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Abstract: We propose a parity-baseline segmented planar imaging method with more frequency
components by changing different baseline selection to achieve better imaging in the rotational
process. A theoretical model of the parity-baseline segmented planar imaging system with rotational
operation is built to analyze the imaging effect. The simulation results show that the imaging
quality of the parity-baseline segmented planar imaging system has an approximately 20% increase
by rotation compared with the conventional system. In addition, the CLEAN algorithm in radio
astronomy imaging is also applied to the parity-baseline segmented planar imaging system, and the
image quality is further improved by 55%. Such a new imaging method holds great potential toward
astronomical observation and detection.

Keywords: baseline selection; rotational imaging; photonic integration; MP-CLEAN algorithm

1. Introduction

In terms of astronomical observation, the National Aeronautics and Space Administra-
tion (NASA), the European Space Agency (ESA), and other institutions have successively
developed the Hubble Space Telescope (HST), the Compton Gamma Ray Observatory
(CGRO), the Chandra X-ray Observatory (CXO), the Kepler space telescope, and the Her-
schel and other space telescopes, and the main mirror aperture shows a rapid growth trend
with the improvement of angular resolution requirements [1–5]. However, as the aper-
ture of the space telescope imaging system increases, the overall size, weight, and power
consumption of the system (Size, Weight, and Power, SWaP) will also increase greatly.
The Segmented Planar Imaging Detector for Electro-optical Reconnaissance (SPIDER)
was proposed by the LM Advanced Technology Center and UC Davis, which provides a
10~100 SWaP reduction [6,7]. The SPIDER is composed of a densely packed interferom-
eter array based on an extremely thin layer of lenslets and a photonic integrated circuit
(PIC) [8,9]. Ryan et al. demonstrated the working principle of PICs [10], and Wesley
et al. studied PIC platforms and devices by using multilayer nitride-on-silicon integrated
photonic circuits [11]. In addition, numerical simulations of the segmented planar imaging
system with different optimal schemes were also carried out [12–15]. However, in order to
improve the imaging quality of the system, the design of the segmented planar imaging
was becoming more and more complicated in the previous work, limiting its practical
application. From a practical point of view, the structure of the improved segmented plane
imaging system should be substantially the same as that of the original SPIDER to reduce
the difficulty of the manufacturing process.

In this paper, a parity-baseline segmented planar imaging method with rotational op-
eration is firstly proposed. The theoretical model of segmented planar integrated optical
imaging systems is established, and the pairing method of intermediate radial lens arrays is
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improved. By changing different baseline selection, the u-v frequency suitable for the rotating
system is obtained. The imaging results of the non-uniform multi-stage sampling lens array
are analyzed from the aspects of u-v frequency distribution and image quality. Moreover, the
imaging effect of the segmented planar integrated optical imaging system is firstly optimized
by the MP-CLEAN algorithm in this paper. The research results provide a theoretical basis for
improving the new segmented planar integrated optical imaging system.

2. Theoretical Model
2.1. Parity Baseline Selection

The parity baseline selection is shown in Figure 1. Figure 1a shows the conventional
SPIDER diagram with only one kind of baseline structure, which is used in the current state-
of-the-art techniques and results. The corresponding baseline assignment for calculating
u-v frequency is shown at the top of Figure 1b. Figure 1c shows the structure of the parity-
baseline segmented planar imaging system composed of two kinds of PIC with different
baseline selection, which is the fundamental structure we used in this paper. Except for that,
it has the same structure as the conventional SPIDER. The blue baseline represents the even
baseline assignment, and the orange baseline represents the odd baseline assignment, as
shown in Figure 1b. The u-v frequency of the conventional SPIDER and the parity-baseline
segmented planar imaging system can be obtained based on its baseline assignment, which
is shown in Figure 1d,e. It can be clearly seen that the frequency components of the parity-
baseline segmented planar imaging system are much higher than the conventional SPIDER,
which shows that our method is much better.
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Figure 1. Differences in structure and frequency between traditional SPIDER and the parity-baseline
segmented planar imaging system. (a) Structure of the conventional SPIDER; (b) Method of parity
baseline selection; (c) Structure of the parity-baseline segmented planar imaging system; (d) The
u-v frequency components of the conventional SPIDER; (e) The u-v frequency components of the
parity-baseline segmented planar imaging system.
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2.2. Signal Transmission Model

As shown in Figure 2, the light from the measured object reaches two lenslets P1 and
P2 on the detection surface after passing through the z distance, and the cross-correlation
strength J of P1 and P2 can be given by

J(P1; P2) = 〈U1(t)U∗2 (t)〉 =
x

I(ξ, η)exp
[

i
2π

λ
(r2 − r1)

]
χ(θ1)

λr1

χ(θ2)

λr2
dξdη (1)

where U1(t) and U2(t) are the complex amplitude of light at P1 and P2, and I (ξ, η) is the
light intensity of the measured object. χ(θ1) and χ(θ2) are the inclining factors of the two
lights. The long distance between the measured object and the detector meets the condition
of the near axis, so χ(θ1) = χ(θ2) ≈ 1, 1

r1r2
≈ 1

z2 and

r1 =
[
z2 + (x1 − ξ)2 + (y1 − η)2

]1/2
≈ z +

(x1 − ξ)2 + (y1 − η)2

2z
(2)

r2 =
[
z2 + (x2 − ξ)2 + (y2 − η)2

]1/2
≈ z +

(x2 − ξ)2 + (y2 − η)2

2z
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Figure 2. Diagram of the light propagation in the segmented planar imaging system. 
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We can bring the equations above into Equation (1) to get Equation (4)

µ(u, v) =
s

I(ξ, η)exp[2πi(ξu + ηv)]dξdηs
I(ξ, η)dξdη

(4)

where (u, v) =
(

∆x
λz , ∆y

λz

)
, ∆x = x2 − x1, ∆y = y2 − y1, and µ(u, v) comprise the complex

coherence factor which is proportional to the cross-correlation strength. Therefore, the
light intensity of the measured object I(ξ, η) can be obtained by taking the complex degree
of coherence as the inverse Fourier transform. However, because the u-v coverage is not
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continuous, the reconstructed image has some distortion. The solutions will be proposed
to this problem. At the receiving end of the photodetector, I and Q can be written as

I = |UA|2 − |UB|2 = 4Re[< U1(t)U∗2 (t) >] = 4Re[J12] (5)

Q = |UC|2 − |UD|2 = 4Im[< U1(t)U∗2 (t) >] = 4Im[J12] (6)

In the case of ignoring the constant coefficient, I (ξ, η) can be given by

I(ξ, η) = F−1{
√

I2 + Q2exp[arctan(
Q
I
)]} (7)

2.3. Rotational Imaging

The simulation of an interference imaging system like SPIDER can take the imaging
model as follows. Firstly, the optical transfer function (OTF) of the imaging system is
obtained according to the lens arrangement and the baseline of the interference imaging
system. Then, the pre-selected original image is transformed into the frequency domain and
multiplied by OTF. Finally, the result of the product is transformed into a spatial domain,
which is the result obtained by the whole system. The whole process can be described as

g(x, y) = F−1{F[ f (x, y)]× H(u, v)} (8)

where g(x, y) is the imaging result, f (x, y) is the observation target, and H(u, v) represents
the u-v distribution of the system after the specific lens arrangement and baseline selection.

The imaging results before and after rotation are assumed to be g1(x, y) and g2(x, y).
The u-v distributions of the lens before and after rotation are H1(u, v) and H2(u, v), which
are superimposed as follows

g1(x, y) + g2(x, y) = F−1{F[ f (x, y)]× H1(u, v)}+ F−1{F[ f (x, y)]× H2(u, v)}
= F−1{F[ f (x, y)]× (H1(u, v) + H2(u, v))} (9)

where H1(u, v) + H2(u, v) means that their frequency graphs are superimposed on each
other. This method also works for scenes with multiple rotations, and it can be given by

∑n
i=1gi(x, y) = F−1{F[ f (x, y)]×∑n

i=1Hi(u, v)} (10)

where n is the total number of spins, and ∑n
i=1 Hi(u, v) denotes the superposition of all u-v

distributions. These distributions generally have more frequency coverage because the
single imaging of the system has a frequency blank in the circumferential direction, which
is an important factor in imaging. In addition, compared with the conventional SPIDER,
the parity-baseline segmented planar imaging system can cover more frequency during
the rotation due to the complementary relationship between the odd baseline and even
baseline. Specifically, the odd baseline covers a completely different u-v frequency domain
from the even baseline. In rotational imaging, the frequency blanks caused by the odd
baseline can be partially covered by the even baseline and vice versa.

3. Results and Discussion
3.1. Parameter Effects

According to reference [12], the imaging system with an odd number of PICs has better
imaging quality, so M is set to 37 for taking as examples. The other system parameters
used for the simulations are listed in Table 1. From Figure 1b, it can be seen that there
is an unused lenslet in the middle of the PIC with the even baseline assignment, so the
number of lenslets per PIC should be odd. In the simulation, N is chosen to be 51, and the
baseline selections of two lenslets in the even baseline assignment are (1, 51), (2, 50), (3, 49)
. . . (25, 27). The corresponding baseline numbers are 50, 48, 46 . . . 2, respectively. The
odd baseline selections are (1, 50), (2, 49), (3, 48) . . . (25, 26), and the baseline numbers are,
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respectively, 49, 47, 45 . . . 1. In order to keep the same structure for comparison, the system
parameters in Table 1 apply to both the conventional SPIDER and the parity-baseline
segmented planar imaging system.

Table 1. System parameters used for simulations.

Parameter Symbol Value

Number of PICs M 37
Number of lenslets per PIC N 51

Lenslet diameter d 2 mm
Length of the longest baseline Bmax 100 mm

Wavelength λ 800~1600 nm
Channel number q 10
Object distance z 100 km

The imaging result with different parameter effects is shown in Figure 3. The mean
square error (MSE) is used as the evaluation index. Figure 3a,b shows the original image for
the simulation and the imaging result with the parameters in Table 1. The corresponding
MSE is 0.1210. To determine the effect of the number of PICs and lenslets on the imaging
results, Figure 3c shows the relationship between the number of PICs and lenslets and the
mean square error.
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Figure 3c shows that with the increasing number of PICs and lenslets, the MSE of
imaging results will decrease, which represents the higher quality of imaging and brings
better improvement. However, the number of lenslets per PIC has little effect on MSE. In
the u-v frequency domain, the increase in the number of PICs means the improvement of
the circumferential frequency coverage, while the increase in the number of lenslets per
PIC represents the improvement of the frequency coverage in radial direction. It can be
clearly seen that raising frequency coverage along the circumference is more effective than
frequency coverage in the radial direction.

3.2. Rotational Imaging

Similarly, a rotational imaging system can effectively perform frequency coverage in
the circumferential direction. Compared with the conventional SPIDER, the parity-baseline
segmented planar imaging system is specially designed for rotational imaging. The rotation
method is as follows. For both the conventional SPIDER and the parity-baseline segmented
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planar imaging system, when the angle between two adjacent PICs is α, the angle between
two same baseline number of the parity-baseline segmented planar imaging system is 2α. This
angle is divided into n equal parts. Every time the system is rotated with an angle of 2α/n
corresponding to a number of spins of 1, the system gets an image. Then, these images are
added together, and the final image is synthesized according to Equation (8). In the simulation,
n is set to 15, and the imaging result of the two systems is shown in Figure 4.
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Figure 4 shows the rotational imaging result of the conventional SPIDER and the parity-
baseline segmented planar imaging system with the number of spins of 1, 5, 10, and 15.
The MSEs of the conventional SPIDER are 0.1248, 0.08702, 0.07779, and 0.07229, while the
MSEs of the parity-baseline segmented planar imaging system are 0.1172, 0.07562, 0.06163,
and 0.05702. The imaging quality of the parity-baseline segmented planar imaging system
is eventually improved by approximately 21%. It can be concluded that the conventional
SPIDER and the parity-baseline segmented planar imaging system both have better imaging
quality during rotational imaging. Because of the design of the parity-baseline segmented
planar imaging system, its performance is better than that of the conventional SPIDER.
Despite the limited improvement of single imaging quality, as the number of spins increases,
the gap in imaging quality between the two systems becomes increasingly larger, which
indicates that the parity-baseline segmented planar imaging system has greater application
potential in rotational imaging.

Furthermore, it also can be seen that for both rotational imaging systems, the im-
provement of imaging quality does not have a linear relationship with the increase in the
number of spins, which means the u-v frequency components have reached saturation, and
if continued, the imaging quality would not get better but rather get worse. This is because
that would cause frequency aliasing, which also affects the image in space distributions.
Therefore, a future research direction would be investigating how to eliminate the frequency
aliasing during rotational imaging to achieve the ultimate desired results.

3.3. MP-CLEAN Algorithm

Radio astronomy aperture synthesis is often used for interference imaging in astron-
omy. In radio astronomy aperture synthesis observation, the CLEAN method is one of the
most common ways for deconvolution. Clark [16] proposed a method for accelerating the
CLEAN algorithm by performing on multiple points at the same time, called MP-CLEAN,
which is also suitable for the segmented planar imaging system.

Figure 5 shows the imaging results before and after using the MP-CLEAN algorithm.
The imaging result without the MP-CLEAN algorithm contains sidelobe noise, as shown in
Figure 5b. By contrast, Figure 5c represents the imaging result after using the MP-CLEAN
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algorithm, and the sidelobe has been eliminated. The improvement of image quality can
be achieved by the MP-CLEAN algorithm. MP-CLEAN is an iterative algorithm, and
Figure 5d shows the running process of the MP-CLEAN algorithm, which illustrates the
relationship between the MSE and the number of iterations. The red line represents the
result of the Fast Fourier Transform (FFT), corresponding to the MSE without using the
MP-CLEAN algorithm. It can be seen that the MP-CLEAN algorithm has exceeded the
non-algorithm situation when the number of iterations reaches around three, and saturation
presents after about twenty times. The MP-CLEAN algorithm not only has the ability to
remove sidelobe noise in single imaging, but also removes more noise in superposition.
Therefore, the MP-CLEAN algorithm can also be applied to rotational imaging to improve
imaging quality.
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The imaging process of the MP-CLEAN algorithm in a rotating segmented plane
imaging system is shown in Figure 6a and can be described as follows. In a segmented
planar imaging system, a single picture can be imaged, and the MP-CLEAN algorithm
can improve the MSE. During rotational imaging, the u-v frequency domain of the system
and the single imaging result are recorded and added up, which is the final imaging result.
Figure 6b,c shows the imaging result of the conventional SPIDER without the MP-CLEAN
algorithm, before and after rotation. The corresponding MSEs are 0.1248 and 0.07229,
while the MSEs of the parity-baseline segmented planar imaging system with the MP-
CLEAN algorithm before and after rotation are 0.05326 and 0.03208, respectively. The
image quality is significantly improved, as shown in Figure 6d,e. It can be concluded
that the MP-CLEAN algorithm applied to rotational imaging has more advantages than
non-algorithm situations.

In practice, one can use the process of the segmented planar imaging system for
rotation in Figure 6a to do rotational imaging. The result imaged by the segmented planar
imaging system can be processed with the MP-CLEAN algorithm, which requires the
system parameters. Then, the system or the observed object for experiment should be
rotated by a specific angle and imaged. The new image with the MP-CLEAN algorithm
should be added to the previous image set, and then the cycle should be continued. Due
to the design for rotational imaging, the imaging quality of the parity-baseline segmented
planar imaging system would be better than the conventional SPIDER.

To sum up, an optimal segmented planar imaging system structure for rotational imag-
ing has been proposed as an alternative to the conventional SPIDER. The single imaging
quality of the parity-baseline segmented planar imaging system is equivalent to the conven-
tional SPIDER, but it has more advantages during rotational imaging. Because the structure
of the parity-baseline segmented planar imaging system is almost unchanged compared
with the conventional SPIDER, the method is also suitable for the new structure based on
SPIDER and should be considered. The frequency aliasing during rotational imaging is a
problem to be solved either by principle or subsequent algorithms. Furthermore, the MP-
CLEAN algorithm is effective in this system. Both rotational imaging and the MP-CLEAN
algorithm are methods of exchanging temporal resolution for spatial resolution, so the
method proposed is more suitable for those insensitive to imaging time, such as remote
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sensing or astronomical imaging. The total rotation times and MP-CLEAN iteration times
can also be reduced to improve time resolution.
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4. Conclusions

We propose a parity-baseline method combined with rotation operation for segmented
planar imaging, and the MP-CLEAN algorithm is applied to the system. A theoretical
model of the parity-baseline segmented planar imaging system with rotational operation
is established for analyzing imaging quality. Compared with the conventional SPIDER,
the MSE of the parity-baseline segmented planar imaging system is improved by about
20% during rotation. The increase in image quality further increases by 55% using the MP-
CLEAN algorithm. Such a parity-baseline rotating method with the MP-CLEAN algorithm
has great potential in astronomical observation and detection.
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