Wavefront Reconstruction of Shack-Hartmann with Under-Sampling of Sub-Apertures
Abstract
:1. Introduction
2. Methodology Overview
2.1. Principles of Wavefront Reconstruction
2.2. Description of Under-Sampling
3. Numerical Simulation
3.1. Set Up of the Simulation
3.2. Simulation of the Turbulence Reconstruction with Under-Sampling of the S-H WFS
4. Discussion
4.1. Influence of the Under-Sampling on the Defocus Statistical Aberration
4.2. Influence of Under-Sampling on the Mixed Aberrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Songsheng, Y.; Li, Y.; Du, P.; Zhang, Z. A parallax distance to 3C 273 through spectroastrometry and reverberation mapping. Nat. Astron. 2020, 4, 517–525. [Google Scholar] [CrossRef]
- Max, C. Introduction to adaptive optics and its history. In Proceedings of the American Astronomical Society 197th Meeting. NSF Center for Adaptive Optics University of California at Santa Cruz and DOE Lawrence Livermore National Laboratory, San Diego, CA, USA, 7–11 January 2001. [Google Scholar]
- Hardy, J.W. Adaptive Optics for Astronomical Telescope; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Babcock, H.W. The possibility of compensating astronomical seeing. Publ. Astron. Soc. Pac. 1953, 65, 229–236. [Google Scholar] [CrossRef]
- Angel, J.R.P. Ground-based imaging of extrasolar planets using adaptive optics. Nature 1994, 368, 203–207. [Google Scholar] [CrossRef]
- Platt, B.C.; Shack, R. History and principles of Shack–Hartmann wavefront sensing. J. Refract. Surg. 2001, 17, S573–S577. [Google Scholar] [CrossRef]
- Rigaut, F. Astronomical Adaptive Optics. Publ. Astron. Soc. Pac. 2015, 127, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Valente, D.; Rativa, D.; Vohnsen, B. Wavefront sensing using a liquid-filled photonic crystal fiber. Opt. Express 2015, 23, 13005–13014. [Google Scholar] [CrossRef] [Green Version]
- Wizinowich, P.L.; Le Mignant, D.; Bouchez, A.H.; Campbell, R.D.; Chin, J.C.Y.; Contos, A.R.; van Dam, M.A.; Hartman, S.K.; Johansson, E.M.; Lafon, R.E.; et al. The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview. Publ. Astron. Soc. Pac. 2006, 118, 297–309. [Google Scholar] [CrossRef]
- Rigaut, F.; Neichel, B. Multiconjugate Adaptive Optics for Astronomy. Annu. Rev. Astron. Astrophys. 2018, 56, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Rigaut, F.; Neichel, B.; Boccas, M.; d’Oreville, C.; Vidal, F.; van Dam, M.A.; Arriagada, G.; Fesquet, V.; Galvez, R.L.; Gausachs, G.; et al. Gemini multiconjugate adaptive optics system review—I. Design, trade-offs and integration. Mon. Not. R. Astron. Soc. 2014, 437, 2361–2375. [Google Scholar] [CrossRef] [Green Version]
- Benoit, N.; Lu, J.R.; François, R.; Ammons, S.M.; Carrasco, E.R.; Lassalle, E. Astrometric performance of the Gemini multiconjugate adaptive optics system in crowded fields. Mon. Not. R. Astron. Soc. 2014, 445, 500–514. [Google Scholar]
- Hippler, S. Adaptive Optics for Extremely Large Telescopes. J. Astron. Instrum. 2019, 8, 1950001. [Google Scholar] [CrossRef]
- Huang, J.; Wei, K.; Jin, K.; Li, M.; Zhang, Y. Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping. Opt. Commun. 2018, 416, 172–180. [Google Scholar] [CrossRef]
- Herrmann, J. Cross coupling and aliasing in modal wave-front estimation. J. Opt. Soc. Am. 1981, 71, 989–992. [Google Scholar] [CrossRef]
- Hernández-Gómez, G.; Malacara-Hernández, Z.; Malacara-Hernández, D. Hartmann tests to measure the spherical and cylindrical curvatures and the axis orientation of astigmatic lenses or optical surfaces. Appl. Opt. 2014, 53, 1191–1199. [Google Scholar] [CrossRef]
- Zhang, A.; Rao, C.; Zhang, Y.; Jiang, W. Sampling error analysis of Shack–Hartmann wavefront sensor with variable subaperture pixels. J. Mod. Opt. 2004, 51, 2267–2278. [Google Scholar]
- Baranec, C.; Dekany, R. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics. Appl. Opt. 2008, 47, 5155–5162. [Google Scholar] [CrossRef] [Green Version]
- Bond, C.Z.; Correia, C.; Teixeira, J.; Sauvage, J.; Véran, J.; Fusco, T. Anti-aliasing wave-front reconstruction with Shack-Hartmannsensors. Adapt. Opt. Extrem. Large Telesc. 4-Conf. Proc. 2015, 1. [Google Scholar]
- Correia, C.M.; Teixeira, J. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems. J. Opt. Soc. Am. A 2014, 31, 2763–2774. [Google Scholar] [CrossRef] [Green Version]
- Hernández, Z.M.; Doblado, D.M.; Hernández, D.M. Least-squares fitting of hartmann or shack-hartmann data with a circular array of sampling points. Appl. Opt. 2015, 54, E113–E122. [Google Scholar] [CrossRef] [Green Version]
- Viegers, M.; Brunner, E.; Soloviev, O.; de Visser, C.C.; Verhaegen, M. Nonlinear spline wavefront reconstruction through moment-based shack-hartmann sensor measurements. Opt. Express 2017, 25, 11514–11529. [Google Scholar] [CrossRef]
- Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I. Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope. Mon. Not. R. Astron. Soc. 2018, 477, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Ping, W.; Xingyang, L.; Xi, L.; Jianfeng, L. Influence of lack of light in partial subapertures on wavefront reconstruction for shack-hartmann wavefront sensor. Chin. J. Lasers 2020, 47, 0409002. [Google Scholar] [CrossRef]
- Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A 1994, 11, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Wanek, J.; Mori, M.; Shahidi, M. The Effect of Aberrations and Scatter on Image Resolution Assessed by Adaptive Optics Retinal Section Imaging. J. Opt. Soc. Am. A 2007, 24, 1296–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockbridge, C.; Lu, Y.; Moore, J.; Hoffman, S.; Paxman, R.; Toussaint, K.; Bifano, T. Focusing through dynamic scattering media. Opt. Express 2012, 20, 15086–15092. [Google Scholar] [CrossRef]
- Galaktionov, I.; Sheldakova, J.; Nikitin, A.; Samarkin, V.; Parfenov, V.; Kudryashov, A. Laser beam focusing through a moderately scattering medium using bimorph mirror. Opt. Express 2020, 28, 38061–38075. [Google Scholar] [CrossRef]
- Changhui, R.; Wenhan, J.; Yudong, Z.; Ling, N.; Tang, G.; Li, M.; Shen, F.; Xu, B. 61-element adaptive optical system for 1.2 m telescope of Yunnan Observatory. Chin. J. Quantum Electron. 2006, 23, 295–302. [Google Scholar]
- Ye, J.; Wang, W.; Gao, Z.; Liu, Z.; Wang, S.; Benítez, P.; Miñano, J.C.; Yuan, Q. Modal wavefront estimation from its slopes by numerical orthogonal transformation method over general shaped aperture. Opt. Express 2015, 23, 26208. [Google Scholar] [CrossRef]
- Jiang, W.; Li, H. Hartmann-Shack wavefront sensing and wavefront control algorithm. Proc. SPIE 1990, 1271, 82–93. [Google Scholar]
- Conan, R.; Correia, C. Object-oriented Matlab adaptive optics toolbox. Proc. SPIE 2014, 9148, 91486C. [Google Scholar]
- Saita, Y.; Shinto, H.; Nomura, T. Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range. Optica 2015, 2, 411–415. [Google Scholar] [CrossRef]
- Krasin, G.; Kovalev, M.; Stsepuro, N.; Ruchka, P.; Odinokov, S. Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms. Sensors 2020, 20, 4310. [Google Scholar] [CrossRef] [PubMed]
Parameters | Standard Value | Description | |
---|---|---|---|
telescope | D | 1.06 m | Diameter of the pupil |
0.142 | Central obscuration | ||
r0 | 5–15 cm (@550 nm) | Fried parameter | |
790 nm | Imaging wavelength | ||
S-H WFS | 589 nm | Wavelength of the LGS | |
- | 9 × 9 | Number of sub-aperture | |
- | 80 × 80 | Pixel number of the camera | |
Wavefront corrector | - | 64 | Number of actors |
- | Fried | Configuration of the actors |
Layers | Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 |
---|---|---|---|---|---|
Altitude (m) | 25 | 275 | 425 | 1250 | 4000 |
Wind speed (m/s) | 9.4 | 9.6 | 9.8 | 2.78 | 8.3 |
Wind direction (°) | 0.7 | 8.3 | 12.5 | 32.5 | 72.1 |
Fractional | 0.204 | 0.112 | 0.225 | 0.290 | 0.169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Yao, L.; Wu, S.; Wang, G. Wavefront Reconstruction of Shack-Hartmann with Under-Sampling of Sub-Apertures. Photonics 2023, 10, 65. https://doi.org/10.3390/photonics10010065
Huang J, Yao L, Wu S, Wang G. Wavefront Reconstruction of Shack-Hartmann with Under-Sampling of Sub-Apertures. Photonics. 2023; 10(1):65. https://doi.org/10.3390/photonics10010065
Chicago/Turabian StyleHuang, Jian, Lianqun Yao, Shuyun Wu, and Gongchang Wang. 2023. "Wavefront Reconstruction of Shack-Hartmann with Under-Sampling of Sub-Apertures" Photonics 10, no. 1: 65. https://doi.org/10.3390/photonics10010065
APA StyleHuang, J., Yao, L., Wu, S., & Wang, G. (2023). Wavefront Reconstruction of Shack-Hartmann with Under-Sampling of Sub-Apertures. Photonics, 10(1), 65. https://doi.org/10.3390/photonics10010065