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Abstract: The impacts of hydropower plants and their reservoirs on floodplains can potentially create
new environmental filters and reduce the exchange of organisms and access to habitats. In this study,
we aimed to compare the fish assemblage associated with aquatic macrophytes between floodplain
lakes under natural conditions and a regulated floodplain lake in the Environmental Protection Area
of Rio Pandeiros, Brazil. We tested the hypothesis that in the regulated floodplain lake, there would
be a lower richness and a greater of abundance of macrophytes and fish than is natural. We also
verified the influence of the seasons, macrophyte bank richness, and biomass on the fish assemblage
abundance. The fish assemblages differed between the regulated and natural floodplains due to the
higher richness and abundance of fish in the natural floodplains. The presence of non-native and
generalist species in the regulated floodplain influenced the dissimilarity between the floodplains.
Migratory species have been found only in natural floodplains. Fish abundance was negatively
related to macrophyte richness on the regulated lake. There was a lower fish abundance and
macrophyte richness in the regulated lake. There was no evidence that macrophyte biomass affected
the abundance and richness of fishes. Our results confirm that the Pandeiros small hydroelectric dam
affects the fishes’ assemblage and the macrophyte community, since the regulated floodplain lake
has a lower richness and abundance of fish. The regulated floodplain lake is connected to a reservoir
created by a small hydroelectric dam, which will be removed in the coming years. The removal of
this dam might change these dynamics, and this must be evaluated when the change is implemented.

Keywords: fish diversity; small hydroelectric dam; macrophytes diversity; reservoir; river regulation

1. Introduction

Floodplains are areas of low-lying land subjected to inundation by lateral overflow
water from the rivers or lakes with which they are associated [1]. During floods, the
main channel connects with the floodplains and promotes the exchange of nutrients and
organisms, facilitating access to additional habitats [2–4]. Additionally, floods are a natural
disturbance in flowing waters that play an important role in determining the structure of
the river community [5,6]. Floods reduce the effect of competitive interactions and permit
the coexistence of the species, increasing species diversity [3,7]. Therefore, maintaining
biological diversity in floodplains depends mainly on periodic inundations and drought
(flood pulse) [3,5,8].

Floodplains are highly biodiverse areas, being refugia for animals, such as fish and
aquatic macrophytes [1,9,10]. They present important habitats for feeding, reproduction,
and refuge in all life stages of riverine fishes [3,11–13]. Lower predation pressure and
higher food availability in floodplains contribute to the high diversity of fishes [14–16] and
to their use as the main nursery area for migratory neotropical fish [17].
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Macrophytes are usually abundant and have high species richness in
floodplains [18–20]. In these areas, the hydrological regime defines the life history strate-
gies of macrophytes [21–23]. During the rainy season, vegetative reproduction ensures
the fast colonization of the available areas [21]. When the water level decreases, most of
the macrophytes’ development stops, and they pass through the dry season as seeds or
spores [24,25]. Some species present higher biomass during the rainy season [26–28], while
for others this is in the dry season [23,29]. Macrophytes act as ecosystem engineers by
trapping sediments and altering flow dynamics. They are also significant components of
heterogeneity and habitat complexity [30–32]. Roots, leaves, and stems act as visual and
physical barriers, providing shelter from predation [33,34]. Macrophytes provide habitat
and food resources for many organisms, such as fishes [32].

Dams cause several negative impacts on aquatic environments, such as hydrological
alterations and the loss of aquatic biodiversity [35–37]. Most dams’ impacts in floodplains
are related to downstream changes in the natural flow regime by the flow regulation [38,39].
However, reservoirs can also cause a partial or total flood of floodplains upstream [40,41],
affecting their functioning as these ecosystems begin to have the water level controlled by
the dam operation [42]. In terms of small hydroelectric power plants, habitat fragmentation,
the homogenization of the ichthyofauna [43] and local and regional disturbances of high
magnitude for the aquatic environment [44] are some of the known impacts.

The Brazilian electric matrix is mostly based on hydroelectric plants, which account
for about 60% of all electricity produced in the country [45]. In the Sao Francisco River, the
third-most important river basin in Brazil, fishery collapses have been linked to changes
in flood intensity and frequency [46], which seem to be related to flow regulation and its
impacts on the reproduction and recruitment of migratory fish. In this scenario, functional
floodplains play a determinant role [47,48].

Considering the impact of small hydroelectric power plants, we aimed to compare
the fish assemblage composition and structure (richness and abundance) associated with
aquatic macrophytes between natural floodplains downstream of a small hydropower
dam and the floodplain directly affected by its reservoir (regulated floodplain). We also
verified seasonal differences in fish assemblages in both floodplains. We hypothesized the
following: (1) Fish richness and abundance and macrophytes richness will be higher in
the natural floodplain lakes than in the regulated floodplain, and seasonal effects will be
evident only in the natural one; (2) Macrophytes richness and biomass are the main drivers
of fish richness and abundance.

2. Material and Methods
2.1. Study Area

This study was carried out in the Pandeiros River, one of the most important flood-
plains of the upper-middle São Francisco River basin [49]. It is located in the northwest of
Minas Gerais state, Brazil, on the left bank of the São Francisco River, with an approximately
145 km length [50].

Pandeiros river floodplains range between 3000 ha (dry season) to 5000 ha (rainy
season) [51,52], and they are among the top priority areas for conservation in the neotropical
savannah (Cerrado). These areas are considered by state law to be of “Special Biological
Importance” due to their unique nature and high diversity [53]. This Environmental
Protection Area (EPA) is the largest sustainable use conservation unit in Minas Gerais state,
with approximately 393,000 ha [52].

The Pandeiros small hydropower dam was constructed inside the EPA in 1957 and
deactivated in 2007, due to the non-approval of its operating license [50,54]. The Pandeiros
reservoir is 280 ha, its dam is 9 m in height, and it has no fish passage facilities [55]. When
operational, the powerhouse had a power output of 4.2 MW [55,56]. Currently, since the
river flows only by the straight drop spillway, the Pandeiros dam acts as a physical barrier
to the river continuous flow. As a consequence of the hydropower dam’s deactivation,
downstream from the dam, the Pandeiros’ floodplain is susceptible to natural fluctuations,
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including the São Francisco River flood pulses near the confluence of the Pandeiros River.
However, following the reservoir formation upstream of the dam, a floodplain lake was
permanently connected to the river, and the dam currently regulates this environment,
guaranteeing a constant water level [54]. Water depth ranges from 66.5 to 70 cm at the
regulated lake and from 80 to 120 cm at the natural ones located downstream (personal
observation). Since the 2000s, the dam’s removal is being studied and is planned to be
held soon.

2.2. Data Collection

We sampled fishes and macrophytes in the regulated lake connected to the reser-
voir (15◦30′02.35′ ′ S, 44◦45′06.04′ ′ W) and four natural floodplain lakes in the region
known as Pandeiros swamp (Veio Juca: 15◦40′3.37′ ′ S, 44◦38′5.17′ ′ W, First: 15◦41′42.68′ ′ S,
44◦34′41.38′ ′ W, Geraldo: 15◦41′44.65′ ′ S, 44◦34′20.60′ ′ W, and Torre: 15◦40′4.35′ ′ S,
44◦37′6.18′ ′ W), located at about 15 km downstream the dam (Figure 1). Collections
were carried out in the dry season (July and September 2014) and in the rainy season
(January and February 2015). We sampled 22 macrophyte banks at the regulated floodplain
lake (12 in wet and 10 in dry seasons) and 49 at the natural floodplain lakes (29 in wet and
20 in dry seasons).
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Figure 1. Locations of the natural and regulated floodplain lakes sampled.

Fish were collected in macrophyte banks using a 4 m length and 1 m height trawl net
with a 5 mm mesh (between opposite knots). After sampling, we anesthetized, sacrificed,
and fixed the fishes in 10% formalin solution and then preserved them in 70% alcohol. We
identified the fishes in the laboratory.

For the taxonomical characterization and biomass estimation of each macrophyte bank
where the fishes were sampled, we used a PVC pipe 1 m2 quadrant. After being collected,
the macrophytes were separated, washed, and weighed (wet weight). In the laboratory, we
taxonomically identified and dried them in a drying oven (70 ◦C for 48 h) to obtain their
dry weight.
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2.3. Data Analysis

We calculated the species richness and created species accumulation curves to estimate
the total fish species captured at each lake using EstimateS 9.0 (Colwell, UK, 2013).

To evaluate possible differences in the fish assemblage of regulated and natural flood-
plain lakes and between seasons, we performed a non-metric multidimensional scaling
analysis (NMDS) using the Bray–Curtis index and an analysis of similarities (ANOSIM).
In case there were significant differences, to check which species contributed to this, we
evaluated the relative contribution of each fish species for the dissimilarity by conducting
the similarity percentage analysis (SIMPER). We used PRIMER to perform these analyses.

We tested the relationship between macrophyte richness and biomass with seasons
(wet or dry) and their condition (natural or regulated) using GLM modeled with Poisson
and Gaussian distribution, respectively. We tested the relationship between the richness
and numerical abundance of fishes with the biomass and richness of macrophytes and
the respective effects of the seasons (wet or dry) and their condition (natural or regulated)
using GLM modeled with quasi-Poisson and Gaussian distribution, respectively. We
standardized the variables before performing the GLMs. We used AICc for model selection
and presented the models with ∆AIC lower than 2. We conducted the analysis using
R version 4.0.4 with packages Stats and MuMin [57] (R Core Team, 2021).

3. Results

We sampled a total of 152 macrophytes banks of 11 species and eight families in the
natural and regulated floodplains. We found 113 macrophytes of nine species in the natural
floodplains and 39 macrophytes of four species in the regulated floodplain. Egeria sp.
(fixed submerged plants) and Salvinia spp. (free-floating plants) represented 47.7% of the
macrophyte abundance in natural floodplains. In the regulated floodplain, Chara sp. (fixed
submerged plants) and Sagittaria sp. (amphibian plants) together represented 92.31% of the
macrophyte abundance (Table 1). We captured a total of 2776 fish of 30 species, 14 families,
and six orders in the natural and regulated floodplains. We collected 459 fish of 9 species in
the regulated lake and 2317 fish of 30 species in the natural lakes (Table 2).

Table 1. Macrophyte species sampled at the natural floodplains (N) and regulated lake (R). Life form:
A—amphibian, FF—fixed floating, FL—free floating, Rf—rafted plant, and SF—fixed submerged. %
NF: percentage of the species in the NF. % AF: percentage of species in the AF.

Taxon Life Form N R % N % R

Alismataceae
Sagittaria sp. A 6 12 5.31% 30.77%

Araceae
Pistia stratiotes FL 3 - 2.65% -

Characeae
Chara sp. SF - 24 - 61.54%

Hydrocharitaceae
Elodea sp. SF 20 1 17.70% 2.56%
Egeria sp. SF 23 - 20.35% -

Nymphaeaceae
Nymphaea sp. FF 9 - 7.96% -
Onagraceae

Ludwigia spp. FF 15 - 13.27% -
Pontederiaceae

Eichhornia azurea FF 12 - 10.62% -
Eichhornia crassipes FL 2 - 1.77% -

Pontederia sp. Rf - 2 - 5.13%
Salviniaceae
Salvinia spp. FL 23 - 20.35% -

Total abundance 113 39 100.00% 100.00%
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Table 2. Fish species sampled at the regulated lake (R) and natural floodplains (N). 1 Non-native
species, 2 migratory species.

N
R

Taxon First Torre Geraldo Veio Juca

CHARACIFORMES
Acestrorhynchidae

Acestrorhynchus lacustres - - - 1 -
Characidae

Astyanax lacustris - - 5 28 -
Astyanax fasciatus 589 - - - -

Hyphessobrycon micropterus 62 50 9 662 8
Hemigrammus marginatus - 3 16 198 180

Moenkhausia costae 5 4 - 77 65
Orthospinus franciscensis 4 - - 49 -

Phenacogaster franciscoensis - - - 2 -
Psellogrammus kennedy - - 12 14 -

Roeboides xenodon 3 - - 2 -
Serrapinnus heterodon 1 - - 8 -

Serrapinnus piaba 52 26 7 136 4
Tetragonopterus franciscoensis 3 - - 6 -

Crenuchidae
Characidium spp. - - 2 9 13

Serrasalmidae
Metynnis maculatus 1 1 - 2 13 144

Myleus micans 3 - - 12 -
Anostomidae

Megaleporinus reinhardti 2 - - - 7 -
Megaleporinus obtusidens 2 - - - 1 -

Curimatella lepidura 5 - - 6 -
Steindachnerina elegans - - - 5 -

Erythrinidae
Hoplias malabaricus 1 - - 1 3

Triportheidae
Triportheus guentheri 1 - - - -

Cichliformes
Cichlidae

Astronotus spp. 12 - - - -
Crenicichla lepidota - - - 6 -

Cichlasoma sanctifranciscense 1 - 5 1 32
GYMNOTIFORMES

Sternopygidae
Eigenmannia virescens - 8 - 61 -
Sternopygus macrurus - - - 5 -

Gymnotidae
Gymnotus carapo - 1 - - -
SILURIFORMES

Loricariidae
Hypostomus sp - - - 1 -

SYNBRANCHIFORMES
Synbranchidae

Synbranchus marmoratus 1 2 - 28 -
CYPRINODONTIFORMES

Poeciliidae
Poecilia reticulata 1 12 - 30 9 10
Total abundance 756 94 88 1347 459

Total richness 17 7 9 27 9

The species accumulation curves from the natural lakes (First, Geraldo, Torre, and Veio
Juca floodplains) showed a gradual increase in the number of captured fish species as the
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number of sampled macrophyte banks increased, without a clear tendency for stabilization.
Conversely, the curve of the regulated lake presented a tendency to stabilize in the ninth
sample (Figure 2).
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Figure 2. Species accumulation curves for the sampled floodplains at Pandeiros River, Minas Gerais.

Fish species composition between the dry and rainy seasons for both regulated and
natural floodplain lakes had no difference (ANOSIM R = 1; p = 0.333; 999 permutations)
(Figure 3). However, fish assemblage was different among the two groups (ANOSIM R = 0.508;
p < 0.001; 999 permutations) (Figure 4). The species that most contributed to this differ-
ence were Hyphessobrycon micropterus, which was the most abundant species in natural
floodplains, and Hemigrammus marginatus e Metynnis maculatus, abundant in the regulated
lake (Table 3).
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Table 3. Similarity percentages (SIMPER) of fish species at the regulated lake (R) and natural
floodplain (N).

Species
Average Abundance

Contrib. % Cum. %
A N

Hyphessobrycon
micropterus 1.85 32.02 17.75 17.75

Hemigrammus
marginatus 33.83 10.21 17.70 35.45

Metynnis maculatus 31.52 1.32 17.54 52.98
Moenkhausia costae 12.57 5.28 7.81 60.80
Poecilia reticulata 8.92 2.71 6.01 66.81
Serrapinnus piaba 1.07 8.94 5.31 72.12

Eigenmannia
virescens 0.00 8.34 4.78 76.89

Astyanax fasciatus 0.00 8.07 4.62 81.52
Cichlasoma

sanctifranciscense 6.70 0.42 3.87 85.39

Synbranchus
marmoratus 0.00 5.39 3.09 88.48

Characidium spp. 2.96 1.67 2.25 90.73

The biomass of macrophytes did not vary between seasons or conditions, but their rich-
ness was greater in the unregulated lagoons (Table 4). Despite the regulated lake presenting
lower fish richness and abundance compared to the natural floodplain ones (Table 4), there
was no relationship between fish abundance or fish richness with macrophyte biomass
or season. However, while higher macrophyte richness was associated with higher fish
richness, especially for the natural floodplain lakes (Figure 5a), macrophyte richness was
negatively associated with fish abundance (Figure 5b).
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Table 4. Summary of best-ranked generalized linear models for macrophyte richness, fish richness,
and Fish abundance (* = p < 0.05; ** p < 0.01), + represents qualitative variables included in the model.

Models Inter. Condition S. Macrophyte R2 LogLikelihood AICc Delta AICc Weight

Macrophyte richness
0.93 + * 0.11 −107.12 218.4 0.00 0.62

Fish richness
1.96 + ** 0.14 −171.45 347.1 0.00 0.67
1.85 + 0.04 0.15 −171.10 348.6 1.49 0.32

Fish abundance
47.96 + ** 0.07 376.5 759.4 0.00 0.51
65.98 + ** −7.12 ** 0.09 375.81 760.2 0.87 0.33
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4. Discussion

Our results showed strong evidence that the connection with the reservoir promoted
significant changes in the fish composition and richness and in the diversity of macrophytes
compared to natural floodplain lakes. However, the seasonal effects were not evident.
Macrophytes biomass was not a predictor of fish richness or abundance, but at the nat-
ural floodplain, fish richness was associated with macrophyte richness. The complexity
added by a higher macrophyte richness may increase the habitats heterogeneity in the
floodplain [58] and it can provide the possibility of a higher fish richness. The greater
fish species richness in the natural floodplain is even more evident through the patterns
of the species accumulation curves. While the regional pool of species appears to have
already been represented in the regulated lake, new occurrences are still expected for the
natural floodplain. Despite the greater connectivity of the natural floodplains with the rest
basin being evident, the role of the reservoir connection as a reducer of fish diversity in the
regulated one cannot be neglected.

The whole natural flow regime for maintaining the high biodiversity of floodplain
macrophytes is well known [18,59,60]. Seasonal flow and flood pulses determine the con-
nectivity between the main channel and the natural floodplains [3,8,61]. Such diversity
has been associated with the intermediate disturbance hypothesis [62], since flood dis-
turbances may preclude competitive exclusion [7,63]. However, most of the described
impacts of dams on floodplains are related to the river regulation downstream of the
power plant [64,65]. In the present study, we observed similar effects through a permanent
connection with a small hydropower reservoir. Lakes without water level fluctuation may
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present a higher dominance of competitively superior aquatic macrophytes with lower
environmental requirements [20,66,67].

A partial explanation for the higher richness of fish in the natural floodplain is the
higher richness of macrophytes in these environments. Macrophytes increase the environ-
mental structural complexity, creating a range of available niches for fish [66,68]. Studies
have shown that higher fish diversity is found in environments with a greater structural
complexity provided by macrophytes [69–73]. Macrophytes benefit the structure of fish
assemblages by balancing predator foraging efficiency and prey shelter needs [74,75]. Ad-
ditionally, macrophytes may increase the food supply, the availability of substrate, and the
spawning area for some fish species [76–78]. Conversely, the lower richness and abundance
of fish at the regulated floodplain lake may relate to lower habitat heterogeneity and re-
source availability [79–81]. Additionally, the river stretch upstream of the Pandeiros dam
has fewer fish species than downstream where the natural floodplains are located [52,81],
so the fish pool differs among the regions.

Despite being subject to completely different hydrological regimes, both the natural
and the regulated floodplain showed no seasonal variation in the fish fauna associated
with macrophytes. Our results may have been affected by an unusual drought during the
period of the study [82]. Therefore, we suggest that new samples should be carried out in
the area in years with different climate conditions to confirm this pattern.

As in previous studies, e.g., [83–88], we also found different fish assemblages (in
terms of richness and abundance) in the studied areas due to the damming. The dissimi-
larity between the regulated and natural floodplains occurred mainly due to the species
Hemigrammus marginatus (generalist species) and Metynnis maculatus (non-native species)
in the regulated floodplain and Hyphessobrycon micropterus (generalist species) in the natural
floodplains. The creation of a reservoir has been associated with a higher proliferation of
invasive generalist and non-native fish species [38,83,86,89,90]. This process occurs due to
the ability of generalist species to withstand changes in the flow [91]. Invasive non-native
fish species are favored in dammed habitats because they have broad environmental toler-
ances [92,93]. Additionally, the presence of invasive non-native species has been related to
the suppression of natural disturbance regimes and the homogeneity of the habitat [94,95].
Metynnis. maculatus is a non-native species in the São Francisco River basin [96], instead
being native to the Pantanal Matogrossense, a Brazilian swamp [97]. This species has
rapid colonization capacity, early maturation, continuous reproduction, and small eggs [72],
which are important characteristics for its success in the artificial environment created after
the formation of the reservoir.

Although several studies found a relationship between macrophytes biomass and fish
assemblages [69,72,73,98], we found that the biomass of macrophytes was unrelated to both
the abundance and richness of fish. However, fish richness increased with macrophyte
richness, but such a pattern was evident only for the natural floodplain. At the regulated
one, the regional fish species pool, reduced by the reservoir creation, may limit the number
of species in richer macrophyte banks. Interestingly, macrophyte richness was negatively
related to fish abundance. It may be associated with the occurrence of floating macrophyte
species, which, together with submerged species in floodplain lakes, cause lower fish
abundance. Floating macrophytes harbor other life forms which can impose some fish
sampling difficulties [69].

In conclusion, the Pandeiros small hydroelectric dam seems to directly affect the fish
and the macrophyte community of the artificial floodplain lake created after the formation
of the reservoir. Our results confirm our hypothesis that the fish richness and abundance
and macrophytes richness are higher in the natural floodplain lakes than in the regulated
floodplain. Therefore, we corroborate the literature regarding the impacts of the dam on the
aquatic biodiversity and the role of the natural flow regime in the functioning of floodplains
and the whole aquatic ecosystem. The removal of the Pandeiros dam, which is planned
in the next few years, and the following restoration of the local natural flow regime, may
allow the recovery of the currently regulated floodplain, including their macrophyte banks
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and associated fish assemblages. The removal must take into consideration the whole local
and regional environment, and it should be properly monitored over the coming years.
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