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Abstract: This article presents the results of a two-stage study: the first stage involved assessing the
dependence of the increase or decrease in the concentration of volatile fatty acids (VFAs) on external
factors and then assessing the relationship between the VFA concentration in the supernatant after
fermentation and the processing characteristics (temperature, mixing mode, alkalinity, pH, nitrogen
and phosphorus content). The greatest increase in VFAs (content up to 285 mg/L in the supernatant)
was achieved at a temperature in the range of 28 to 38 ◦C with constant mixing of the sludge. Based
on the results of the second stage, a conclusion was made on the efficiency of using a particular
substrate depending on the concentration of phosphorus phosphates in the incoming wastewater.
The study results showed that 7.54 mg/L of phosphorus can be removed with a given probability
(for activated sludge, raw sludge and wastewater). It is recommended to compensate for the excess
of this concentration by dosing the acetic acid solution at a rate of 3800 meq/L of VFA per 1 mg/L
of phosphorus phosphates. The literature does not contain any results of parallel studies of the
operation of a controlled bioreactor with artificial external feeding and acidified VFA. The results
of the study can be applied in planning sludge acidification systems in the technological scheme of
wastewater treatment and sludge processing.

Keywords: wastewater treatment; phosphorus removal; prefermentation; easily oxidizable organic
matter; volatile fatty acids

1. Introduction

Eutrophication is a predominantly anthropogenic phenomenon that affects aquatic
biodiversity worldwide. Eutrophication is caused by a significant increase in nutrients
(mostly nitrogen and phosphorus), which results in an increase in the productivity of
aquatic ecosystems due to the intensive growth of microorganisms, mainly blue-green
algae. The limiting factor of the development of algal blooms in water bodies is the
concentration of soluble phosphorus. This means that the intensity of the eutrophication
can be controlled by the efficient removal of phosphorus (P-removal) [1,2]. However, stable
and efficient P-removal, as a rule, requires high costs.

Phosphorus (P) can be removed from wastewater by means of chemical treatment,
biological treatment or a combination of biological and chemical methods.

Chemical P-removal considers the application of aluminum and iron salts as reagents.
The use of lime increases the pH of the effluent water, which goes beyond the permissible
limits, so it does not have frequent implementation. The chemicals can be input at several
points of treatment sequence: before the primary sedimentation (pre-sedimentation); within
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the secondary treatment; before the tertiary treatment facilities (post-sedimentation); and
to the return flows from the sludge treatment facilities [3].

P-removal has a strong link to the activity of polyphosphate-accumulating organisms
(PAOs). Under anaerobic conditions, these bacteria consume acetate and propionate, storing
them in the form of polyhydroxyalkanoates (PHAs).

At the same time, the formation of orthophosphates occurs because of the accu-
mulation of reserve substances due to the energy released during the decomposition of
polyphosphates. Under aerobic conditions, PAOs use energy in the form of PHAs and grow
by consuming phosphates. As a result, the polyphosphate accumulated in the cells is being
removed with excessive activated sludge from the treatment facilities. The aerobic and
anaerobic zones should be separated within the aerobic sludge reactor (ASR) to implement
biological P-removal. The anaerobic zone is often called the phosphorus removal zone;
however, it is aimed at the release of phosphates into wastewater. To this end, a ratio of at
least 15 g of biological oxygen demand (BOD) per 1 g of phosphorus (P) should be provided
in the influent wastewater. In this regard, technological schemes with biological P-removal
may have different modifications.

The biological and chemical methods of P-removal mean a combination of technologi-
cal solutions inherent in the biological removal process in the ASR and the introduction
of appropriate methods in cases of low organic matter concentration. In other words, it
means that the BOD value is the limiting factor, which directly affects the stability of the
biological P-removal.

In recent years, a large number of studies have been conducted and new technologies
have been proposed for improved wastewater treatment from phosphorus compounds.
The study in [4] proposes a method for combined wastewater treatment from phosphorus
compounds and denitrification using a new type of sulfur–siderite composite ReF (SSCReF).
By using SSCReF to construct packed-bed reactors, the highest denitrification and dephos-
phorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt %
siderite), respectively.

Paper [5] reports on the use of a new anode membrane (defective UiO-66 (D-UiO-
66)/Graphite/Polyvinylidene fluoride (PVDF)) with zirconium, which enables one to
achieve high efficiency in wastewater treatment, including removal of difficult-to-remove
micropollutants such as antibiotics and phosphate-containing organic pollutants. A recent
study [6] is devoted to the same issue. An electroactive metal–organic framework/carbon
nanotube membrane has been developed that can retain most common antibiotics (tetracy-
cline, norfloxacin, sulfamethoxazole, sulfamethazine) with an efficiency of up to 99.3%.

In cases of low BOD in the influent wastewater, the following measures can be taken:
the introduction of an external carbon source [7], excluding primary sedimentation from
the treatment sequence, or the acidification of raw sludge.

The introduction of an external carbon source, however, inevitably leads to an increase
in operating costs for secondary treatment and requires the installation of special chemical
facilities operating with hazardous compounds (acetic acid, methanol, etc.). Wastewater
treatment without preliminary sedimentation leads to a decrease in the sludge retention
time (SRT) and its excessive growth. It also requires additional oxidation of organic matter
and nitrogen compounds, which results in higher operation costs for aeration [8].

Thus, the most promising method to increase the BOD value is the use of metabolic
products from the first stage of the anaerobic digestion of sludge [9,10]. Within this study,
improvement of the efficiency and stability of biological P-removal by means of raw sludge
acidification will be considered [11–14]. The research will be focused on VFA formation,
which can significantly increase the efficiency of phosphate-accumulating bacteria, with
the following comparison to the introduction of pure acetic acid into the ASR.

Active research of acidification within wastewater treatment began in the 2010s, when
more than 25 articles on this topic began to be published per year [15]. However, a literature
review showed an insufficient number of studies carried out to date, despite the benefits of
the technology. Acidification is mostly considered as part of sludge treatment. The study
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in [16] proposes innovative approaches to producing hydrogen fuel from sludge using
acidification. As a result of sludge pre-treatment, the efficiency of obtaining free nitrous
acid was increased.

Article [17] focuses on the preliminary fermentation to increase the methane yield
during sludge anaerobic digestion. The polyacrylamide degradation efficiency increased
from 30.6% to 80.1% under the optimal alkaline pre-fermentation condition (pH 10 for 12 d).
Polyacrylamide strongly adheres to organic matter in sewage sludge (e.g., proteins) and sig-
nificantly reduces the interaction between functional acidifying microorganisms and sludge
substances. Alkaline fermentation breaks down long chains of polyacrylamide, segmenting
them into individual short chains, which in turn affects the bonds between polyacrylamide
and sludge substances, breaking them down, which increases the bioavailability of the
sludge. Some recent works are devoted to the study of optimal technological parameters
that increase the efficiency of preliminary fermentation [18–22]. Considering enzymes, a
biocatalyst plays an important role in anaerobic digestion [23], which may also increase the
VFA production and be a potential direction for future research. Another study was aimed
at investigating the effect of various microorganisms on the VFA output concentration [24].
Some researchers are also considering the possibility of using this technology to increase
the content of organic matter for industrial wastewater treatment [25,26]. However, the
number of comprehensive studies is limited. In this regard, the current research will be
aimed at studying the acidification potential and the effect of preliminary fermentation on
P-removal from wastewater. The literature does not contain any results of parallel studies
on the operation of a controlled bioreactor with artificial external feeding and acidified VFA.

2. Materials and Methods

The study was carried out in lab-scale conditions with wastewater and sludge samples
obtained from existing wastewater treatment plants (WWTPs). The first part of the study
investigates and compares acidification under variable conditions on the sludge samples
from different WWTPs. Currently, researchers may perform comprehensive studies of
acidification processes at WWTPs [27–30], but the results of the studies typically relate to a
single type of sludge.

The current study included two stages. The purpose of the first stage of research was
to study the effect of the technological parameters of the first step of the studied sludge’s
anaerobic digestion on the efficiency of VFA formation. For this part, four sludge samples
from various WWTPs were taken. At the second stage of research, the P-removal efficiency
was estimated by means of dosing a VFA solution from the sludge selected at the first stage
of the study. Additionally, the study reveals the treatment efficiency when dosing a solution
of acetic acid related to a constant model operating without an additional substrate.

Within the first stage of the study, laboratory experiments were carried out on the
digestion of wastewater sludge (raw sludge from primary clarifiers) in plastic containers,
which act as acidifiers or primary sedimentation tanks (Figure 1).

The sludge samples taken from primary clarifiers of the real WWTPs were placed in
plastic containers (volume of 1 L) acting as acidifiers under variable temperature conditions
from t = 14 to 30 ◦C. The temperature conditions of the fermented sludge were kept by
means of a WTW TS 608/2-i thermostat (Xylem Analytics, San Diego, CA, USA); for heating,
an AQUAEL cylindrical heater (AQUAEL, Warsaw, Poland) was used. Temperatures above
35 ◦C were not considered within the research since such conditions within WWTPs’
operation lead to high operating costs. Also, some of the samples studied were mixed
using magnetic stirrers. Based on the design features of the primary sedimentation tanks,
the overlapping of tanks (acidifiers) in the upper part was not provided.

In the initial and fermented sludge, the following parameters were determined: tem-
perature, pH, concentrations of VFA (CVFA), ammonium nitrogen (N-NH4), phosphorus
(P-PO4), and alkalinity. In the fermented sludge, measurement was carried out twice
a week.
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Figure 1. Tanks with test sludge from primary sedimentation tanks.

A HANNA Edge instrument with a pH sensor (Hanna Instruments, Woonsocket, RI,
USA) was used to measure the temperature, ◦C, and pH.

CVFA in the acetic acid was determined using the Hach Lange DR6000 instrument
(Hach, Loveland, CO, USA). The esterification of carboxylic acids in the samples was carried
out with the subsequent determination of esters by reaction with ferric hydroxamate.

N-NH4 was determined by means of the LCK 302/LCK 303 cuvette test (Hach,
Loveland, CO, USA) because of its accuracy and easy application. The essence of the
method is that ammonium ions react at pH 12.6 with hypochlorite ions and salicylate ions
in the presence of sodium nitroprusside as a catalyst for the formation of indophenol blue
(ISO 7150-1 [31], DIN 38406E5-1 [32], UNI 11669:2017 [33]).

P-PO4 was determined based on the orthophosphate reaction with molybdate in an
acidic medium to form a mixed phosphate–molybdate complex. The ascorbic acid then
reduces the complex, which gives the intense blue color of molybdenum, using Powder
Pillows reagents (Hach, Loveland, CO, USA) with a measurement range of 0.02–2.5 mg/L.

Alkalinity was determined by titration of a water sample with a solution of hydrochlo-
ric acid before the color transition of the methyl orange indicator (alkalinity according to
methyl orange). When titrating the water samples with a pH of 8.3 to 4.5 in the presence of
an indicator providing a color transition, reactions occur between strong acid and hydrogen
carbonate ions.

The second stage of the experiment was carried out on an automated laboratory
unit—a bioreactor fermenter (Figure 2). The bioreactor (Yocell Biotechnology, Qingdao,
China) is an 11 L borsilicate glass reaction tank with automated control of liquid, air, mixing
rate, and temperature, which is also equipped with a module for analyzing the composition
of the exhaust gas mixture (the module was not used in this work). The bioreactor operated
in a combined mode with a separate anaerobic tank, which is similar to an anaerobic zone
of an activated sludge reactor with the implemented treatment scheme of the University of
Cape Town (UCT).
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Figure 2. Laboratory reactor used in the wastewater treatment efficiency evaluation phase.

The supply and discharge of wastewater, as well as the interconnection between the
reactor compartments, was carried out by means of peristaltic pumps.

The bioreactor is equipped with an automated data acquisition system for dissolved
oxygen concentration (DO), liquid temperature, foam level, and pH. DO and pH were
monitored using high-precision optical sensors—Hamilton VisiFerm DO and Hamilton
Polilyte Plus pH ARC (Hamilton Company, Reno, NV, USA).

Concentrations of nitrogen and phosphorus compounds were measured using HACH
Lange DR6000, and BOD was measured using WTW OxiTOP-IDS (Xylem Analytics, San
Diego, CA, USA). The scheme of bioreactor operation is shown in Figure 3.
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An experiment was carried out on real clarified wastewater from the existing WWTPs
and synthesized wastewater prepared based on peptone with the addition of nitrogen
and phosphorus salts. To verify the reproducibility of the results of the experiment on
real and synthesized wastewater, a nonparametric analysis using the Monte Carlo method
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was performed. The experiment was carried out for 45 days, and chemical analyses were
performed five times a week. The average characteristics of the incoming wastewater are
presented in Table 1.

Table 1. Average characteristics of influent.

Parameter Minimum Medium Maximum

BOD [mgO2/L] 99 109 118
Suspended solids [mg/L] 77.24 94.94 109.19

P-PO4 [mg/L] 7.7 8.17 8.61
N-NH4 [mg/L] 18.95 25.25 29.58

A solution of acetic acid (10%) and supernatant water from the acidifier tank after
sludge fermentation was used as an additional carbon substrate. Table 2 shows the average
BOD and VFA content in the additional substrates.

Table 2. Average content of organic matter in the additional substrate.

Parameter Acidification Acetic Acid

BOD [mgO2/L] 432.1 860
VFA [mg/L] 2850 4677

3. Results

Figures 4–12 present the results of the preliminary fermentation study.
The CVFA gradually decreases, reaching the initial values because the hydrogen fer-

mentation of the sludge reaches its maximum and transforms into methane fermentation.
Within sludge retention in anaerobic conditions, alkalinity decreases to the minimum

values of 14.23 meq/L (t = 14 ◦C), 11.38 meq/L (t = 20 ± 1 ◦C), and 20.87 meq/L (t = 30 ◦C),
respectively. During the intensive VFA formation, only complex organic compounds are
present in the sample, which is characterized by minimum values of HCO3

− concentration.
As a result of energy production due to the conversion of acetic acid by obligate anaerobes,
which perform alkaline fermentation, an increase in the content of HCO3

− is witnessed.
During the observation, some of the samples do not show a significant change in alkalinity.
This is due to slightly lower VFA concentrations compared to other samples studied, of
which the fluctuations in alkalinity are more pronounced [34,35].
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The concentration of hydrogen ions is directly dependent on the origin of the influent
wastewater. The optimal pH value is in the range of 5.5 to 7. The importance of the activity
of hydrogen ions has a significant impact on the vital process of microorganisms, which
are responsible for anaerobic digestion. In addition, a sharp change in the pH level has a
negative impact on the rate of biochemical processes within the environment [15].

Figures 7 and 8 show a trend in the pH change in the process of anaerobic digestion
of the sludge under research. The predominance of H+ ions and, accordingly, a decrease
in the concentration of hydrogen ions is explained by the formation of volatile fatty acids.
Differences in pH dynamics during fermentation are associated with different microbial
activity with different initial substrates.

The P-PO4 concentration increases on average by 1.3–2 times relative to the initial
values during the first five days of sludge retention in anaerobic conditions—a low back-
ground of increase in phosphorus compounds is created. Subsequently, longer sludge
fermentation leads to a more intensive release of phosphorus. Considering fluctuations in
the N-NH4 concentration during the sludge acidification, an increase of 1.5–2 times relative
to the initial values, on average, is revealed.

Mixing is another factor of influence on the concentration of the VFAs formed. To
maintain the stability of the anaerobic digestion, constant mixing of raw sludge and wastew-
ater should be provided. Mixing ensures the homogeneity of the environment, its uniform
distribution throughout the volume of the tank, and prevents the formation of a crust in
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the upper part of the acid-forming mass. Overall, this means the best conditions for the
development of bacteria and the course of the process.

Figures 13–16 reveals the research results of the P-removal. Since the lab bench
operated according to a modified UCT scheme (combining plug-flow and sequenced
principles of operation), phosphorus compounds and nitrogen compounds (ammonium
nitrogen, nitrates, and nitrites) were considered as output parameters. However, the main
interest is the efficiency of P-PO4 removal. During the experiment, 30 chemical analyses
were performed on the main parameters for three modes of operation: (1) with acetate
supply; (2) with the supply of VFA solution obtained during sediment fermentation; and
(3) without an additional organic substrate.
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At the second stage of the study, the data obtained from the analysis were processed
as an assessment of the presence of outliers from the boxplots for all measured indicators.

The magnitude charts show the presence of data outliers, but the magnitude is not large
enough to require the exclusion of these outliers. In this case, emissions are understood as
values that go beyond the boundaries of the one-and-a-half interquartile interval.

Checking the normality of distribution using the Shapiro–Wilk test is required since
visually there are doubts about the characteristics of the treated water. The null hypothesis
H0 of the Shapiro–Wilk test is that a random variable whose sample is known is distributed
according to a normal law. An alternative hypothesis for H1 is that the distribution law
is not normal. The Shapiro–Wilk analysis showed that the distributions of all samples
are normal.

Figure 17 shows normalized histograms of P-PO4 values in treated wastewater. A
bootstrap analysis was based on the Monte Carlo method to find the limit of the feasibility
of the VFA substrate.
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According to the data considered, the average value of phosphates in treated wastew-
ater with VFA is higher than in wastewater with acetate. A one-sided statistical analysis
was performed according to Student’s criterion, according to the results of which the null
hypotheses, regarding the sample averages of the general sets of the results of the purifica-
tion assays with VFA and acetate, were rejected for the values of BOD and P-PO4. Thus,
with a high probability, the average purification sets with VFA are still higher than with
acetate. At the same time, the median value of the difference in the quality of treatment
was only 0.045 mg/L with a phosphate detection limit of 0.05 mg/L (that is, the median
difference is less than the detection limit).

It is important to compare the results of the study with the work carried out recently.
First of all, it is interesting to compare the obtained acidification efficiency with the pro-
duction tests carried out at the Kuryanovsk WWTP [27,29,30]. The characteristics of the
Kuryanovsk sludge and the sludge considered in this article are similar, which indicates a
possible similar acidification potential.

In studies [27,29,30], acidification in separate acidification facilities was carried out on
sludge with an ash content of about 40% and enabled us to achieve an increase in VFA by
more than 4 times under natural temperature conditions. This is commensurate with the
results of the present study, according to which the increase reached a threefold increase
with a lower acidification potential of the sludge.

This once again emphasizes the need to measure the acidification potential of the
sludge each time before planning the implementation of the corresponding technology,
since the economic efficiency of the measures may raise questions.

4. Conclusions

Within the research, a study of two technological processes typical for municipal
WWTPs was carried out: acidification of raw sludge and subsequent biological P-removal.
Based on the results of the research, the following conclusions can be drawn:

1. The largest increase in VFA in the raw sludge liquid during acidification is observed at
temperatures in the range from 28 to 38 ◦C, while the increase relative to acidification
at a normal ambient temperature (from 19 to 24 ◦C) is, in some cases, about 30%. At
the same time, the results revealed that the maximum amount of organic matter is
not always associated with an increase in the temperature of the fermented sludge.
It also depends on the acidification potential of the incoming wastewater and raw
sludge from the WWTP. Potential assessment is required each time it is planned
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to implement sludge acidification measures, especially during the WWTP upgrade.
Obviously, the need for sludge heating in most cases cannot be justified from an
economic point of view; however, with an acceptable potential release of VFA at
neutral temperatures, acidification will be justified. At the same time, in some cases
sludge heating can be justified—such as in systems that already provide wastewater
heating (for example, in the case of wastewater treatment in the northern regions).
These decisions are of a single nature but should be taken into account, among other
things, when calculating ASR.

2. The amount of VFAs formed during acidification is uniquely correlated with the in-
tensity of mixing of the fermented sludge. The intensity of stirred digestion increased
by more than 45% compared to non-stirring digestion. When designing sludge acidifi-
cation, it is necessary to provide for the costs of installation and operation of mixing
devices; the costs should also be considered in the life cycle of the WWTP.

3. The amount of P-PO4 in wastewater without the introduction of an additional sub-
strate during treatment turned out to be 35% higher than with the addition of acetate.

4. If the results of the assessment of the acidification potential of sludge and wastewater
are positive, it is recommended to carry out a comparative assessment of the costs
of chemical phosphorus removal. The results of the study showed that 7.54 mg/L
of phosphorus (for active sludge, raw sludge, and wastewater) could be removed
with a specified probability. It is recommended to compensate for the excess of this
concentration by dosing acetic acid solution at a rate of 3800 meq/L of VFA per
1 mg/L of phosphorus phosphates. At the same time, the justified use of acetic acid
seems to be equal to up to 7% of the capacity of treatment facilities. If it is necessary
to dose a larger amount of the reagent, the chemical removal of phosphorus with a
coagulant is more reasonable.
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