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Abstract: Communication links operating at terahertz frequencies are envisioned to provide a
revolutionary enhancement of data transmission. As fundamental building blocks, waveguides
play an indispensable role in future terahertz networks, not only transporting data streams with
unprecedented data rates, but also serving as a versatile platform for signal processing. Among
various terahertz waveguides, metal-wire waveguides have attracted particular attention due to their
distinct characteristics, such as structural simplicity, broad operating bandwidths, low transmission
losses, and low dispersion, in turn making them promising candidates for signal processing. However,
because of the tight confinement of modal energy within the wavelength-scale space, manipulating
the propagating terahertz signals in-between the metal-wires is challenging. Here, we report the most
recent advances in the realization of signal-processing functionalities within metal-wire waveguides.
Based on these state-of-the-art methodologies, broadband signal processors that can function as filters,
couplers, temporal integrators, as well as multiplexers, have been obtained. We expect this review
to inspire new terahertz metal-wire signal processors with high potential for real-time tunability
and reconfigurability.
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1. Introduction

Carrying data-streams using terahertz (THz) radiation (with frequencies spanning
the range between 0.1 THz and 10 THz) represents the ultimate technology for the next
six-generation (6G) communication networks [1–3]. Indeed, with respect to millimeter
waves used in the 5G networks, the THz spectral region offers higher available bandwidth
and could meet the ever-growing demand for higher data-rates, aiming at terabits-per
second (Tb/s) [4]. In order to accommodate the capacity for such unprecedented data-
rates, it is necessary to develop a new series of components [5], such as modulators,
switches, couplers, filters, and multiplexers, that can serve as the fundamental blocks for
manipulating THz communication signals.

Over the last decades, a substantial amount of effort has been dedicated to the de-
sign of low-loss and low-dispersion THz waveguides, in order to transport THz signals
efficiently from one point to another. In general, THz waveguides can be divided into
two major categories: dielectric and metallic waveguides. THz dielectric waveguides [6]
are considered promising candidates due to the feasibility of refractive index engineering
and straightforward manufacturing techniques, such as 3D printing [7–9]. However, the
THz propagation modes within dielectric waveguides suffer from significant frequency-
dependent absorption losses and dispersion [10,11]. To overcome these issues, low-loss
polymers [8], such as Zeonex and TOPAS (cyclic olefin copolymer), have been identified,
and various waveguide structures have been explored, including porous polymer fibers [12],
periodically microstructured fibers [13], bandgap fibers [14], as well as fibers with rectangu-
lar slot air-holes [15]. Although dispersion can be tailored by means of a judicious design
of waveguide structures so that a low-dispersion response can be achieved at certain THz
frequencies, it is extremely difficult to design dielectric waveguides that can offer almost
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zero dispersion for a broad THz frequency range. As a result, the operating bandwidths of
THz dielectric waveguides are typically narrow [16], in turn making it impossible to ma-
nipulate broadband THz signals. THz metallic waveguides that are typically scaled-down
versions of well-known guiding structures at radio and microwave frequencies, such as
hollow rectangular [17] and coaxial [18] waveguides, experience strong dispersion near
the cut-off frequency of the guiding mode. In contrast, THz metallic waveguides that
can support transverse electromagnetic (TEM) modes, such as parallel-plate waveguides
(PPWGs) [19] and two-wire waveguides (TWWGs) [20], are attractive alternatives due to
their capabilities to support the low-loss and low-dispersion propagation of broadband
THz pulses. In addition, hybrid THz waveguides, which incorporate dielectric cladding
into metallic waveguides [21] or embed metal-wires into dielectric hollow-core fibers [22],
have been demonstrated to further improve the performance of signal transporting. While
the development of THz waveguides is not the main purpose of our review, we recognize
that the design of compact and robust THz waveguides is an important research topic,
which has been comprehensively reviewed in [6,8,16,17,21].

Besides signal transporting, another important function of THz waveguides is to
serve as the seeding platform to realize broadband THz signal processing [23]. Recent
progress has witnessed a dramatic boost in the development of signal-processing com-
ponents based on PPWGs, such as power splitters [24], add-drop filters [25], as well as
multiplexers/demultiplexers [26]. Compared to the large footprints of PPWGs, metal-wire
waveguides feature several distinct advantages, such as structural simplicity, tolerance
to bending [27], and affinity to cables for efficient and straightforward connections [28].
However, the realization of signal-processing functionalities based on THz metal-wire
waveguides remains challenging. The underlying reason is that the modal energy is tightly
confined in the wavelength-scale space between the metal-wires, which limits the possible
ways to manipulate the propagating THz waves. In this review, we provide a compre-
hensive survey of the cutting-edge techniques which have been established in broadband
THz signal processing, based on metal-wire waveguides. Section 2 provides a brief intro-
duction to the signal guiding properties of THz metal-wire waveguides. Section 3 reports
on three different methodologies for realizing signal-processing functionalities within
metal-wire waveguides, including inserting standalone components, varying waveguide
topologies/geometries, and engineering metal-wire surfaces. Finally, we discuss possible
future advances in the field.

2. THz Guiding Properties of Metal-Wire Waveguides

In the THz frequency regime, metals are generally considered as perfect conductors,
since the negligible penetration of the electromagnetic field leads to highly delocalized
surface plasmon polaritons (SPPs) akin to grazing-incidence light fields. A single bare
metal-wire, as shown in Figure 1a, can carry THz pulses with virtually no dispersion and
low attenuation [29]. Single metal-wire waveguides (SWWGs), also known as ‘Sommerfeld
wires’, support a transverse magnetic (TM) mode [30], i.e., TM01, as shown in Figure 1b.
Even though these waveguides support the propagation of high-order modes, such modes
exhibit an attenuation coefficient so large that the SWWG quickly tends to become sin-
gle mode after a short propagation distance. The first demonstration of a SWWG [29],
consisting of a stainless steel wire with a diameter of 0.9 mm, featured an attenuation
constant of less than 0.03 dB/cm, and almost no dispersion between 0.25 THz and 0.75 THz.
However, SWWGs also show some significant drawbacks. First, their performance is
extremely sensitive to perturbations [31], such as bending, leading to a loose confinement
of the fundamental mode around the wire [32]. Another drawback is the low coupling
efficiency [33]. Since the fundamental mode of SWWGs is radially polarized, commonly
used sources emitting linearly polarized THz beams, such as photoconductive antennas,
cannot be utilized for the efficient excitation of this mode.

On the contrary, two-wire waveguides (TWWGs), which consist of two metal-wires
with an air gap between them (see Figure 1c), can be directly excited with a simple THz
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dipole source, when its polarization is parallel to the line connecting the wire centers [21].
This is because the field distribution of its fundamental transverse electromagnetic (TEM)
mode resembles that of a dipole, as shown in Figure 1d. In particular, the efficient con-
finement of the modal energy in-between the two wires, in contrast to the weakly guided
Sommerfeld wave of a single wire, makes TWWGs more tolerant to bending losses [27].
A rigorous theoretical analysis of the two-wire waveguide can be found in [20]. To date,
the typical material choice for TWWGs is copper, because of its excellent conductivity and
good malleability. As reported in [34], a 1.1 dB/cm loss was experimentally achieved from
0.5 THz to 1.6 THz. A comparison between the behavior of copper and other commonly
used metals at THz frequencies, such as gold, aluminum, stainless steel, and silver, is
summarized in Table 1 [35]. Although silver shows better properties than copper, silver
wires are less commercially available and are more expensive. In addition, TWWGs may
suffer from electromagnetic interference due to their open environment configurations. In
practice, dielectric claddings, such as polystyrene foam [21] and porous micro-structured
polyethylene [36], can be implemented onto the TWWGs, in order to improve their me-
chanical stability and insensitivity to environmental variables.

Table 1. Properties of most used metals in terms of conductivity (σ0) and skin depth (δ) at 1 THz.

Cu Ag Au Al Stainless Steel 1

σ0
(
106S·m−1) 59.6 63.0 45.2 37.8 1.45
δ(nm) 65.2 63.4 74.9 81.9 418

1-Steel 304.
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Figure 1. Schematics of typical THz metal−wire waveguides and their fundamental modes.
(a) Schematic of the SWWG with a wire radius r = 127 µm. (b) Simulated electric field distribu-
tions of the fundamental TM mode at 0.5 THz. (c) Schematics of the TWWG waveguide with a
wire radius r = 127 µm and an air gap g = 300 µm. (d) Simulated electric field distributions of
the fundamental TEM mode at 0.5 THz. (e) The TWWG (wire radius r = 330 µm and the air gap
g = 660 µm) fabricated via 3D printing and metal deposition, adapted from [37]. Arrows indicate the
directions of local field polarization distributions.
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Recently, 3D additive manufacturing has emerged as a promising technique for fabri-
cating THz waveguides, due to the ubiquitous availability of hardware, the low threshold
for production, as well as the ease of integration. In 2020, Cao et al., fabricated a TWWG
using the combination of stereolithography (SLA) 3D printing and wet chemistry metal
deposition [37]. Such a micro-encapsulated TWWG, as shown in Figure 1e, consisted of
two complementary parts, each comprising one wire attached to a half cage using subwave-
length dielectric support ridges. These parts were printed along the propagation direction,
then the silver layer was deposited on top of the plastic wire using wet chemistry to form
conductive surfaces with thicknesses of several microns. A two-wire waveguide was finally
achieved where the two metallized parts were assembled into each other. By using the
3D additive manufacturing technique, reliable and compact TWWG components can be
directly printed, which avoids the requirement of mounting straight metallic wires in bulky
holders, in turn making it amenable to the realization of integrated platforms.

3. Broadband THz Metal-Wire Signal Processors

Here, we classify the state-of-the-art methods for the realization of various signal-
processing functionalities within THz metal-wire waveguides into three categories: insert-
ing standalone components into the waveguide, varying the topologies or geometries of
the waveguide, and directly engineering the wire surfaces.

3.1. Inserting Standalone Components

Implanting dielectric materials into the air gap within the metal-wire waveguides is
one of the first ideas that have been investigated. Because of the tight energy confinement
between the two wires, the effective refractive index of the waveguide can be tuned by
implanting a thin layer of dielectric materials into the air gap. For example, by inserting
a micromachined paper grating into a TWWG, Yan et al. demonstrated a low-loss THz
waveguide Bragg grating [38], as shown in Figure 2a. The paper grating was achieved
by precision laser cutting of slit arrays in a regular 100-µm-thick printing paper with a
refractive index of ~1.45. In this work, two waveguide Bragg gratings were fabricated,
which featured Bragg resonances at 0.637 THz and 0.369 THz with Q-factors of 142 and
105, respectively.

Photonics 2023, 10, x FOR PEER REVIEW 4 of 11 
 

 

Table 1. Properties of most used metals in terms of conductivity (σ0) and skin depth (𝛿) at 1 THz. 

 Cu Ag Au Al Stainless Steel 1 σ(10𝑆 ∙ 𝑚ିଵ) 59.6 63.0 45.2 37.8 1.45 𝛿  (𝑛𝑚) 65.2 63.4 74.9 81.9 418 
1-Steel 304. 

Recently, 3D additive manufacturing has emerged as a promising technique for fab-
ricating THz waveguides, due to the ubiquitous availability of hardware, the low thresh-
old for production, as well as the ease of integration. In 2020, Cao et al., fabricated a 
TWWG using the combination of stereolithography (SLA) 3D printing and wet chemistry 
metal deposition [37]. Such a micro-encapsulated TWWG, as shown in Figure 1e, con-
sisted of two complementary parts, each comprising one wire attached to a half cage using 
subwavelength dielectric support ridges. These parts were printed along the propagation 
direction, then the silver layer was deposited on top of the plastic wire using wet chemis-
try to form conductive surfaces with thicknesses of several microns. A two-wire wave-
guide was finally achieved where the two metallized parts were assembled into each 
other. By using the 3D additive manufacturing technique, reliable and compact TWWG 
components can be directly printed, which avoids the requirement of mounting straight 
metallic wires in bulky holders, in turn making it amenable to the realization of integrated 
platforms. 

3. Broadband THz Metal-Wire Signal Processors 
Here, we classify the state-of-the-art methods for the realization of various signal-

processing functionalities within THz metal-wire waveguides into three categories: insert-
ing standalone components into the waveguide, varying the topologies or geometries of 
the waveguide, and directly engineering the wire surfaces.  

3.1. Inserting Standalone Components 
Implanting dielectric materials into the air gap within the metal-wire waveguides is 

one of the first ideas that have been investigated. Because of the tight energy confinement 
between the two wires, the effective refractive index of the waveguide can be tuned by 
implanting a thin layer of dielectric materials into the air gap. For example, by inserting a 
micromachined paper grating into a TWWG, Yan et al. demonstrated a low-loss THz 
waveguide Bragg grating [38], as shown in Figure 2a. The paper grating was achieved by 
precision laser cutting of slit arrays in a regular 100-µm-thick printing paper with a re-
fractive index of ~1.45. In this work, two waveguide Bragg gratings were fabricated, which 
featured Bragg resonances at 0.637 THz and 0.369 THz with Q-factors of 142 and 105, re-
spectively.  

 
Figure 2. THz metal-wire signal processors realized by inserting standalone components. (a) Sche-
matic of a THz waveguide Bragg grating (adapted from [38]), which was fabricated by using a 
TWWG with a wire radius r = 125 µm, an air gap g = 900 µm, and a paper grating with a thickness 

Figure 2. THz metal-wire signal processors realized by inserting standalone components.
(a) Schematic of a THz waveguide Bragg grating (adapted from [38]), which was fabricated by
using a TWWG with a wire radius r = 125 µm, an air gap g = 900 µm, and a paper grating with a
thickness of 100 µm. The paper cut consisted of 90 slits (cut through) that were ~110 µm wide, with
periods of ~226 µm and a total grating length of 2.1 cm. (b) Schematic of an active TWWG (adapted
from [34]). A thin GaAs piece (300 µm × 300 µm × 5 mm) is inserted between the wires and serves
as a semi-large area photoconductive antenna inside the TWWG (wire radius r = 250 µm and air gap
g = 300 µm).
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Similarly, by inserting a small piece of GaAs in-between the two wires, Mridha et al.
demonstrated an active TWWG [34], in which the generation of THz signals occurred
directly inside the guiding structure. Such a device can achieve efficient coupling of
the THz radiation in a dispersion-less waveguide, in turn leading to a 60 times higher
energy output under the same optical pump power and applied voltage. The excitation
methodology is similar to that used in photoconductive antennas. This method brings new
possibilities of THz signal processing. For example, by manipulating the optical pump
power or the applied voltage, the amplitude of the generated THz signals can be modulated,
in turn leading to the realization of a waveguide-integrated all-optical or electro-optical
modulator for high-speed communication systems.

3.2. Varying Waveguide Geometries/Topologies

By exploiting the 3D additive manufacturing technique introduced in the previous
section, TWWG components with complex shapes can be easily fabricated. In [37], Cao
et al. demonstrated a Y-shaped coupler based on two fused TWWG bends with a 4 cm
bending radius, as shown in Figure 3a. In addition, the wires of two TWWGs can be
assembled adjacently to form an inter-waveguide directional coupler [39], as shown in
Figure 3b. The propagating THz energy will couple from the through path to the other
attached waveguide. The coupling length is frequency-dependent, being ~24.5 mm at
~0.14 THz. These couplers can be further used for the design of add-drops, multiplexers,
and demultiplexers by incorporating additional filters into the splitter’s ports. For example,
by inserting a metallized paper grating into this Y-shaped THz power splitter, a three-port
add-drop multiplexer can be achieved [37].

In the TWWGs, the propagating THz electric field is predominantly confined within
the air gap between two wires. When the size of the air gap is adjusted to a subwavelength
scale, the resultant field enhancement can also be exploited to realize signal processing. In
2021, Balistreri et al. demonstrated a broadband time-domain integrator based on a tapered
TWWG [40]. Such a structure consists of two metal-wires separated by a varying air gap
that narrows down to a subwavelength scale from the waveguide input to its output (gap
size from 1100 µm down to 24 µm), as shown in Figure 3c. The tight confinement of THz
energy in a subwavelength gap volume results in an enhanced THz electric field that is
inversely proportional to the frequency, in turn leading to the time-domain integration of
the THz signals. In particular, this time-domain integrator features an ultra-broadband
operating bandwidth, potentially up to ~10 THz.

Furthermore, inspired by the TWWGs, Dong et al. recently introduced a new metal-
wire waveguide topology, namely the four-wire waveguide (FWWG) [41]. Such a waveg-
uide consists of four identical bare copper wires with an identical separation gap in free-
space, as shown in Figure 3d. Due to the symmetrical arrangement of the four wires, the
two fundamental modes, TEMx (Figure 3e) and TEMy (Figure 3f), exhibit symmetrical
field profiles, which are equally divided into two identical portions along the axes. In
particular, each portion of the field distribution is mainly confined in-between the two
wires and shows a similar profile to that of the TWWG, thus indicating that the FWWG can
also be efficiently excited by a linearly polarized THz input beam. In details, depending
on the polarization states of the modes, TEMx is excited by an x-polarized beam, while
TEMy is excited by a y-polarized beam. Most importantly, since the two fundamental
modes are independent, two broadband THz signals with orthogonal polarization states
can be transmitted without any interference. Consequently, the FWWG can be operated as
a broadband polarization-division multiplexer. Due to its inherent broadband nature, the
FWWG features significant potential in simultaneously supporting both frequency- and
polarization-division multiplexing.
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the wires. (a) Schematic of a THz Y-shaped splitter that uses two fused TWWGs redirected into
different paths, adapted from [37]. (b) Schematic of a THz directional coupler achieved by attaching
two TWWGs, adapted from [39]. (c) Schematic of a THz time-domain integrator based on a tapered
TWWG, adapted from [40]. The waveguide has an input gap of 1100 µm with a tapering angle of
0.36◦ and a total length of 85 mm. (d) Schematic of a THz polarization-division multiplexer based
on a four-wire waveguide (FWWG), adapted from [41]. The FWWG is composed of four identical
copper wires (r = 127 µm) placed in a square geometry, separated by an equal air gap (g = 300 µm).
(e,f) Simulated electric field distributions of the fundamental TEM modes evaluated at 0.5 THz, TEMx

and TEMy, which can be efficiently excited by x-polarized and y-polarized THz beams, respectively.
The arrows in the 2D distributions indicate the local electric field polarization directions.

3.3. Engineering the Metal-Wire Surfaces

The propagation of THz SPPs along the metal-air interface is extremely sensitive to
the metal surface condition. When periodic structures are engraved on the metal, surface
waves resembling the behavior of SPPs, so-called spoof SPPs [42], can be still sustained.
By varying the geometry of the periodic structures, the propagation characteristics of the
spoof SPPs can be tailored accordingly. Therefore, engineering the metal-wire surfaces
is able to provide a universal approach for manipulating the propagating THz waves
within the waveguide. Depending on the size of the period, a subwavelength-scale periodic
structure can be treated as an effective medium, while a wavelength-scale periodic structure
behaves as a Bragg grating [43]. Figure 4a illustrates typical subwavelength-scale periodic
grooves with width w = 35 µm, depth d = 40 µm, and period p = 80 µm, respectively.
The dispersion relation is not linear and the group velocity of the spoof SPPs decreases
as the frequency increases, as shown in Figure 4c. In particular, a cut-off frequency at
~1.2 THz is observed, indicating that the spoof SPPs above such a frequency cannot be
guided anymore [44]. By varying the depth d and the duty cycle w/p of the grooves, the
propagation characteristics of the waveguide can be tailored [45]. When the geometry of
the grooves is adjusted to the wavelength-scale, the cut-off frequency will accordingly shift
to a lower frequency range, in turn narrowing the operating bandwidth. However, it is
impossible to introduce any bandgaps into the operating bandwidth by solely engraving
grooves with a single periodicity.
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grooves, adapted from [41]. Geometry of the grooves: width w = 35 µm, depth d = 40 µm, and
period p = 80 µm. (b) Schematic of the TWWG with multiscale grooves. This structure results
from superimposing a wavelength-scale periodic modulation with a period of T = 280 µm onto the
subwavelength-scale periodic grooves in (a), adapted from [41]. (c) Simulated dispersion relations
of the plain TWWG (in green), and TWWGs with subwavelength-scale (in orange) and multiscale
periodic grooves (in red), adapted from [41]. (d) Schematic of the FWWG with integrated multiscale-
structured Bragg gratings, adapted from [41]. (e) Schematic of the Bragg grating achieved via
3D-printing, adapted from [39]. The grating contains 20 periods featuring a period Λ = 1.03 mm
and a grating height H = 0.21 mm. (f) Schematic of the four-port add-drop multiplexer realized via
3D printing, adapted from [39]. It is composed of two Y splitters and a 35-mm-long grating-loaded
side coupler.

To overcome these issues, Dong et al. introduced the concept of multiscale structures
into the THz regime [41]. As shown in Figure 4b, a multiscale structure can be realized
by superimposing a wavelength-scale periodic modulation onto the subwavelength-scale
periodic grooves. The corresponding dispersion relation confirms the occurrence of a Bragg
bandgap while maintaining the overall bandwidth. The location of the Bragg bandgap can
be easily tuned over the operating bandwidth by varying the wavelength-scale modulation
T. The concept of engraving grooves with multiscale structures, which combines the merits
of photonic crystal and metamaterials, can offer additional degrees of freedom to tailor
the spectral response of the entire structure. Based on this concept, a TWWG with an
integrated Bragg grating was fabricated, featuring a Bragg resonance at ~0.53 THz with a
notch depth of ~25 dB [41]. The fabrication of periodic grooves on bare copper wires can be
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realized by using an automatic dicing saw. The thickness of the employed diamond blade
determines the width of the grooves, where the grooves along the wires can be realized
by utilizing a 3D motorized control of the dicing saw. Furthermore, by integrating the
multiscale-structured Bragg grating into the FWWG, as shown in Figure 4d, Dong et al.
demonstrated a broadband polarization-division multiplexer, in which a notch filtering is
enabled for one target (x-polarized) channel without influencing the all-pass filtering of the
other (y-polarized) channel, in turn leading to the realization of independent manipulation
of THz multiplexed signals [41].

Besides engraving grooves on the wires using a diamond blade, another promising
method to engineer the wire surfaces is to first print the wires with designed structures
and then metallize the exposed surfaces. In [39], a TWWG integrated Bragg grating was
fabricated by printing a sequence of end-to-end connected truncated cones added on top
of a uniform wire, as shown in Figure 4e. The choice of truncated cones in the grating
structure was experimentally found to be the most reliable and stable for 3D printing. Such
Bragg gratings typically feature high grating strength and wide stopbands, given their
strong geometrical overlap with the modal field confined in the gap between two wires.
The experimental characterization of a 20-period Bragg grating demonstrated a pronounced
transmission dip around 0.14 THz with a bandwidth of ~18 GHz [39]. Furthermore, by
combining the waveguide integrated Bragg grating with the Y-shaped coupler and the
side coupler (introduced in the previous sections), all fabricated using 3D printing and
surface metallization techniques, a four-port THz add-drop multiplexer was realized [39].
Such a device allows for dropping the THz channels with frequencies that fall within the
stopband of the Bragg grating, while letting all the other channels within the bandwidth of
the side coupler to pass through. This approach provides a robust integrated solution for
frequency-domain multiplexing and demultiplexing of THz signals.

It is worth noting that the majority of the metal-wire signal processors discussed in
this review rely on the realization of waveguide-integrated Bragg gratings. Therefore,
the evaluation of the device performance involves the calculation of the quality factor,
i.e., the Q-factor, of the Bragg resonances. Such quantity is defined as the ratio between
the resonance frequency fc and the 3 dB-stopband ∆f symmetrically measured across
fc, Q = fc/∆f . In Table 2, the Q-factors of various waveguide-integrated Bragg gratings
fabricated using different techniques are listed.

Table 2. The Q-factors of waveguide-integrated Bragg gratings fabricated using different techniques.

Reference Method fc Q-Factor

Yan et al. [38] Laser cutting on papers 0.637 THz 142
Cao et al. [37] Hot stamping + metal deposition 0.14 THz 4.4
Cao et al. [39] 3D printing + metal deposition 0.14 THz 7.8

Dong et al. [41] Directly engraving wire surfaces 0.53 THz 479.5

4. Perspectives

In conclusion, we have summarized the three current methodologies for the real-
ization of broadband THz metal-wire signal processors, including inserting standalone
components, varying waveguide topologies and geometries, as well as engineering wire
surfaces. By the joint applications of these methodologies, more complex functionalities
can be achieved. Future research will focus on enabling THz metal-wire signal processors
with tunability. This can be obtained by inserting 2D artificial material sheets, such as
graphene [46] and transition metals dichalcogenides [47], that can be tuned electrically
or optically. In addition, novel metasurface-based devices [48] that feature ultrafast opti-
cal/electrical modulation properties can also be introduced into the metal-wire waveguides.
Moreover, emerging concepts, such as topological insulators [49], can be incorporated into
the design of wire surfaces, which shows great potential towards the realization of unprece-
dented signal-processing functionalities. Finally, driven by the recent advances in machine
learning techniques [50], the possibilities of developing machine-learning-enabled THz
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signal processors is attracting increasing interest. By exploiting additive manufacturing
techniques, the design generated by machine learning algorithms can be easily realized,
in turn leading to the fabrication of robust, cost-effective, and highly reconfigurable THz
signal processors. We envision that, with the current, rapid evolution of THz technology,
metal-wire signal processors will achieve ubiquitous applications which combine extreme
data-rates with agility, reliability, zero response time, and artificial intelligence, such as the
transmission of uncompressed ultra-high-definition video, holographic communications,
as well as chip-to-chip communications.
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