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Abstract: In this study, a new hybrid method based on the generalized finite difference
method (GFDM) and radial basis function (RBF) neural network technologies is developed
to solve the inverse problems of surface anomalous diffusion. Specifically, the GFDM is
utilized to compute the time-fractional derivative model on the surface, whereas RBF neural
networks are employed to invert the diffusion coefficient, source term coefficient, and the
fractional order within the anomalous diffusion equation governing the surface. The results
of four examples show that for the three parameters of diffusion coefficient, source term
coefficient, and fractional order, the errors of inversion results are in the order of 10−2 under
different conditions. Therefore, this method can obtain the required parameters quickly
and accurately under different conditions.

Keywords: anomalous diffusion; time-fractional derivative; generalized finite difference
method; extrinsic; radial basis function neural networks

1. Introduction
Since the 1980s, advancements in science and technology have led to the gradual

revelation of a series of physical phenomena known as anomalous diffusion [1–4]. These
phenomena are complex and difficult to fully explain or accurately model using traditional
integer-order diffusion systems. Anomalous diffusion has been demonstrated in various
fields, including porous media mechanics [5], non-Newtonian fluid mechanics [6], vis-
coelastic mechanics [7], and soft matter mechanics [8,9]. The fractional diffusion model [10]
is one of the most common models to describe anomalous diffusion behavior. Its advantage
lies in its simpler parameters and more convenient numerical calculations. The non-local
properties of fractional derivatives [11] enable them to describe complex non-Markov
systems [12].

Due to the non-local characteristics and complexity of fractional differential equa-
tions [11], obtaining analytical solutions for these equations is extremely challenging.
Therefore, developing efficient and accurate numerical algorithms to solve fractional dif-
ferential equations is crucial. In recent years, numerous meshless methods have been
proposed. These methods replace the traditional grid with nodes, thereby avoiding the
complicated grid generation process. Meshless methods include the fundamental solution
method [13], Trefftz method [14], singular boundary method [15], generalized finite differ-
ence method [16,17], etc. The GFDM is a relatively new localized meshless method. First
proposed by T. Liszka and J. Orkisz in the 1980s [18], it has been continuously improved
and refined until a relatively complete version was proposed by Benito et al. in 2001 [19].
The GFDM has been successfully applied in many fields due to its ability to overcome the
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constraints of traditional regular grids and its capacity to handle complex boundary condi-
tions without the need for extensive preprocessing. Moreover, its localized configuration
makes it particularly suitable for dealing with large-scale problems, including obstacle
problems [20], inverse problems [21], slogging phenomena [22], etc.

In recent years, with the rapid development of neural network technology, using
neural networks to solve inverse problems of anomalous diffusion equations has become
increasingly prevalent [23–26]. The RBF neural network is a relatively advanced type of
three-layer feedforward neural network. Compared with back-propagation (BP) neural
networks, RBF neural networks exhibit superior performance in classification accuracy,
learning speed, and approximation ability [27]. An RBF neural network is a kind of neural
network with local approximation performance, so an RBF neural network is faster in
inversion than other neural networks. In addition, an RBF neural network can accurately
invert the results when dealing with the problems in this paper, so an RBF neural network
is adopted to invert the parameters.

Compared with other work, this is the first time the inverse surface diffusion problem
is solved by combining GFDM and RBF neural networks. In this paper, the time-fractional
derivative model is introduced to define the anomalous diffusion process on the surface. In
the numerical implementation, the GFDM and the extrinsic processing technique of the sur-
face partial differential equation are employed for the discrete solution. Subsequently, RBF
neural networks are introduced into the inverse problem of inverting diffusion equation
parameters to obtain the required equation parameters. Specifically, a training database is
established by solving the proposed time-fractional diffusion equation using the GFDM.

2. The GFDM in Solving Anomalous Diffusion on the Surface
2.1. Time-Fractional Derivative Model on the Surface

To address the intricate issue of anomalous diffusion on a surface, the time-fractional
derivative model is introduced. Given that S represents a closed and smooth surface within
a three-dimensional space, the fractional diffusion equation formulated on this surface can
be articulated as follows:

∂αu(x, t)
∂tα

=
(

D∆s +
→
ν · ∇s − λ

)
u(x, t) + Q(x, t), 0 < α < 1, x ∈ S, t ∈ (0, T), (1)

and the following initial condition is given as

u(x, 0) = u0(x), x ∈ S, (2)

where D, λ, and
→
ν represent diffusion coefficient, reaction coefficient, and velocity vector,

respectively. Q(x, t) and u0(x) are known functions, T is the total time, ∆s and ∇s represent
the Laplace–Beltrami and surface gradient operators, respectively [28]. ∂α/∂tα is the Caputo
time-fractional of order α with respect to t [29], which is defined by the following equation:

∂αu(x, t)
∂tα

=
1

Γ(1 − α)

∫ t

0

∂u(x, η)

∂η

dη

(t − η)α , 0 < α < 1, (3)

where Γ is the Gamma function. By using the standard finite difference method, the
time-fractional derivative model can be discretized as [30]

Dθ∆suk+1 + θ
→
ν · ∇suk+1 − (λθ + α0)uk+1 =

−θQk+1 − (1 − θ)
(

D∆suk +
→
ν · ∇suk + Qk − λuk

)
−α0uk + ∑k

j=1 αjbj

(
uk−j+1 − uk−j

)
, k ≥ 1,

−θQ1 − (1 − θ)
(

D∆su0 +
→
ν · ∇su0 + Q0 − λu0

)
− α0u0, k = 0.

(4)
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where αj and bj are known coefficients, and θ is the time integral constant. a0 = dt−α

Γ(1+α)
,

where dt is the time step.

2.2. Surface Differential Operators

Suppose S is a closed and smooth surface defined in three-dimensional space, and
for an arbitrary point xi = [xi, yi, zi]

T on this surface, the normal vector at this point is
expressed as n = n(x) =

[
nxi , nyi , nzi

]T . Then, the surface gradient operator at x can be
formulated as follows:

∇s = P∇ =
(

I3 − nnT
)
∇, (5)

where Id is a d × d identity matrix and P represents the projection matrix. The Laplace–
Beltrami operator at x can be expressed as

∆s = ∇s · ∇s. (6)

By introducing the extrinsic technique, the analytical relationship between the opera-
tors defined in tangent space and the operators defined in Euclidean space can be derived
from the normal vector n corresponding to all points xi selected on the surface [26]:

∇su = ∇u − n∂nu, ∆su = ∆u − Hs∂nu − ∂
(2)
n u. (7)

where ∂nu = nT∇u, ∂
(2)
n u = nT J(∇u)n, and Hs(x) = trace

(
J(n)

(
Id − nnT)), and J repre-

sents the jacobian operators in Euclidean space.

2.3. GFDM for Time-Fractional Derivative Model on the Surface

Similar to traditional finite difference methods, the generalized finite difference
method constructs numerical differential formulas to approximate partial derivative terms
of partial differential equations. The general formula can be expressed as follows:

Du = WU, (8)

where the partial derivative vector Du, the weighting matrix W, and the solution vector U
are, respectively, defined as

Du =

[
∂ui
∂xk

, . . . . . . ,
∂2ui

∂xk∂xk′′

]
1×nv

T

, k = 1, 2, . . . . . . , d; k′′ = k, k + 1, . . . . . . , d, (9)

U = [u1, u2, . . . . . . , uN ]
T , (10)

W =


ω

xk ,i
1 · · · ω

xk ,i
N

...
. . .

...

ω
xkxk′′ ,i
1 · · · ω

xkxk′′ ,i
N


nv×N

, k = 1, 2, . . . , d; k′′ = k, k + 1, . . . , d. (11)

where d represents the dimension, ui(i = 1, 2, . . . , N) is the solution of the discretized node
xi, xi = (xi1, xi2, . . . , xid) ∈ Ξ ⊂ Rd, and nv = 2d + C2

d .
The GFDM, which is defined in Euclidean space, can be directly employed for approx-

imating surface differential operators with extrinsic technology. Figure 1 shows a sketch
of discrete points of the computational domain and neighborhood selection using the
meshless generalized finite difference method, and the equation for the GFDM is provided
as follows:
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

∂uxξ

∂x
= Wxi ui + ∑N

j=1 Wxj uj,
∂uyξ

∂y
= Wyi ui + ∑N

j=1 Wyj uj,

∂uzξ

∂z
= Wzi ui + ∑N

j=1 Wzj uj,
∂uxξ

∂x2 = Wxi xi ui + ∑N
j=1 Wxjxj uj,

∂uyξ

∂y2 = Wyiyi ui + ∑N
j=1 Wyjyj uj,

∂uzξ

∂z2 = Wzizi ui + ∑N
j=1 Wzjzj uj,

∂uxξ yξ

∂x∂y
= Wxiyi ui + ∑N

j=1 Wxjyj uj,

∂uxξ zξ

∂x∂z
= Wxizi ui + ∑N

j=1 Wxjzj uj,
∂uyξ zξ

∂y∂z
= Wyizi ui + ∑N

j=1 Wyjzj uj.

(12)

where x, y, z are the Euclidian coordinates. Thus, the unified equation can be derived as

Lu|xξ = WξUξ , (13)

where L represents any differential operator, Wξ represents the row vector of 1 × Ns, and
Uξ represents the column vector of the local solution of Ns × 1. If S is a smooth closed
surface, then ∇su can be expressed as

∇su = P · ∇u = P


∂u
∂x
∂u
∂y
∂u
∂z

 =


p11

∂u
∂x

+ p12
∂u
∂y

+ p13
∂u
∂z

p21
∂u
∂x

+ p22
∂u
∂y

+ p23
∂u
∂z

p31
∂u
∂x

+ p32
∂u
∂y

+ p33
∂u
∂z

. (14)

∆su can be expressed as

∆su|xξ =
(

Wξ
x1x1 + Wξ

x2x2 + Wξ
x3x3

)
Uξ − HS

(
xξ
)[

nξ
x1 nξ

x2 nξ
x3

]Wξ
x1

Wξ
x2

Wξ
x3

Uξ

−
[
nξ

x1 nξ
x2 nξ

x3

]Wξ
x1x1 Wξ

x1x2 Wξ
x1x3

Wξ
x2x1 Wξ

x2x2 Wξ
x2x3

Wξ
x3x1 Wξ

x3x2 Wξ
x3x3


nξ

x1 × IN

nξ
x2 × IN

nξ
x3 × IN

Uξ .

(15)

By using the GFDM and substituting Equations (14) and (15) into Equation (4), the
time-fractional derivative model can be discretized as

DθW∆suk+1 + θ
→
ν ·

Wx
∇suk+1

Wy
∇suk+1

Wz
∇suk+1

− (λθ + α0)uk+1 =

−θQk+1 − (1 − θ)

DW∆suk +
→
ν ·

Wx
∇suk

Wy
∇suk

Wz
∇suk

+ Qk − λuk


−α0uk + ∑k

j=1 αjbj

(
uk−j+1 − uk−j

)
, k ≥ 1,

−θQ1 − (1 − θ)

DW∆su0 +
→
ν ·

Wx
∇su0

Wy
∇su0

Wz
∇su0

+ Q0 − λu0

− α0u0, k = 0.

(16)
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3. RBF Neural Networks
As shown in Figure 2, RBF neural networks, consisting of an input layer, one hidden

layer, and an output layer, are one of the current famous artificial neural networks.
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Figure 2. Structure of RBF neural networks.

The training process comprises two pivotal steps: initially, employing the K-means
clustering algorithm to determine the centers of the basis functions from the training dataset;
subsequently, optimizing the weights connecting the hidden layer to the output layer by
minimizing the objective function. This training methodology enables the RBF neural
networks to adapt more rapidly and accurately to diverse datasets and task requirements.

The Gaussian radial basis function is selected as the activation function, and the
equation is given as follows:

φ(r) = e−
r2

2σ2 , (17)

The output of the h-th hidden neuron is given as

ah = exp
(
− 1

2σ2 ∥Ch − t∥2
)

, (18)

where t = (t1, t2, · · · , tn)
T is the input vector of the coefficients of the diffusion system

equation from each detection point. The detection point will be selected from the GFDM
nodes, and the input vector will be the spread value at that point in time. Ch and σ are the
neuron’s center and the center spread parameter, respectively.
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For the o-th neuron, the output zo is

zo = ∑nh
h=1 woah+θo, (19)

where nh is the number of neurons in the hidden layer. wo and θo are the weight and
threshold connecting the neurons in the hidden layer to the neurons in the output layer.

The objective function is given as

J = ∑no
o=1∥zo − Yo∥2, (20)

The weights are modified by moving in the opposite direction to the gradient of the
target function.

The adjustment formula is given as

∆wo = −µ
∂J
∂w

= µ(zo − Yo)exp
(
− 1

2σ2 ∥Ch − t∥2
)

. (21)

where ∆wo represents the weight increments, and the constant µ represents the learning rate.

4. Numerical Results and Discussion
In this section, we combine the GFDM with the RBF neural networks to establish

a parameter inversion model for the diffusion equation, based on the results of surface
anomalous diffusion. Given that the RBF neural networks demonstrate higher accuracy
than other artificial neural networks in parameter inversion, we verify the effectiveness and
precision of the RBF neural networks in inverting diffusion coefficients based on surface
anomalous diffusion results through the following examples.

In the numerical implementation, the neural network program is executed by MAT-
LAB software R2016b through the ‘newrb’ function in the neural networks’ toolbox. The
RBF neural networks iteratively create an RBF network using the function ‘newrb’, the
target mean square error is set to 0.01, the radial basis function distribution coefficient is set
to 1, the maximum number of neurons is set to 5000, and the number of neurons to be added
between each display is set to 25. The optimization method is based on gradient descent.

In the parameter identification stage of the diffusion equation, the simulated diffusion
results with an unknown diffusion coefficient at the observation point are input into the
trained regression neural networks, and the corresponding parameters can be obtained.
Different parameters are randomly generated in the detection domain, and the parame-
ters are brought into the fractional diffusion equation on the surface after the GFDM. A
large number of corresponding diffusion results and parameters are calculated as training
samples for neural networks to learn. By constantly training and optimizing the weight
parameters of the neural networks, a complex nonlinear mapping relationship between the
features and labels of the training samples is constructed, and the trained neural networks
can be used as a detection tool for the corresponding diffusion results and parameters.

The inversion error of diffusion equation parameters is given as

E =

∣∣∣Xtrue − Xpred

∣∣∣
Xtrue

%. (22)

where E is the error value, X is the target parameter, Xtrue is the true value of the target
parameter, and Xpred is the inversion value of the target parameter.

Example 1.

Firstly, the inversion of the diffusion coefficient in the diffusion equation in the pres-
ence of analytical solutions is considered, and the GFDM approximation is used to invert
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the diffusion coefficient D. The fractional diffusion equation on a closed smooth surface
in three-dimensional space is defined as Equation (1), where D is the diffusion coefficient,
α = 1

2 , Q(x, t) = 0, and the analytical solution is given as

u(t, x) = sinx · cosy · tanhz · t, (23)

In order to verify the accuracy, convergence, and stability of the GFDM for precisely
capturing the anomalous diffusion phenomenon on the surface, Root Mean Square Error
(RMSE) is introduced to measure it, and its equation is given as follows

RMSE(ui(x, t)) =

√
1
N ∑N

j=1

[
u
(
xj, t

)
− ∼

u
(
xj, t

)]2
. (24)

where N represents the total number of discrete points of the surface,
∼
u
(
xj, t

)
represents

the numerical solution, and u
(
xj, t

)
represents the analytical solution.

At the same time, RBF neural networks and BP neural networks are introduced to
invert the parameters, so as to compare the advantages and disadvantages of the two
methods in dealing with such problems. The hyperparameter settings are the same for both
methods. There is no diffusion at the initial moment. From the initial moment, all the cloth
points on the surface of the entire surface begin to diffuse at the same time. The time step is
0.01 s. Different diffusion coefficients are randomly generated in the detection domain, a
point is randomly selected among the distribution points of the surface, and 30 points are
randomly selected on the surface as observation points. The simulated diffusion results
corresponding to diffusion coefficient D at the observation point of 0.1 s are taken as the
input feature X of the neural networks and diffusion coefficient D is taken as the output Y,
so that a sample (X, Y) can be constructed. For two different shapes, torus and cross, the
number of samples for each shape training is 1000 sets of data. Each set of data contains the
diffusion values of thirty detection points at different times. Then, 70% of the samples are
divided into a study set and 30% of the samples are divided into verification sets to evaluate
the generalization ability of the neural networks. The number of samples for testing is four
sets of data, and the test set is not involved in the training of the neural networks. Figure 3
shows the distribution of distribution points and measuring points when the surface is
torus and ellipsoid. Table 1 shows the RMSE between the GFDM approximation and the
analytic solution on different surfaces at t = 0.1. Tables 2 and 3, respectively, show the
inversion results and errors of diffusion coefficients when the surface is torus and cross.
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Table 1. RMSE between numerical solution and analytical solution on different surfaces.

Shape Sphere Torus Cross RBC

N 2500 4000 3996 4096
RMSE 2.73 × 10−3 1.16 × 10−3 2.50 × 10−2 3.46 × 10−3

Table 2. Inversion results, errors, and CPU time of RBFNN and BPNN with torus surface.

Dtrue
Dpred E (%) CPU Time (s)

RBFNN BPNN RBFNN BPNN RBFNN BPNN

0.2550 0.2552 0.2553 0.08 0.12 0.1 300
0.5050 0.5053 0.5054 0.06 0.08 0.1 305
0.7550 0.7526 0.7556 0.31 0.08 0.1 310
1.0050 1.0060 1.0061 0.10 0.11 0.1 306

Table 3. Inversion results, errors, and CPU time of RBFNN and BPNN with cross surface.

Dtrue
Dpred E (%) CPU Time (s)

RBFNN BPNN RBFNN BPNN RBFNN BPNN

0.2550 0.2538 0.2512 0.47 1.49 0.1 420
0.5050 0.5084 0.0535 0.67 0.51 0.1 415
0.7550 0.7536 0.7513 0.19 0.92 0.1 455
1.0050 1.0044 1.0094 0.06 0.35 0.1 435

From Table 1, it can be observed that for different models, the RMSE is in the order of
10−2. The numerical results clearly demonstrate that the GFDM can precisely capture the
anomalous diffusion phenomenon on the surface and accurately approximate analytical
solutions. However, the limitation of GFDM is that it is difficult to obtain accurate results
when it is used to deal with non-smooth, non-closed, and asymmetrical surface models.
For future research, more widely used numerical methods may be needed to solve such
problems, such as finite element methods.

From Tables 2 and 3, it can be observed that for both methods, the predicted value
of diffusion coefficient D is almost consistent with the actual value on different models.
The error is in the order of 10−3. However, the inversion speed of an RBF neural net-
work is significantly faster than that of a BP neural network. Therefore, the proposed
model can achieve the fast and accurate inversion of diffusion coefficient D in the case of
analytic solutions.

Example 2.

In this case, there is no analytical solution to the equation, and the GFDM approx-
imation is used to invert diffusion coefficient D. A total of 30 points on the surface are
ramdonly selected as observation points. The time step is 0.01 s. The simulated diffusion
results corresponding to diffusion coefficient D at the observation point of 0.1 s is taken
as the input feature X of the neural networks. Diffusion coefficient D is taken as output Y,
so that a sample (X, Y) can be constructed. For two different shapes, torus and cross, the
number of samples for each shape training is 1000 sets of data. Each set of data contains
the diffusion values of thirty detection points at different times. Then, 70% of the samples
are divided into a study set and 30% of the samples are divided into verification sets to
evaluate the generalization ability of the neural networks. The number of samples for
testing is four sets of data, and the test set is not involved in the training of the neural
networks. Figure 4 shows a schematic diagram of point sources and measuring points
when the surface is torus and ellipsoid. Tables 4 and 5 show the inversion results and errors
of diffusion coefficients when the surface is torus and cross, respectively.
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Table 4. Inversion results and errors of diffusion coefficients with torus surface.

Dtrue Dpred E (%)

1.5050 1.5042 0.05
2.5050 2.5181 0.66
3.5050 3.4826 0.50
4.5050 4.4961 0.20

Table 5. Inversion results and errors of diffusion coefficients with cross surface.

Dtrue Dpred E (%)

1.5050 1.5012 0.25
2.5050 2.4925 0.50
3.5050 3.4941 0.34
4.5050 4.5179 0.29

From Tables 4 and 5, it can be observed that for different models, the predicted value
of diffusion coefficient D is almost consistent with the actual value, and the error is in the
order of 10−3. Therefore, the proposed model can achieve accurate inversion of diffusion
coefficient D in the absence of an analytic solution.

Example 3.

Based on the inversion of the diffusion coefficient and source term coefficient in the
previous example, the diffusion coefficient and source term coefficient will be further
inverted at the same time. Since the observed data in practical applications often contain
noise (especially Gaussian noise), to verify the numerical performance of RBF neural
networks under different noise levels, this paper adds Gaussian noise at different levels to
the data, and the noise is added in the following way

unoise = u + noise · std(u) · ε, ε ∼ N(0, 1), (25)

where noise is noise level, std(u) is the standard deviation of the whole observed dataset, ε

is the probability density function, and N(0, 1) is the standard normal distribution.
The fractional diffusion equation on a closed smooth surface in three dimensions is

given as
∂αu(x, t)

∂tα
= D∆su(x, t) + Q(x, t), 0 < α < 1, x ∈ S, t ∈ (0, T), (26)
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where D is the diffusion coefficient, α = 1
2 , source term coefficient Q(x, t) = d, and the

analytical solution is given as

u(t, x) = x ·
(

x4 − 10x2y2 + 5y4
)
·
(

x2 + y2 − 60z2
)
· t. (27)

There is no diffusion at the initial moment, and from the initial moment, all the cloth
points on the surface of the entire surface begin to diffuse at the same time and the time
step is 0.01 s. In the detection domain, different diffusion coefficients D and source term
coefficients d are randomly generated. Then, 30 points on the surface are randomly selected
as observation points. The simulated diffusion results corresponding to diffusion coefficient
D and source term coefficient d at 0.1 s of the observation point are taken as the input
feature X of the neural networks, and diffusion coefficient D and source term coefficient d
are taken as the output Y. This allows you to construct a sample (X, Y). For three different
shapes, spherical surface, torus, and cross, the number of samples for each shape training
is 1000 sets of data. Each set of data contains the diffusion values of thirty detection points
at different times. Then, 70% of the samples are divided into a study set and 30% of the
samples are divided into verification sets to evaluate the generalization ability of the neural
networks. The number of samples for testing is six sets of data, and the test set is not
involved in the training of the neural networks. Tables 6–8 show the inversion results and
errors of diffusion coefficient D and source coefficient d when the surface is spherical, torus,
and cross, respectively. The noise level considers interference with the inversion error at
0%, 1%, and 5%.

Table 6. Parameter coupling inversion errors when the surface is a sphere.

Error Values at Different Noise Levels
0% 1% 5%

Case 1
diffusion coefficient D 0.0123 0.0134 0.0144

source term coefficient d 0.0207 0.0216 0.0225

Case 2
diffusion coefficient D 0.0231 0.0242 0.0250

source term coefficient d 0.0247 0.0256 0.0265

Case 3
diffusion coefficient D 0.0244 0.0253 0.0260

source term coefficient d 0.0157 0.0166 0.0175

Table 7. Parameter coupling inversion errors when the surface is torus.

Error Values at Different Noise Levels
0% 1% 5%

Case 1
diffusion coefficient D 0.0221 0.0230 0.0239

source term coefficient d 0.0222 0.0231 0.0240

Case 2
diffusion coefficient D 0.0155 0.0164 0.0173

source term coefficient d 0.0102 0.0111 0.0120

Case 3
diffusion coefficient D 0.0109 0.0118 0.0127

source term coefficient d 0.0298 0.0307 0.0316

From Tables 6–8, it can be observed that for different models, the predicted values of
the diffusion coefficient and source coefficient are almost consistent with the actual values,
and the error is in the order of 10−2. Therefore, the proposed model can achieve joint
inversion of the diffusion coefficient and source coefficient more accurately. At the same
time, it can be noted that when the noise level increases, the inversion error will increase,
but in an acceptable range.
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Table 8. Parameter coupling inversion errors when the surface is cross.

Error Values at Different Noise Levels
0% 1% 5%

Case 1
diffusion coefficient D 0.0179 0.0188 0.0197

source term coefficient d 0.0182 0.0191 0.0200

Case 2
diffusion coefficient D 0.0125 0.0134 0.0143

source term coefficient d 0.0251 0.0260 0.0269

Case 3
diffusion coefficient D 0.0262 0.0271 0.0280

source term coefficient d 0.0287 0.0296 0.0305

Example 4.

In this example, the diffusion coefficient and the fractional order will be inverted
at the same time. The fractional diffusion equation on a closed smooth surface in three
dimensions is defined as Equation (26), where D is the diffusion coefficient, α = 1

2 , source
term coefficient Q(x, t) = 0, and the analytical solution is given as Equation (27).

The time step is 0.01 s. In the detection domain, different diffusion coefficients D and
fractional orders α are randomly generated. Then, 30 points on the surface are randomly
selected as observation points. The simulated diffusion results corresponding to diffusion
coefficient D and fractional order α at 0.1 s of the observation point are taken as the input
feature X of the neural networks, and diffusion coefficient D and fractional order α are
taken as the output Y. This allows you to construct a sample (X, Y). For two different
shapes, spherical surface and torus, the number of samples for each shape training is
1000 sets of data. Each set of data contains the diffusion values of thirty detection points
at different times. Then, 70% of the samples are divided into a study set and 30% of the
samples are divided into verification sets to evaluate the generalization ability of the neural
networks. The number of samples for testing is six sets of data, and the test set is not
involved in the training of the neural networks. Tables 9 and 10 show the inversion results
and errors of diffusion coefficient D and fractional order α when the surface is spherical
and torus, respectively.

Table 9. Parameter coupling inversion errors when the surface is a sphere.

True Value Predicted Value Error Value (%)

Case 1
diffusion coefficient D 0.6500 0.6534 0.5231

fractional order α 0.1500 0.1528 1.8667

Case 2
diffusion coefficient D 0.7500 0.7542 0.5600

fractional order α 0.2500 0.2568 2.7200

Case 3
diffusion coefficient D 0.8500 0.8553 0.6235

fractional order α 0.3500 0.3438 1.7714

Table 10. Parameter coupling inversion errors when the surface is a torus.

True Value Predicted Value Error Value (%)

Case 1
diffusion coefficient D 0.6500 0.6513 0.2000

fractional order α 0.1500 0.1571 4.7333

Case 2
diffusion coefficient D 0.7500 0.7553 0.7067

fractional order α 0.2500 0.2543 1.7200

Case 3
diffusion coefficient D 0.8500 0.8535 0.4118

fractional order α 0.3500 0.3340 4.5714

From Tables 9 and 10, it can be observed that for different models, the predicted values
of the diffusion coefficient and fractional order are almost consistent with the actual values,
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and the error is in the order of 10−2. Therefore, the proposed model can achieve joint
inversion of the diffusion coefficient and fractional order more accurately. Furthermore, the
numerical results obtained in these examples clearly demonstrate that RBF neural networks
can invert the parameters of the diffusion equation with high accuracy. The hybrid method
based on the GFDM and RBF neural networks can accurately invert the parameters even if
there is an analytic solution of the equation.

In fact, during the input of training samples, the inversion result is relatively accurate
only when the diffusion coefficient and the order increase or decrease concurrently. If the
diffusion coefficient and the order change irregularly, it is very difficult to accurately invert
the sought-after result. In order to obtain the result accurately when the desired parameter
changes irregularly, it may be necessary to introduce a more advanced neural grid, such
as PINNs.

5. Conclusions
This paper delves into the inverse problems of anomalous diffusion on the surface.

For the inverse problems, RBF neural networks are primarily utilized to invert the relevant
parameters of anomalous diffusion on the surface. The GFDM is primarily employed
to discretely solve the fractional derivative model on the surface. The training database
for RBF neural networks to inverse the desired parameters is established by solving the
proposed time-fractional diffusion equation using the GFDM.

The results of the four examples show that the hybrid method can obtain the required
parameters quickly and accurately under different conditions. For GFDM, RMSE results
show that GFDM has the advantage of high calculation accuracy. And, because of the
factors of GFDM itself, it is more simplified and the calculation time is shorter than other
methods. For RBF neural networks, the inversion results show that it has high precision
in the inversion of different problems. And, because of the factor of RBF neural networks
itself, the inversion time of RBF neural networks is shorter than that of other methods.

For future research, there is a lack of studies on non-smooth, non-closed, and asym-
metrical surface models in this field, which warrants further investigation. In this paper,
we introduced the time-fractional model to define the anomalous diffusion problem on
the surface. However, other models, such as the space fractional derivative model or the
space-time fractional derivative model, can also be used to describe anomalous diffusion
on the surface.
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