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Abstract: A kind of finite difference Hermite WENO (HWENO) method is presented in
this paper to deal with convection-dominated convection-diffusion equations in uniform
grids. The benefit of the HWENO method is its compactness, allowing great accuracy to be
attained in the solution’s smooth regions and maintaining the essential nonoscillation in the
solution’s discontinuities. We discretize the convection term using the HWENO method
and the diffusion term using the Hermite central interpolation schemes. However, it is
difficult to deal with mixed derivative terms when solving two-dimensional problems using
the HWENO method mentioned. To address this problem, we also employ the Hermite
interpolation approach, which can keep the compactness. Lastly, we apply this method
to two-dimensional Navier-Stokes problems that are incompressible. The efficiency and
stability of the presented method are illustrated through numerous numerical experiments.

Keywords: high-order; accuracy; convection-diffusion equations; HWENO method; finite
difference method

1. Introduction
Convection-dominated diffusion problems of the form

ut +∇ · F(u) = ∇ · (ϵ∇u) (1)

are addressed in this paper using a type of HWENO method within the framework of finite
difference schemes, where ϵ is the diffusion coefficient. We take into account one- and two-
dimensional cases here. Convection-diffusion problems are significant in many fields and
have a wide range of applications in real-world issues [1], including reservoir simulation,
the dispersion and diffusion of water in rivers and the ocean, environmental research,
and even energy development. And, these realistic models can construct corresponding
convection-diffusion equations. But, unfortunately, the mathematical models for most of
these problems are complex nonlinear partial differential equations, and finding analytical
solutions to these equations is difficult. Therefore, it is crucial to conduct research on partial
differential equations’ numerical solutions [2].

Such physical problems have been solved by researchers in recent decades using a
variety of numerical approaches [3–8], and a rapid development has taken place with
a variety of systematic numerical methods. A key problem of the numerical method
is preventing nonphysical oscillations when the convective term is dominant. Due to
the discontinuous characteristics of equations and the complexity of their corresponding
mathematical models, it is urgent that we establish simple and effective numerical schemes.
In many references, the numerical solutions of these equations are solved using the finite
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difference method because of its versatility, simplicity, and diversity. In the traditional
finite difference method, low-order schemes cannot approach the exact solution well, while
high-order schemes often imply the use of more stencil points, which leads to lots of
numerical difficulties in the calculations [9]. Therefore, in this paper, we construct a high-
order and compact finite difference numerical method to solve the convection-dominated
convection-diffusion equation. Since convection-dominated convection-diffusion equations
have hyperbolic properties, we can solve them using various numerical methods for
solving hyperbolic conservation laws without making any major adjustments. Among all
of these numerical methods, we would like to mention the essentially nonoscillating (ENO),
weighted ENO (WENO), and Hermite WENO (HWENO) schemes.

The ENO scheme was first presented within a one-dimensional finite volume frame-
work by Harten et al. [10] in 1987 based on a total variation diminishing (TVD) scheme [11].
Subsequently, it was expanded to multidimensional cases [12]. Shu et al.’s [13] finite differ-
ence ENO numerical techniques for one-dimensional problem resolution were developed
in 1988, and they were expanded to the multidimensional case in [14]. The fundamental
idea of the ENO method is to attain high-order accuracy by using the smoothest candidate
stencil, which results in the waste of stencils but also allows the schemes to maintain
nonoscillating qualities at discontinuities. The first WENO method was introduced by
Liu et al. [15] in 1994 within the one-dimensional finite volume framework, utilizing all the
information of the stencils to circumvent the deficiency of the ENO schemes. A general
structure for the reconstruction process was provided by Shu and Jiang [16] in 1996 when
they developed the WENO method for a multidimensional finite difference framework.
The core principle of the WENO method is to use a combination of all candidate stencils and
assign a nonlinear weight to each one in accordance with how smooth the stencils are. Since
then, there has been rapid development in WENO schemes in higher-dimensional cases,
with more types of grids, higher-order accuracy, and more solution fields (see, e.g., [17–20]).
WENO schemes exhibit superior resilience, flux smoothness, and steady-state convergence
compared to ENO schemes.

However, WENO schemes with higher accuracy require wider stencils for reconstruc-
tion. In order to solve this problem, Qiu and Shu [21,22] established the HWENO method,
a novel method within the finite-volume framework constructed from the principles of
the WENO method and Hermite interpolation, with the goal of creating a more compact
form. The HWENO method in the finite difference framework was suggested in 2015
by Liu and Qiu [23]. In one-dimensional problems, the methods can attain fifth-order
accuracy, but they can only attain fourth-order accuracy in two-dimensional problems due
to the introduction of derivative equations. Later, Zhao et al. [24] modified the method to
achieve fifth-order accuracy even in the two-dimensional case. However, the cost is that
the derivative equation does not use the HWENO scheme. The crucial distinction with
regard to WENO and HWENO methods is that the former just requires the original function
value, and the latter also needs its first derivative value in addition to the original function
value in order to guarantee that the reconstruction process can achieve higher accuracy.
Because of this, HWENO schemes can achieve the same accuracy level with smaller stencils,
comparable to those of WENO schemes. This means that the three-point HWENO method
can attain the accuracy of the five-point WENO method because it has more conditions
that can be used. As the derivative equation does not use the HWENO scheme, sometimes
the robustness and stability of the HWENO method are not as good as those of the WENO
method because the derivatives may become large near discontinuities. In order to avoid
this problem and enhance the robustness of the HWENO method, Zhao et al. [25] proposed
an alternative method to effectively overcome oscillations. Later, a modified HWENO
scheme with artificial linear weights [26], the positivity-preserving HWENO scheme [27],
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and the multiresolution HWENO scheme [28] were also developed to solve hyperbolic
conservation laws. In addition, fifth- or sixth-order accuracy is obtained through more com-
pact stencils in the HWENO schemes [26,29,30], providing higher resolution and smaller
numerical errors. For more HWENO schemes for solving hyperbolic conservation laws,
see [28,31].

Due to the drawbacks of true two-dimensional reconstruction on a structured grid [32]
and the deficiency of robustness and nonstability resulting from the lack of the HWENO
scheme for the derivative equation, this paper adopts a dimension-by-dimension idea to
generalize the HWENO method for solving convective dominance problems. For imple-
menting the solution to the convection-dominated problems within the finite difference
framework, we present an HWENO method, which uses the Hermite interpolation method
to approximate the diffusion terms and the mixed derivative terms. Because the discretiza-
tion of mixed derivative terms only has fourth-order accuracy under specific conditions,
the proposed method can achieve fifth-order accuracy in the one-dimensional situation,
but it only has fourth-order accuracy in the two-dimensional case.

This paper is structured as follows: The finite-difference HWENO reconstruction pro-
cess of convection-diffusion problems in the one-dimensional case is covered in Section 2.
A workable solution for mixed derivatives is addressed in Section 3, where we generalize
the schemes to two-dimensional problems. In Section 4, numerical examples, including
Navier-Stokes equations, are tested, and the results are shown to confirm the viability of
the method. Conclusions are discussed in Section 5.

2. Construction of One-Dimensional HWENO Method
The implementation process of the fifth-order finite difference HWENO method for

solving convection-diffusion equations is covered in this section. First, we examine the
one-dimensional scalar situation  ∂u

∂t +
∂ f (u)

∂x = ε ∂2u
∂x2 ,

u(x, 0) = u0(x),
(2)

where t is the time variable and x is the space variable in the one-dimensional case. Fur-
thermore, the conserved variable u is related to both time and space, while f (u) represents
the flux function, and ε is the diffusion coefficient. In the finite-difference framework,
uniform grid points {xi} divide the spatial domain, with xi denoting the center of cell Ii,
where xi = xi− 1

2
+ ∆x

2 and Ii = [xi − ∆x
2 , xi +

∆x
2 ] (i = 1, . . . , N). The notation ∆x is the cell

size, which equals xi+1 − xi. To create the HWENO method, we calculate the derivative
equation of (2) relating to the space variable x, and v(x) is the presentation for the spatial
first derivative of u(x, t). Then, the following equations are obtained by ∂u

∂t +
∂ f (u)

∂x = ε ∂2u
∂x2 , u(x, 0) = u0(x),

∂v
∂t +

∂h(u,v)
∂x = ε ∂2v

∂x2 , v(x, 0) = v0(x),
(3)

where v0(x) = (ux)0 and h(u, v) = f ′(u)v. The semi-discrete form of (3) is
∂ui
∂t = − 1

∆x ( f̂i+ 1
2
− f̂i− 1

2
) + ε ∂2u

∂x2

∣∣
xi

,
∂vi
∂t = − 1

∆x (ĥi+ 1
2
− ĥi− 1

2
) + ε ∂2v

∂x2

∣∣
xi

,
(4)

where ui = u(xi, t), vi = v(xi, t). f̂i+ 1
2

and ĥi+ 1
2

are the numerical fluxes of the original

equation and the derivative equation, respectively. Here, the numerical fluxes f̂i+ 1
2

and ĥi+ 1
2

are monotone numerical fluxes that are Lipschitz continuous and satisfy the consistency
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condition. We utilize fifth-order approximations for these numerical fluxes, specifically
f̂i+ 1

2
= ϕ(xi+ 1

2
) and ĥi+ 1

2
= ψ(xi+ 1

2
). The definitions are detailed in references [16,23,33],

namely,

f (u) =
1

∆x

∫ x+ ∆x
2

x− ∆x
2

φ(x)dx, h(u, v) =
1

∆x

∫ x+ ∆x
2

x− ∆x
2

ψ(x)dx. (5)

To maintain the stability of the finite difference HWENO method, the flux function in
both the derivative equation and the original equation must be expressed as the sum of its

positive and negative parts. These two parts satisfy d f+(u)
du ≥ 0, d f−(u)

du ≤ 0 and ∂h+(u,v)
∂v ≥ 0,

∂h−(u,v)
∂v ≤ 0, respectively. The fluxes f±(u) and h±(u, v) are associated with the numerical

fluxes f̂±
i+ 1

2
and ĥ±

i+ 1
2
, respectively. As a result, two components can be derived from

the numerical fluxes f̂i+ 1
2
= f̂+

+i i+ 1
2
+ f̂−

i+ 1
2

and ĥi+ 1
2
= ĥ+

+i i+ 1
2
+ ĥ−

i+ 1
2
. This clarifies the

relationship between the fluxes and the numerical components derived from them.
In this paper, we present a construction algorithm for the three-point HWENO method,

with the possibility of obtaining higher-order HWENO reconstructions using a similar
approach. We then introduce an algorithm to construct the numerical fluxes f̂−

i+ 1
2

and ĥ−
i+ 1

2
on the left-biased stencil. An analogous procedure is employed to derive the constructs
f̂+
i+ 1

2
and ĥ+

i+ 1
2

on the right-biased stencil. Further details can be found in the following

two sections.
Step I. First, we pay attention to the reconstruction of f̂−

i+ 1
2
. The steps of our algorithm

are as follows.
1.1 Here, we utilize the following Lax-Friedrichs flux splitting to compute the point

values { f±(ui), h±(ui, vi)} at all points based on the given nodal values {ui, vi}. The
equations for these calculations are defined as follows:

f±(ui) =
1
2
( f (ui)± αui),

h±(ui, vi) =
1
2
(h(ui, vi)± αvi),

(6)

where α = maxu| f ′(u)|. We abbreviate f±(ui) and h±(ui, vi) to f±i and h±i , respectively, to
simplify notation.

1.2 Given three small stencils S0 = {xi−1, xi}, S1 = {xi, xi+1}, S2 = {xi−1, xi, xi+1} and
a large stencil S = {S0, S1, S2}, respectively, we first generate quadratic polynomials pj(x)
on Sj using Hermite interpolation. They fulfill the requirements listed below.

1
∆x

∫
Ik

p0(x)dx = f+k , k = i − 1, i,

1
∆x

∫
Ik

p′0(x)dx = h+k , k = i − 1,

1
∆x

∫
Ik

p1(x)dx = f+k , k = i, i + 1,

1
∆x

∫
Ik

p′1(x)dx = h+k , k = i + 1,

1
∆x

∫
Ik

p2(x)dx = f+k , k = i − 1, i, i + 1.

Similarly, the same method is applied to the large stencil S to create a quartic polyno-
mial q(x) that satisfies
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1
∆x

∫
Ik

q(x)dx = f+k , k = i − 1, i, i + 1,

1
∆x

∫
Ik

q′(x)dx = h+k , k = i − 1, i + 1.

In actuality, as we are reconstructing the numerical flux at the half point xi+ 1
2
, we only

need to calculate the function values of the polynomials at xi+ 1
2
. This eliminates the need to

derive the complete expressions for these polynomials. Their final formulas are as follows:

p0(xi+ 1
2
) =

1
6
(−7 f+i−1 + 13 f+i − 4∆xh+i−1),

p1(xi+ 1
2
) =

1
6
( f+i + 5 f+i+1 − 2∆xh+i+1),

p2(xi+ 1
2
) =

1
6
(− f+i−1 + 5 f+i + 2 f+i+1),

q(xi+ 1
2
) =

1
120

(−23 f+i−1 + 76 f+i + 67 f+i+1 − 9∆xh+i−1 − 21∆xh+i+1).

(7)

1.3 We represent q(xi+ 1
2
) as a convex combination of p0(xi+ 1

2
), p1(xi+ 1

2
), and p2(xi+ 1

2
).

These combination coefficients, denoted as γ0, γ1, and γ2, are also known as linear weights,
and they must satisfy the following equation:

q(xi+ 1
2
) =

2

∑
j=0

γj pj(xi+ 1
2
),

with ∑2
j=0 γj = 1. This results in

γ0 =
9

80
, γ1 =

21
40

, γ2 =
29
80

. (8)

1.4 Next, the smoothness indicators β j are determined, which are essential for non-
linear weights. For the target cell Ii, these indicators measure the smoothness of the
corresponding polynomials pj(x). The smoother the polynomial associated with a particu-
lar cell, the smaller the smoothness indicator for that cell. Here, we employ the smoothness
indicator defined in reference [16,19]:

β j =
r

∑
l=1

∫
Ii

∆x2l−1

(
∂l

∂xl pj(x)

)2

dx. (9)

The summation upper limit r represents the degree of polynomial pj(x). Here, r = 2,
and β j has the following form:

β0 =(−2 f+i−1 + 2 f+i − ∆xh+i−1)
2 +

13
3
(− f+i−1 + f+i − ∆xh+i−1)

2,

β1 =(−2 f+i + 2 f+i+1 − ∆xh+i+1)
2 +

13
3
(− f+i + f+i+1 − ∆xh+i+1)

2,

β2 =
1
4
(− f+i−1 + f+i+1)

2 +
13
12

(− f+i−1 + 2 f+i − f+i+1)
2.

(10)

1.5 Using the following formula, we obtain the nonlinear weights ωj on the corre-
sponding stencils from γj in (8) and β j in (10).

ωj =
ω j

∑k ωk
, with ωk =

γk
(βk + ε)2 , j, k = 0, 1, 2, (11)
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where ε is taken as 10−6 in our numerical experiments. The ε is a tiny positive value that
keeps the denominator from going to zero. One can compute the HWENO reconstruction
expression of f̂−

i+ 1
2

by

f̂−
i+ 1

2
=

2

∑
j=0

ωj pj(xi+ 1
2
). (12)

1.6 Finally, we can derive our numerical flux as follows:

f̂i+ 1
2
= f̂+

i+ 1
2
+ f̂−

i+ 1
2
. (13)

Step II. We consider reconstructing ĥ−
i+ 1

2
using HWENO from the function values

{ f±(ui), h±(ui, vi)}.
2.1 As in (6), we compute { f±(ui), h±(ui, vi)}.
2.2 Given three small stencils S0, S1, S2, and one large stencil S, we proceed as in step

1.2. Next, using Hermite interpolation, we construct three cubic polynomials pj(x) on the
small stencils Sj. These polynomials will satisfy the requirements outlined below:

1
∆x

∫
Ik

p0(x)dx = f+k , k = i − 1, i,

1
∆x

∫
Ik

p′0(x)dx = h+k , k = i − 1, i,

1
∆x

∫
Ik

p1(x)dx = f+k , k = i, i + 1,

1
∆x

∫
Ik

p′1(x)dx = h+k , k = i, i + 1,

1
∆x

∫
Ik

p2(x)dx = f+k , k = i − 1, i, i + 1,

1
∆x

∫
Ik

p′2(x)dx = h+k , k = i.

Similarly, Hermite interpolation is utilized to construct a quintic polynomial q(x) on
the set S, which satisfies the condition

1
∆x

∫
Ik

q(x)dx = f+k , k = i − 1, i, i + 1,

1
∆x

∫
Ik

q′(x)dx = h+k , k = i − 1, i, i + 1.

Next, we calculate the approximate value of the first derivative of the stated polyno-
mials at the half point xi+ 1

2
, as we are reconstructing the numerical flux of the derivative

equation. The expression is shown below.

p′0(xi+ 1
2
) =

1
2∆x

(8 f+i−1 − 8 f+i + 6∆xh+i−1 + 14∆xh+i ),

p′1(xi+ 1
2
) =

1
2∆x

(−4 f+i + 4 f+i+1 − ∆xh+i − ∆xh+i+1),

p′2(xi+ 1
2
) =

1
4∆x

( f+i−1 − 4 f+i + 3 f+i+1 + 2∆xh+i ),

q′(xi+ 1
2
) =

1
12∆x

(3 f+i−1 − 24 f+i + 21 f+i+1 + ∆xh+i−1 − 2∆xh+i − 5∆xh+i+1).

(14)

2.3 We compute linear weights γ′
0, γ′

1 and γ′
2 that satisfy

q′(xi+ 1
2
) =

2

∑
j=0

γ′
j p

′
j(xi+ 1

2
),
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with ∑2
j=0 γ′

j = 1. This leads to a result:

γ′
0 =

1
18

, γ′
1 =

5
6

, γ′
2 =

1
9

. (15)

2.4 To reconstruct derivatives, we define the smoothness indicator as

β j =
3

∑
l=2

∫
Ii

∆x2l−1

(
∂l

∂xl pj(x)

)2

dx. (16)

Unlike (9), the summation in (16) starts with the second derivative since we are now
reconstructing the first derivative value. The expressions are

β0 =4(3 f+i−1 − 3 f+i + ∆xh+i−1 + 2∆xh+i )
2

+ 39(2 f+i−1 − 2 f+i + ∆xh+i−1 + ∆xh+i )
2,

β1 =4(−3 f+i + 3 f+i+1 − ∆xh+i+1 − 2∆xh+vi)
2

+ 39(2 f+i − 2 f+i+1 + ∆xh+i+1 + ∆xh+i )
2,

β2 =( f+i−1 − 2 f+i + f+i+1)
2 +

39
4
(− f+i−1 + f+i+1 − 2∆xh+i )

2.

(17)

2.5 Now, we will apply the following formula to obtain the nonlinear weights ω′
j by γ′

j
in (15) and β j in (17):

ω′
j =

ω′
j

∑k ω′
k

, ω′
k =

γ′
k

(βk + ε)2 , j, k = 0, 1, 2, (18)

where ε is still taken as 10−6. The HWENO reconstruction of ĥ−
i+ 1

2
can be calculated by

ĥ−
i+ 1

2
=

2

∑
j=0

ω′
j p

′
j(xi+ 1

2
). (19)

2.6 Finally, our numerical flux can be obtained by

ĥi+ 1
2
= ĥ+

i+ 1
2
+ ĥ−

i+ 1
2
. (20)

When considering convection-dominated convection-diffusion equations, the diffu-
sion constant is typically small. As a result, the characteristics of these equations resemble
those of hyperbolic conservation laws. In Step I and Step II, we complete the discretization
of the convection term in the semi-discrete schemes (4). Next, we interpolate the diffusion
term. In this study, the diffusion terms are computed using the central difference method,
which is based on three-point Hermite interpolation:

∂2u
∂x2

∣∣
xi
= 1

2∆x2 (4ui−1 − 8ui + 4ui+1 + ∆xvi−1 − ∆xvi+1),
∂2v
∂x2

∣∣
xi
= 1

2∆x3 (−15ui−1 + 15ui+1 − 3∆xvi−1 − 24∆xvi − 3∆xvi+1),
(21)

where these methods can attain fifth-order accuracy.
The convection and diffusion terms in the equation have been fully discretized. We

will now begin to consider the discretization of the time term. In this paper, we utilize the
TVD Runge-Kutta method, which consists of three stages [13,14]:
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
U(1) = U(n) + ∆tL(U(n)),

U(2) = 3
4 U(n) + 1

4 U(1) + 1
4 ∆tL(U(1)),

U(n+1) = 1
3 U(n) + 2

3 U(2) + 2
3 ∆tL(U(2)),

(22)

with U = (u, v)T and the time step ∆t = c f l ∆x
α , where c f l is the CFL number.

3. Construction of Two-Dimensional HWENO Method
This part generalizes the one-dimensional scalar equation from Section 2 to

two dimensions, 
∂u
∂t +

∂ f (u)
∂x + ∂g(u)

∂y = ε( ∂2u
∂x2 +

∂2u
∂y2 ),

u(x, y, 0) = u0(x, y),
(23)

where t denotes the time variable and x and y denote the two spatial directional variables.
In addition, u is a conserved variable with respect to time and space, and f (u) and g(u)
are flux functions in two directions in space, respectively. The spatial computation region
[a, b] × [c, d] is divided equally by Nx × Ny, i.e., a = x 1

2
< x 3

2
< . . . < xNx+

1
2
= b,

c = y 1
2
< y 3

2
< . . . < yNy+

1
2
= d. xi+ 1

2
and yj+ 1

2
represent the half point in both directions,

respectively. Then, the cell and cell center are Ii,j = [xi − ∆x
2 , xi +

∆x
2 ]× [yj −

∆y
2 , yj +

∆y
2 ] and

(xi, yj) = ( 1
2 (xi− 1

2
+ xi+ 1

2
), 1

2 (yj− 1
2
+ yj+ 1

2
)), respectively, where ∆x = b−a

Nx
and ∆y = d−c

Ny

are cell sizes. To develop the Hermite WENO method, we first compute the first derivatives
of Equation (23) with respect to the spatial variables x and y separately. The first derivatives
of conserved quantities u with respect to x and y are denoted by v and w, respectively.
Following this, we derive the corresponding formulas:

∂u
∂t +

∂ f (u)
∂x + ∂g(u)

∂y = ε( ∂2u
∂x2 +

∂2u
∂y2 ), u(x, y, 0) = u0(x, y),

∂v
∂t +

∂h(u,v)
∂x + ∂r(u,v)

∂y = ε( ∂2v
∂x2 +

∂2v
∂y2 ), v(x, y, 0) = v0(x, y),

∂w
∂t + ∂q(u,w)

∂x + ∂s(u,w)
∂y = ε( ∂2w

∂x2 + ∂2w
∂y2 ), w(x, y, 0) = w0(x, y),

(24)

where h(u, v) = f ′(u)v, r(u, v) = g′(u)v, v0(x, y) = (u0)x,

q(u, w) = f ′(u)w, s(u, w) = g′(u)w, w0(x, y) = (u0)y.

It is important to note that the elements in Equations (3) and (24) exhibit certain
mathematical similarities, particularly in that the reconstructions are symmetric in both
directions. Consequently, we can gradually extend the algorithm from a one-dimensional
problem to a two-dimensional problem, addressing it dimension by dimension. However, a
challenge arises due to the mixed derivatives q(u, w)x, ∂2w

∂x2 , and r(u, v)y, ∂2v
∂y2 , which cannot

be treated dimensionally in the same way as in the one-dimensional case. In this context,
the mixed derivatives do not require flux splitting for simplicity. In this research, we
utilize a three-point Hermite interpolation approach to calculate the mixed derivative terms
while preserving the method’s compactness. Nevertheless, the numerical accuracy of the
two-dimensional scheme is limited to fourth-order due to the derivative equation. We
present the semi-discrete finite difference schemes for Equation (24) by drawing parallels
with the analogous one-dimensional case:

∂ui,j
∂t = − 1

∆x ( f̂i+ 1
2 ,j − f̂i− 1

2 ,j)−
1

∆y (ĝi,j+ 1
2
− ĝi,j− 1

2
) + ε( ∂2u

∂x2 +
∂2u
∂y2 )

∣∣
(xi ,yj)

,
∂vi,j
∂t = − 1

∆x (ĥi+ 1
2 ,j − ĥi− 1

2 ,j)−
1

∆y (r̂i,j+ 1
2
− r̂i,j− 1

2
) + ε( ∂2v

∂x2 +
∂2v
∂y2 )

∣∣
(xi ,yj)

,
∂wi,j

∂t = − 1
∆x (q̂i+ 1

2 ,j − q̂i− 1
2 ,j)−

1
∆y (ŝi,j+ 1

2
− ŝi,j− 1

2
) + ε( ∂2w

∂x2 + ∂2w
∂y2 )

∣∣
(xi ,yj)

,

(25)
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where f̂i± 1
2 ,j, ĥi± 1

2 ,j, ĝi,j± 1
2

and ŝi,j± 1
2

can be directly reconstructed by HWENO scheme along
their respective directions as in the one-dimensional case. The higher-order derivative terms
or the diffusion terms in the equations, specifically ∂2u

∂x2 , ∂2v
∂x2 and ∂2u

∂y2 , ∂2w
∂y2 , are discretized

using the central difference method in their respective directions, as shown in (21). The
remaining mixed derivative terms are discretized using three-point Hermite interpolation.

The formulas for calculating the mixed derivative terms q̂i+ 1
2 ,j and r̂i,j+ 1

2
are given by

q̂i+ 1
2 ,j =

1
64∆x (3 fi−1,j − 96 fi,j + 93 fi+1,j + ∆xqi−1,j − 12∆xqi,j − 15∆xqi+1,j),

r̂i,j+ 1
2
= 1

64∆y (3gi,j−1 − 96gi,j + 93gi,j+1 + ∆yri,j−1 − 12∆yri,j − 15∆yri,j+1).
(26)

The higher mixed derivatives ∂2v
∂y2 , ∂2w

∂x2 in the diffusion term are calculated by the
following formulas:

∂2v
∂y2

∣∣
(xi ,yj)

= 3
2∆y3 (−5ui,j−1 + 5ui,j+1 − ∆yvi,j−1 − 8∆yvi,j − ∆yvi,j+1),

∂2w
∂x2

∣∣
(xi ,yj)

= 3
2∆x3 (−5ui−1,j + 5ui+1,j − ∆xwi−1,j − 8∆xwi,j − ∆xwi+1,j).

(27)

Time is discretized using the Runge-Kutta method, where the time step ∆t = c f l
α1
∆x +

α2
∆y

for the two-dimensional cases, and α1 = maxu| f ′(u)| and α2 = maxu|g′(u)|.

4. Numerical Results
In this section, we focus on extensive numerical experiments about convection-

diffusion equations to demonstrate the effectiveness of the proposed HWENO method
within the finite difference framework. Additionally, we will compare the suggested
HWENO method to the classical WENO method introduced by Shu et al. [16] in a one-
dimensional finite difference context. In both numerical methods, the CFL number used in
the calculation example is 0.6. While both methods yield similar results, it is evident that
the HWENO method is significantly more compact than the WENO method.

4.1. Numerical Tests in One-Dimensional Case

Example 1. We first consider the following linear convection-diffusion equation: ∂u
∂t +

∂u
∂x = ε ∂2u

∂x2 ,

u(x, 0) = sin(x), 0 ≤ x ≤ 2ß.
(28)

We apply periodic boundary conditions at both ends of the calculation region. The
exact expression for the solution is given by u(x, t) = exp(−εt)sin(x − t), where the total
computation time is set to T = 1 and ε = 0.01. Table 1 presents the numerical orders
and errors comparing the HWENO method to the WENO method. Both the WENO and
HWENO methods achieve the desired fifth-order accuracy. However, based on the error
comparisons shown in Table 1, we can see that the HWENO method demonstrates smaller
errors than the WENO method in both the L1 and L∞ norm when using the same mesh size.
It is worth noting that the HWENO scheme includes one additional derivative equation
compared to the WENO scheme, which makes it challenging to directly compare their
CPU times. However, the HWENO scheme benefits from utilizing three-point stencils for
reconstruction, while the WENO scheme relies on five-point stencils.
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Table 1. Numerical results of HWENO and WENO solving one-dimensional linear convection-
diffusion equation with initial value u(x, 0) = sin(x). L1 and L∞ errors and numerical order
of accuracy.

N
HWENO WENO

L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order

10 3.78 × 10−3 5.76 × 10−3 7.67 × 10−3 1.05 × 10−2

20 1.11 × 10−4 5.09 2.09 × 10−4 4.79 2.64 × 10−4 4.86 5.19 × 10−4 4.34

40 3.25 × 10−6 5.09 5.94 × 10−6 5.14 7.63 × 10−6 5.11 1.47 × 10−5 5.14

80 1.00 × 10−7 5.02 1.72 × 10−7 5.11 2.34 × 10−7 5.03 4.14 × 10−7 5.15

160 3.11 × 10−9 5.01 5.02 × 10−9 5.10 7.23 × 10−9 5.02 1.19 × 10−8 5.13

320 9.58 × 10−11 5.02 1.51 × 10−10 5.06 2.21 × 10−10 5.03 3.49 × 10−10 5.09

640 3.04 × 10−12 4.98 4.76 × 10−12 4.99 6.71 × 10−12 5.04 1.05 × 10−12 5.06

Example 2. The expression of the viscous Burgers equation in the one-dimensional case is
as follows:  ∂u

∂t +
∂(u2/2)

∂x = ε ∂2u
∂x2 ,

u(x, 0) = −sin(ßx), −1 ≤ x ≤ 1.
(29)

In the computation region [−1, 1], Dirichlet boundary conditions are applied, specif-
ically u(−1, t) = u(1, t) = 0. The diffusion constant ε is assumed to be 0.01/π in this
test. The Hopf-Cole transformation can be employed to derive the analytical solution; for
further information, see Basdevant et al. [34]. Figure 1 presents the numerical outcomes of
the experiment with N = 200 and contrasts them with the findings obtained at the same
uniform points using the WENO method. Numerical results generated using the finite
difference HWENO and WENO methods align with the exact results, even at disconti-
nuities. Additionally, we can observe that the performance of HWENO is quantitatively
comparable to that of the WENO method.

Figure 1. The one-dimensional viscous Burgers equation solutions via HWENO and WENO methods
at t = 0.14, 0.69, and 0.99. Red squares represent the outcome of the classical WENO method; blue
plus signs represent the result of the finite difference HWENO method; black solid line represents the
exact answer.

Example 3. The Buckley-Leverett equation is a class of equations that is often used in
reservoir simulations; let us now address this one-dimensional equation:

∂u
∂t

+
∂ f (u)

∂x
= ε

∂(v(u)ux)

∂x
, εv(u) ≥ 0. (30)

In this example, the ultimate calculation time of the numerical method is T = 0.2 and
the diffusion constant ε is 0.01. In addition,
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v(u) =

4u(1 − u), 0 ≤ u ≤ 1,

0, otherwise.
(31)

In this test, there is no gravity, and the flux function can be expressed as

f (u) =
u2

u2 + (1 − u)2 , (32)

and the conserved quantity u has the following continuous initial conditions:

u(x, 0) =

1 − 3x, 0 ≤ x ≤ 1/3,

0, 1/3 ≤ x ≤ 1.
(33)

The calculation region has a left boundary condition defined as u(0, t) = 1, while the
right boundary condition is determined through extrapolation. There is no exact solution
expression available for this problem. We use the numerical solution obtained from the
HWENO method with N = 500 as a reference exact solution. A comparison between
the numerical solution with 100 grid points and the reference exact solution is shown in
Figure 2. There is no oscillation at the discontinuity, and the numerical solution aligns well
with the reference solution derived from the method described in the study.

Figure 2. The Buckley-Leverett equation for one-dimensional case. T = 0.2. Comparison of reference
and numerical solutions. The red solid line is the reference solution; the black plus sign is the
numerical solution.

4.2. Numerical Tests in Two-Dimensional Case

Example 4. We now test the accuracy and error of the two-dimensional linear convection-
diffusion equation: 

∂u
∂t +

∂u
∂x + ∂u

∂y = ε( ∂2u
∂x2 +

∂2u
∂y2 ),

u(x, y, 0) = sin(2π(x + y)).
(34)

Periodic boundaries are utilized in this case at all the edges of the calculating region
(x, y) ∈ [0, 1]× [0, 1]. u(x, y, t) = exp(−8π2εt)sin(2π(x + y − t)) is the exact solution. The
ultimate calculation time is T = 0.1. The diffusion coefficient ε = 0.001. The numerical
results of the HWENO method under the L1, L2, and L∞ are displayed in Table 2. The
results illustrate that the suggested two-dimensional numerical method’s accuracy meets
the required fourth order.
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Table 2. L1, L2, and L∞ errors and numerical order of accuracy of HWENO for solving two-
dimensional linear convection-diffusion equation with initial value u(x, y, 0) = sin(2π(x + y)).

Nx ∗ Ny L1 Error Order L2 Error Order L∞Error Order

10 × 10 4.61 × 10−3 1.46 × 10−2 4.61 × 10−2

20 × 20 1.19 × 10−4 5.28 5.32 × 10−4 4.78 2.38 × 10−3 4.28

40 × 40 4.05 × 10−6 4.88 2.56 × 10−5 4.38 1.62 × 10−4 3.88

80 × 80 1.62 × 10−7 4.64 1.45 × 10−6 4.14 1.30 × 10−5 3.64

160 × 160 6.09 × 10−9 4.73 7.71 × 10−8 4.23 9.75 × 10−7 3.73

320 × 320 2.73 × 10−10 4.48 4.89 × 10−9 3.98 8.74 × 10−8 3.48

Example 5. The Buckley-Leverett equation in two dimensions is examined in this example:

∂u
∂t

+
∂ f (u)

∂x
+

∂g(u)
∂y

= ε(
∂2u
∂x2 +

∂2u
∂y2 ). (35)

The diffusion coefficient ε takes 0.01. The flux function in both directions can be
expressed by

f (u) =
u2

(u2 + (1 − u)2)
,

g(u) = f (u)(1 − 5(1 − u)2).
(36)

The initial conditions are

u(x, y, 0) =

1, x2 + y2 < 0.5,

0, otherwise.
(37)

Note that in this example, there is a gravitational effect in the y-direction. This ques-
tion is more complex and does not have an analytical answer. The rectangular domain
[−1.5, 1.5]× [−1.5, 1.5] is equally divided by an 80 × 80 grid whose boundaries are con-
strained by periodic boundary conditions. Figure 3 shows the numerical results and two
images for T = 0.5. The surface and contour plots are consistent with the results listed in
reference [35].

Figure 3. Two-dimensional surface mapping of the Buckley-Leverett equation, shown on the left.
Two-dimensional Buckley-Leverett equation contour map, as shown on the right. 80 × 80 grid points
at T = 0.5.

Example 6. By applying the vorticity transport equation and the stream-function equation,
one can solve the two-dimensional incompressible high Reynolds number (Re ≫ 1) Navier-
Stokes equation:
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∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1
Re

(
∂2ω

∂x2 +
∂2ω

∂y2

)
, (38)

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω, (39)

where u and v are the velocity components, ψ is the stream-function, and Re is the Reynolds
number. Let ω = vx − uy be the vorticity. The following is the relationship between velocity
and the stream-function:

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (40)

For simplicity, we take the no-slip boundary conditions ψ|∂Ω = 0, where Ω is the space
domain in the actual issue. Equation (39) is an elliptical equation, and (38) is a parabolic-
type vorticity transport equation. To maintain high accuracy, Equations (39) and (40) are
solved discretely by the compact finite difference schemes described by Lele [36]. The
article uses this fourth-order compact difference to solve the first and second derivatives of
the stream function ψ in the x and y directions: 1

10 f ′′i−1 + f ′′i + 1
10 f ′′i+1 = 6

5
fi+1−2 fi+ fi−1

∆x2 ,
1
4 f ′i−1 + f ′i +

1
4 f ′i+1 = 3

4∆x ( fi+1 − fi−1),
(41)

where f ′ and f ′′ represent the first and second derivatives of the stream function with
respect to x or y, respectively. Finally, Equation (38) is solved using the numerical method
introduced in this paper.

In the square domain Ω = [0, π]× [0, π], the vorticity stream-function formula for the
two-dimensional Navier-Stokes problem is solved. The following are the initial conditions
of the vorticity:

ω(x, y, 0) = −2sin(x)sin(y). (42)

The following are exact solutions that are known to exist:

ω(x, y, t) = −2sin(x)sin(y)e−2t/Re, (43)

used in [37]. We take the Dirichlet boundary for the space domain derived from the exact
solution. The Reynolds numbers in the uniform grid are 200 points and 1000 points, respec-
tively, and the final calculation time of the numerical solution is T = 0.5. To demonstrate
the effectiveness of the proposed method, the exact solution images of the vorticity flow
function are compared with the numerical solution images. The contours of the vorticity
and stream function are displayed in Figure 4 at the final time for Re = 200. According to
the results, we take 40 × 40 uniform meshes, and the numerical solution images of vorticity
and stream function match up well with the exact solution images. For Re = 1000, similar
results are given in Figure 5.
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Figure 4. The red solid line represents the exact solutions, while the dashed black line represents the
numerical results. The left is the vorticity contour image, and the right is the stream-function contour
image. Re = 200, 40 × 40 grid.

Figure 5. Re = 1000, which is a similar representation to Re = 200.

5. Concluding Remarks
In this paper, we presented an HWENO method for solving one- and two-dimensional

convection-dominated problems within the framework of finite difference techniques. The
efficiency of the finite difference method outperformed the finite volume method when
solving multidimensional equations. Another significant advantage of the HWENO method
is its compactness over the classical WENO method. This improvement arises from the fact
that WENO reconstruction relies solely on function values, while HWENO reconstruction
incorporates both function values and their derivatives. Numerical tests show that the
HWENO method often yields lower numerical errors than the WENO method. However,
compared with the WENO method, the HWENO method requires more computation time
and storage space for the same set of grid points. One of the challenges addressed in
this paper is the treatment of mixed derivatives in spatial terms and higher derivatives
in diffusion terms for two-dimensional cases. Given the properties of the equations and
the high-order accuracy and compactness offered by the HWENO numerical method, we
propose an appropriate processing procedure to ensure both the stability and conservation
of the method. Our results indicate that when solving convection-dominated diffusion
problems, the finite difference HWENO method consistently outperforms the WENO
method in various numerical examples.
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