Flat Bands in Network Superstructures of Atomic Chains
Abstract
:1. Introduction
2. Network Superstructures Hosting Flat Bands
3. Tight-Binding Analysis
3.1. General Recursion Relation
3.2. Network Superstructures with Dot-Type Links
3.3. Network Superstructures with Triangle-Type Links
3.4. Triangle-Type Link with Different Hopping Amplitudes
3.5. Effect of the Next-Nearest-Neighbor Hopping Processes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leykam, D.; Andreanov, A.; Flach, S. Artificial flat band systems: From lattice models to experiments. Adv. Phys. X 2018, 3, 1473052. [Google Scholar] [CrossRef]
- Rhim, J.-W.; Yang, B.-J. Singular flat bands. Adv. Phys. X 2021, 6, 1901606. [Google Scholar] [CrossRef]
- Wang, F.; Ran, Y. Nearly flat band with chern number c= 2 on the dice lattice. Phys. Rev. B 2011, 84, 241103. [Google Scholar] [CrossRef] [Green Version]
- Volovik, G. The fermi condensate near the saddle point and in the vortex core. JETP Lett. 1994, 59, 830. [Google Scholar]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Chiu, C.-L.; Lee, J.Y.; Farahi, G.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; Yazdani, A. Spectroscopy of a tunable moiré system with a correlated and topological flat band. Nat. Commun. 2021, 12, 2732. [Google Scholar] [CrossRef]
- Balents, L.; Dean, C.R.; Efetov, D.K.; Young, A.F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 2020, 16, 725. [Google Scholar] [CrossRef]
- Peri, V.; Song, Z.-D.; Bernevig, B.A.; Huber, S.D. Fragile topology and flat-band superconductivity in the strong-coupling regime. Phys. Rev. Lett. 2021, 126, 027002. [Google Scholar] [CrossRef] [PubMed]
- Yudin, D.; Hirschmeier, D.; Hafermann, H.; Eriksson, O.; Lichtenstein, A.I.; Katsnelson, M.I. Fermi condensation near van hove singularities within the hubbard model on the triangular lattice. Phys. Rev. Lett. 2014, 112, 070403. [Google Scholar] [CrossRef] [Green Version]
- Volovik, G.E. Graphite, graphene, and the flat band superconductivity. JETP Lett. 2018, 107, 516. [Google Scholar] [CrossRef] [Green Version]
- Aoki, H. Theoretical possibilities for flat band superconductivity. J. Supercond. Nov. Magn. 2020, 33, 2341. [Google Scholar] [CrossRef]
- Kononov, A.; Endres, M.; Abulizi, G.; Qu, K.; Yan, J.; Mandrus, D.G.; Watanabe, K.; Taniguchi, T.; Schönenberger, C. Superconductivity in type-ii weyl-semimetal wte2 induced by a normal metal contact. J. Appl. Phys. 2021, 129, 113903. [Google Scholar] [CrossRef]
- Mielke, A. Ferromagnetism in the hubbard model and hund’s rule. Phys. Lett. A 1993, 174, 443. [Google Scholar] [CrossRef]
- Tasaki, H. From nagaoka’s ferromagnetism to flat-band ferromagnetism and beyond: An introduction to ferromagnetism in the hubbard model. Prog. Theor. Phys. 1998, 99, 489. [Google Scholar] [CrossRef] [Green Version]
- Mielke, A. Stability of ferromagnetism in hubbard models with degenerate single-particle ground states. J. Phys. A Math. Gen. 1999, 32, 8411. [Google Scholar] [CrossRef] [Green Version]
- Hase, I.; Yanagisawa, T.; Aiura, Y.; Kawashima, K. Possibility of flat-band ferromagnetism in hole-doped pyrochlore oxides sn 2 nb 2 o 7 and sn 2 ta 2 o 7. Phys. Rev. Lett. 2018, 120, 196401. [Google Scholar] [CrossRef]
- You, J.-Y.; Gu, B.; Su, G. Flat band and hole-induced ferromagnetism in a novel carbon monolayer. Sci. Rep. 2019, 9, 20116. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Ge, J.; Rademaker, L.; Watanabe, K.; Taniguchi, T.; Abanin, D.A.; Young, A.F. Hofstadter subband ferromagnetism and symmetry-broken chern insulators in twisted bilayer graphene. Nat. Phys. 2021, 17, 478. [Google Scholar] [CrossRef]
- Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Bergman, D.; Balents, L.; Sarma, S.D. Flat bands and wigner crystallization in the honeycomb optical lattice. Phys. Rev. Lett. 2007, 99, 070401. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xu, S.; Xie, Y.; Zhong, C.; Wu, C.; Zhang, S. Ferromagnetism and wigner crystallization in kagome graphene and related structures. Phys. Rev. B 2018, 98, 035135. [Google Scholar] [CrossRef]
- Jaworowski, B.; Güçlü, A.D.; Kaczmarkiewicz, P.; Kupczyński, M.; Potasz, P.; Wójs, A. Wigner crystallization in topological flat bands. New J. Phys. 2018, 20, 063023. [Google Scholar] [CrossRef] [Green Version]
- Rhim, J.-W.; Jain, J.K.; Park, K. Analytical theory of strongly correlated wigner crystals in the lowest landau level. Phys. Rev. B 2015, 92, 121103. [Google Scholar] [CrossRef] [Green Version]
- Tang, E.; Mei, J.-W.; Wen, X.-G. High-temperature fractional quantum hall states. Phys. Rev. Lett. 2011, 106, 236802. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Gu, Z.; Katsura, H.; Sarma, S.D. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 2011, 106, 236803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neupert, T.; Santos, L.; Chamon, C.; Mudry, C. Fractional quantum hall states at zero magnetic field. Phys. Rev. Lett. 2011, 106, 236804. [Google Scholar] [CrossRef] [Green Version]
- Sheng, D.; Gu, Z.-C.; Sun, K.; Sheng, L. Fractional quantum hall effect in the absence of landau levels. Nat. Commun. 2011, 2, 389. [Google Scholar] [CrossRef] [Green Version]
- Regnault, N.; Bernevig, B.A. Fractional chern insulator. Phys. Rev. X 2011, 1, 021014. [Google Scholar] [CrossRef] [Green Version]
- Weeks, C.; Franz, M. Flat bands with nontrivial topology in three dimensions. Phys. Rev. B 2012, 85, 041104. [Google Scholar] [CrossRef] [Green Version]
- Trescher, M.; Bergholtz, E.J. Flat bands with higher chern number in pyrochlore slabs. Phys. Rev. B 2012, 86, 241111. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Gu, Z.-C.; Sun, K.; Sarma, S.D. Topological flat band models with arbitrary chern numbers. Phys. Rev. B 2012, 86, 241112. [Google Scholar] [CrossRef]
- Liu, Z.; Bergholtz, E.J.; Fan, H.; Läuchli, A.M. Fractional chern insulators in topological flat bands with higher chern number. Phys. Rev. Lett. 2012, 109, 186805. [Google Scholar] [CrossRef] [Green Version]
- Bergholtz, E.J.; Liu, Z. Topological flat band models and fractional chern insulators. Int. J. Mod. Phys. B 2013, 27, 1330017. [Google Scholar] [CrossRef] [Green Version]
- Rhim, J.-W.; Kim, K.; Yang, B.-J. Quantum distance and anomalous landau levels of flat bands. Nature 2020, 584, 59. [Google Scholar] [CrossRef]
- Hwang, Y.; Rhim, J.-W.; Yang, B.-J. Geometric characterization of anomalous landau levels of isolated flat bands. Nat. Commun. 2012, 12, 6433. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.-G.; Cho, D.; Park, S.Y.; Rhim, J.W. Bulk-interface correspondence from quantum distance in flat band systems. arXiv 2022, arXiv:2203.14576. [Google Scholar] [CrossRef]
- Ma, J.; Rhim, J.-W.; Tang, L.; Xia, S.; Wang, H.; Zheng, X.; Xia, S.; Song, D.; Hu, Y.; Li, Y.; et al. Directobservation of flatband loop states arising from nontrivial real-space topology. Phys. Rev. Lett. 2020, 124, 183901. [Google Scholar] [CrossRef]
- Hwang, Y.; Jung, J.; Rhim, J.-W.; Yang, B.-J. Wave-function geometry of band crossing points in two dimensions. Phys. Rev. B 2021, 103, L241102. [Google Scholar] [CrossRef]
- Peotta, S.; Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 2015, 6, 8944. [Google Scholar] [CrossRef] [Green Version]
- Julku, A.; Peotta, S.; Vanhala, T.I.; Kim, D.-H.; Törmä, P. Geometric origin of superfluidity in the lieb-lattice flat band. Phys. Rev. Lett. 2016, 117, 045303. [Google Scholar] [CrossRef] [Green Version]
- Raoux, A.; Piéchon, F.; Fuchs, J.-N.; Montambaux, G. Orbital magnetism in coupled-bands models. Phys. Rev. B 2015, 91, 085120. [Google Scholar] [CrossRef]
- Piéchon, F.; Raoux, A.; Fuchs, J.-N.; Montambaux, G. Geometric orbital susceptibility: Quantum metric without berry curvature. Phys. Rev. B 2016, 94, 134423. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Silva, D.; Mejía-Cortés, C.; Bandres, M.; Rechtsman, M.; Weimann, S.; Nolte, S.; Segev, M.; Szameit, A.; Vicencio, R. Experimental observation of bulk and edge transport in photonic lieb lattices. New J. Phys. 2014, 16, 063061. [Google Scholar] [CrossRef]
- Vicencio, R.A.; Cantillano, C.; Morales-Inostroza, L.; Real, B.; Mejía-Cortés, C.; Weimann, S.; Szameit, A.; Molina, M.I. Observation of localized states in lieb photonic lattices. Phys. Rev. Lett. 2015, 114, 245503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Spracklen, A.; Choudhury, D.; Goldman, N.; Öhberg, P.; Andersson, E.; Thomson, R.R. Observation of a localized flat-band state in a photonic lieb lattice. Phys. Rev. Lett. 2015, 114, 245504. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Ramachandran, A.; Xia, S.; Li, D.; Liu, X.; Tang, L.; Hu, Y.; Song, D.; Xu, J.; Leykam, D.; et al. Unconventional flatband line states in photonic lieb lattices. Phys. Rev. Lett. 2018, 121, 263902. [Google Scholar] [CrossRef] [Green Version]
- Leykam, D.; Flach, S. Perspective: Photonic flatbands. APL Photonics 2018, 3, 070901. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Song, L.; Yan, W.; Xia, S.; Tang, L.; Song, D.; Rhim, J.-W.; Chen, Z. Fractal-like photonic lattices and localized states arising from singular and nonsingular flatbands. APL Photonics 2021, 6, 116104. [Google Scholar] [CrossRef]
- Song, L.; Xie, Y.; Xia, S.; Tang, L.; Song, D.; Rhim, J.-W.; Chen, Z. Topological flatband loop states in fractal-like photonic lattices. arXiv 2022, arXiv:2204.13899. [Google Scholar]
- Kang, M.; Fang, S.; Ye, L.; Po, H.C.; Denlinger, J.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Kaxiras, E.; Checkelsky, J.-G.; et al. Topological flat bands in frustrated kagome lattice cosn. Nat. Commun. 2020, 11, 4004. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Wang, Q.; Wang, G.; Wen, C.; Jiang, K.; Lu, X.; Yan, S.; Huang, Y.; Shen, D.; et al. Orbital-selective dirac fermions and extremely flat bands in frustrated kagome-lattice metal cosn. Nat. Commun. 2020, 11, 4002. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Ye, L.; Fang, S.; You, J.-S.; Levitan, A.; Han, M.; Facio, J.I.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; et al. Dirac fermions and flat bands in the ideal kagome metal fesn. Nat. Mater. 2020, 19, 163. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.-X.; Zhang, S.S.; Chang, G.; Wang, Q.; Tsirkin, S.S.; Guguchia, Z.; Lian, B.; Zhou, H.; Jiang, K.; Belopolski, I.; et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 2019, 15, 443. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Kang, M.; Liu, J.; Von Cube, F.; Wicker, C.R.; Suzuki, T.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Bell, D.C.; et al. Massive dirac fermions in a ferromagnetic kagome metal. Nature 2018, 555, 638. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Choi, J.-H.; Zhang, Q.; Qin, W.; Yi, S.; Wang, P.; Li, L.; Wang, Y.; Zhang, H.; Sun, Z.; et al. Flatbands and emergent ferromagnetic ordering in fe 3 sn 2 kagome lattices. Phys. Rev. Lett. 2018, 121, 096401. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Wan, Q.; Wang, Y.; Song, M.; Tang, J.; Wang, Z.; Lv, H.; Plumb, N.; Radovic, M.; Wang, G.; et al. Evidence of orbit-selective electronic kagome lattice with planar flat-band in correlated paramagnetic ycr6ge6. arXiv 2019, arXiv:1906.07140. [Google Scholar]
- Wang, P.; Wang, Y.; Zhang, B.; Li, Y.; Wang, S.; Wu, Y.; Zhu, H.; Liu, Y.; Zhang, G.; Liu, D.; et al. Experimental observation of electronic structures of kagome metal ycr6ge6. Chin. Phys. Lett. 2020, 37, 087102. [Google Scholar] [CrossRef]
- Hase, I.; Yanagisawa, T.; Kawashima, K. Flat-band in pyrochlore oxides: A first-principles study. Nanomaterials 2019, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Skurativska, A.; Tsirkin, S.S.; Natterer, F.D.; Neupert, T.; Fischer, M.H. Flat bands with fragile topology through superlattice engineering on single-layer graphene. Phys. Rev. Res. 2021, 3, L032003. [Google Scholar] [CrossRef]
- de Sousa, M.S.; Liu, F.; Qu, F.; Chen, W. Vacancy-engineered flat-band superconductivity in holey graphene. Phys. Rev. B 2022, 105, 014511. [Google Scholar] [CrossRef]
- Kennes, D.M.; Xian, L.; Claassen, M.; Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.G.; Soejima, T.; Tsuji, N.; Hirai, D.; Dincă, M.; Aoki, H. First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal-organic frameworks. Phys. Rev. B 2016, 94, 081102. [Google Scholar] [CrossRef] [Green Version]
- Regnault, N.; Xu, Y.; Li, M.-R.; Ma, D.-S.; Jovanovic, M.; Yazdani, A.; Parkin, S.S.; Felser, C.; Schoop, L.M.; Ong, N.P.; et al. Catalogue of flat-band stoichiometric materials. Nature 2022, 603, 824. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Geng, C.; Park, J.W.; Oshikawa, M.; Lee, S.-S.; Yeom, H.W.; Cho, G.Y. Stable flatbands, topology, and superconductivity of magic honeycomb networks. Phys. Rev. Lett. 2020, 124, 137002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizoguchi, T.; Katsura, H.; Maruyama, I.; Hatsugai, Y. Flat-band solutions in d-dimensional decorated diamond and pyrochlore lattices: Reduction to molecular problem. Phys. Rev. B 2021, 104, 035155. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Maruyama, M.; Okada, S.; Hatsugai, Y. Flat bands and higher-order topology in polymerized triptycene: Tight-binding analysis on decorated star lattices. Phys. Rev. Mater. 2019, 3, 114201. [Google Scholar] [CrossRef] [Green Version]
- Rhim, J.-W.; Yang, B.-J. Classification of flat bands according to the band-crossing singularity of bloch wave functions. Phys. Rev. B 2019, 99, 045107. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.; Rhim, J.-W.; Yang, B.-J. Flat bands with band crossings enforced by symmetry representation. Phys. Rev. B 2021, 104, L081104. [Google Scholar] [CrossRef]
- Hwang, Y.; Rhim, J.-W.; Yang, B.-J. General construction of flat bands with and without band crossings based on wave function singularity. Phys. Rev. B 2021, 104, 085144. [Google Scholar] [CrossRef]
- Dias, R.; Gouveia, J. Origami rules for the construction of localized eigenstates of the hubbard model in decorated lattices. Sci. Rep. 2015, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Flach, S.; Leykam, D.; Bodyfelt, J.D.; Matthies, P.; Desyatnikov, A.S. Detangling flat bands into fano lattices. EPL (Europhys. Lett.) 2014, 105, 30001. [Google Scholar] [CrossRef] [Green Version]
- Mielke, A. Ferromagnetism in the hubbard model on line graphs and further considerations. J. Phys. A Math. Gen. 1991, 24, 3311. [Google Scholar] [CrossRef]
- Morales-Inostroza, L.; Vicencio, R.A. Simple method to construct flat-band lattices. Phys. Rev. A 2016, 941, 043831. [Google Scholar] [CrossRef]
- Ramachandran, A.; Andreanov, A.; Flach, S. Chiral flat bands: Existence, engineering, and stability. Phys. Rev. B 2017, 96, 161104. [Google Scholar] [CrossRef] [Green Version]
- Röntgen, M.; Morfonios, C.; Schmelcher, P. Compact localized states and flat bands from local symmetry partitioning. Phys. Rev. B 2018, 97, 035161. [Google Scholar] [CrossRef] [Green Version]
- Tasaki, H. Ferromagnetism in the hubbard models with degenerate single-electron ground states. Phys. Rev. Lett. 1992, 69, 1608. [Google Scholar] [CrossRef]
- Kariyado, T.; Slager, R.-J. π-fluxes, semimetals, and flat bands in artificial materials. Phys. Rev. Res. 2019, 1, 032027. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Yan, J.; Liu, F. Electronic structures of a diagonally striped lattice: Multiple (n-1)-fold degenerate flat bands. Phys. Rev. B 2020, 102, 235117. [Google Scholar] [CrossRef]
- Mallick, A.; Chang, N.; Maimaiti, W.; Flach, S.; Andreanov, A. Wannier-stark flatbands in bravais lattices. Phys. Rev. Res. 2021, 3, 013174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, D.; Lee, J.; Zhang, A.; Rhim, J.-W. Flat Bands in Network Superstructures of Atomic Chains. Photonics 2023, 10, 29. https://doi.org/10.3390/photonics10010029
Heo D, Lee J, Zhang A, Rhim J-W. Flat Bands in Network Superstructures of Atomic Chains. Photonics. 2023; 10(1):29. https://doi.org/10.3390/photonics10010029
Chicago/Turabian StyleHeo, Donghyeok, Junseop Lee, Anwei Zhang, and Jun-Won Rhim. 2023. "Flat Bands in Network Superstructures of Atomic Chains" Photonics 10, no. 1: 29. https://doi.org/10.3390/photonics10010029
APA StyleHeo, D., Lee, J., Zhang, A., & Rhim, J. -W. (2023). Flat Bands in Network Superstructures of Atomic Chains. Photonics, 10(1), 29. https://doi.org/10.3390/photonics10010029