of fuels are ATP,
CO2, and so-called “metabolic” water [51].

The difficulty of accessing and sampling the contents of intact cells makes the study of
the intracellular fluid environment, and, more generally, of body fluid content a challenging
problem. Specific approaches to accurately detect metabolic water content as a result of
intracellular metabolic activity have been proposed in [52,53].

In this article, we focus on the role of the net production and consumption of intracel-
lular water, Rw, in driving the motion of the cell surface. Our proposed model is

Rw(t) = kw,p − kw,c
V(t)
V0

t ≥ 0, (A11)

where kw,p and kw,c are given constants (units: s−1) and V0 is the value of cell volume in
resting conditions. In the simulations illustrated in Section 3.2, we set kw,p = kw,c = 1 s−1.
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Appendix B.3. Na+/K+ ATPase

The mathematical model of the sodium–potassium pump (Na+/K+ ATPase) adopted
in this article follows the idea proposed in [3]. The molar flux densities for sodium and
potassium are

ja
Na,n(t) = jpump(t) t ≥ 0, (A12a)

ja
K,n(t) = −2

3
jpump(t) t ≥ 0, (A12b)

where

jpump(t) = jMAX
pump

(
cNain(t)

cNain(t) + cNa, 1/2

)3( cKex (t)
cKex (t) + cK, 1/2

)2

t ≥ 0, (A12c)

jMAX
pump := cATPvpump. (A12d)

The quantity jMAX
pump is the maximum pump molar flux density (units: mM m s−1), cATP is

the intracellular molar density of ATP (units: mM), and vpump is the ion transfer velocity of
the pump (units: m s−1). The quantities cATP and vpump are defined as

cATP = MATPcATP,re f , (A12e)

vpump = rturntM, (A12f)

where cATP,re f is the reference value of the ATP molar density (units: mM), rturn is pump
turnover rate (units: s−1), and MATP is a nonnegative given constant. The quantities cNa, 1/2

and cK, 1/2 are the Michaelis constants of the pump model (units: mM). In the simulations
illustrated in Section 3.2, we set cATP,re f = 10−2 mM, MATP = 2, rturn = 107 s−1, cNa, 1/2 =

1.3 mM and cK, 1/2 = 0.14 mM.
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