Research on A High-Sensitivity Temperature Sensor with Multi-Indicator Based on Nano-Cylinder-Loaded Ring Resonator
Abstract
:1. Introduction
2. Sensor Schematic and Theoretical Analysis
3. Numerical Analysis and Optimization
3.1. Numerical Optimization
3.2. Nano-Cylinder-Added Ring Resonator
3.3. Potential as a Temperature Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIM | Metal-insulator-metal |
NCRR | Nano-cylinder-loaded ring resonator |
FEM | Finite element method |
RI | Refractive index |
MIR | Middle-infrared region |
MUS | Material under sensing |
References
- Truong, C.D.; Van, T.N.; Trinh, M.T.; Manh, H.C.; Tan, H.N.; Hoai, B.D. Triple-wavelength filter based on the nanoplasmonic metal-insulator-metal waveguides. Opt. Quantum Electron. 2021, 53, 223. [Google Scholar] [CrossRef]
- Pooretemad, S.; Malekijavan, A.; Aslinezhad, M. Ultrawideband bandstop filter based on Fano resonance and rectangular resonators. Appl. Opt. 2021, 60, 4266–4272. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gao, Y. Tunable ultra-narrow band band-stop filter based on metal–insulator–metal plasmonic waveguide with square resonator. Opt. Commun. 2021, 501, 127395. [Google Scholar] [CrossRef]
- Ghasemi, M.R.; Bayati, M.S. Proposal for metal–insulator–metal plasmonic power splitter and demultiplexer suitable for implementation in optical switches. IET Optoelectron. 2021, 15, 200–206. [Google Scholar] [CrossRef]
- Rakhshani, M.R. Refractive index sensor based on dual side-coupled rectangular resonators and nanorods array for medical applications. Opt. Quantum Electron. 2021, 53, 232. [Google Scholar] [CrossRef]
- Khonina, S.; Kazanskiy, N.; Butt, M.; Kaźmierczak, A.; Piramidowicz, R. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt. Express 2021, 29, 16584–16594. [Google Scholar] [CrossRef]
- Karimi, Y.; Kaatuzian, H.; Tooghi, A.; Danaie, M. All-optical plasmonic switches based on Fano resonance in an X-shaped resonator coupled to parallel stubs for telecommunication applications. Optik 2021, 243, 167424. [Google Scholar] [CrossRef]
- Srivastava, A.; Verma, A.; Prajapati, Y.K. Theoretical study of hazardous carbon-di-oxide gas sensing using MIM structure-based SPR sensing scheme. IET Optoelectron. 2021, 15, 167–177. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Zhang, Y.; Yu, L. Independently formed multiple Fano resonances for ultra-high sensitivity plasmonic nanosensor. Plasmonics 2018, 13, 107–113. [Google Scholar] [CrossRef]
- Shen, S.; She, S.; Wang, Z.; Tan, Q.; Xiong, J.; Zhang, W. MIM waveguide structure consisting of two triangle stubs, side-coupled with an eight-like resonant cavity. Opt. Commun. 2021, 495, 127087. [Google Scholar] [CrossRef]
- Heenkenda, R.; Hirakawa, K.; Sarangan, A. Tunable optical filter using phase change materials for smart IR night vision applications. Opt. Express 2021, 29, 33795–33803. [Google Scholar] [CrossRef]
- Rashid, K.S.; Tathfif, I.; Yaseer, A.A.; Hassan, M.F.; Sagor, R.H. Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt. Express 2021, 29, 37541–37554. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. A compact design of a modified Bragg grating filter based on a metal-insulator-metal waveguide for filtering and temperature sensing applications. Optik 2022, 251, 168466. [Google Scholar] [CrossRef]
- Zegaar, I.; Hocini, A.; Ben salah, H. Journal of Physics: Conference Series. In Proceedings of the XXI International Conference and School on Quantum Electronics, Online Event, 21–25 September 2020; IOP Publishing: Bristol, UK, 2021; Volume 1859, p. 012024. [Google Scholar]
- Ji, P.; Shi, Q.; Zheng, L.; Wang, G.; Chen, F. High sensitivity plasmonic refractive index and temperature sensor based on square ring shape resonator with nanorods defects. Opt. Quantum Electron. 2022, 54, 184. [Google Scholar] [CrossRef]
- Faghani, A.A.; Yaghoubi, E.; Yaghoubi, E. Triple-channel glasses-shape nanoplasmonic demultiplexer based on multi nanodisk resonators in MIM waveguide. Optik 2021, 237, 166697. [Google Scholar] [CrossRef]
- Karimi, Y.; Kaatuzian, H. Low-Power Fano Resonance-Based MIM Plasmonic Switch Using Kerr-Type Nonlinear Material. In Proceedings of the 2021 29th Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 18–20 May 2021; pp. 32–35. [Google Scholar]
- Khani, S.; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 2022, 505, 127534. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 2020, 202, 163655. [Google Scholar] [CrossRef]
- Tathfif, I.; Yaseer, A.A.; Rashid, K.S.; Sagor, R.H. Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt. Express 2021, 29, 32365–32376. [Google Scholar] [CrossRef]
- Al Mahmud, R.; Faruque, M.O.; Sagor, R.H. A highly sensitive plasmonic refractive index sensor based on triangular resonator. Opt. Commun. 2021, 483, 126634. [Google Scholar] [CrossRef]
- Hassan, M.F.; Sagor, R.H.; Tathfif, I.; Rashid, K.S.; Radoan, M. An optimized dielectric-metal-dielectric refractive index nanosensor. IEEE Sensors J. 2020, 21, 1461–1469. [Google Scholar] [CrossRef]
- Fan, H.; Fan, H.; Fan, H. Multiple Fano resonance refractive index sensor based on a plasmonic metal-insulator-metal based Taiji resonator. J. Opt. Soc. Am. B 2022, 39, 32–39. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Liu, X.; Rohimah, S.; Tian, H.; Qi, D. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 2021, 482, 126563. [Google Scholar] [CrossRef]
- Xu, D.; Yan, S.; Yang, X.; Su, H.; Wu, X.; Hua, E. A Nanoscale Structure Based on a Ring With Matchstick-Shape Cavity for Glucose Concentration and Temperature Detection. IEEE Sensors J. 2020, 21, 4442–4450. [Google Scholar] [CrossRef]
- Rohimah, S.; Tian, H.; Wang, J.; Chen, J.; Li, J.; Liu, X.; Cui, J.; Hao, Y. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications. Appl. Opt. 2022, 61, 1275–1283. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Liu, X.; Tian, H.; Wang, J.; Cui, J.; Rohimah, S. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities. Appl. Opt. 2021, 60, 5312–5319. [Google Scholar] [CrossRef]
- Guo, Z.; Wen, K.; Qin, Y.; Fang, Y.; Li, Z.; Chen, L. A plasmonic refractive-index sensor based multiple Fano resonance multiplexing in slot-cavity resonant system. Photonic Sens. 2022, 12, 175–184. [Google Scholar] [CrossRef]
- Alipour, A.; Farmani, A.; Mir, A. High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 2018, 18, 7047–7054. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Waveguide width | w | 50 nm |
Inner radius | R1 | 300 nm |
Outer radius | R2 | 350 nm |
Radius of the nanorods | r | 20 nm |
Number of the nanorods | n | 36 |
Waveguide gap width | g | 10 nm |
The thickness of the stub | t | 5 nm |
Distance between the stub | L | 15 nm |
Parameter | Value | Unit |
---|---|---|
Dielectric constant | 3.7 | 1 |
Bulk plasma frequency | 9.1 | eV |
Electron collision | 0.018 | eV |
Incident frequency | 1.24 | eV |
FR3 (nm/RIU) | FR4 (nm/RIU) | FR5 (nm/RIU) | FR6 (nm/RIU) | FR7 (nm/RIU) | |
---|---|---|---|---|---|
Empty Ring | 955.3 | 710.6 | 548.9 | 416.7 | |
Gap 30° | 980.9 | 721.3 | 602.1 | 466.0 | |
Gap 45° | 972.3 | 720.1 | 605.4 | 477.6 | |
Gap 90° | 961.7 | 727.7 | 619.1 | 474.5 | |
R = 5 nm | 987.2 | 740.4 | 608.5 | 480.9 | |
R = 10 nm | 1061.7 | 814.9 | 644.7 | 557.4 | 468.1 |
R = 15 nm | 1246.8 | 951.1 | 780.9 | 648.9 | 553.2 |
FOM | 1251.6 | 1827 | 2280 | 2633 | 2911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Liang, K.; Wang, Y.; Sun, Q.; Guo, J.; Jin, L.; Yu, L. Research on A High-Sensitivity Temperature Sensor with Multi-Indicator Based on Nano-Cylinder-Loaded Ring Resonator. Photonics 2023, 10, 69. https://doi.org/10.3390/photonics10010069
Zhou P, Liang K, Wang Y, Sun Q, Guo J, Jin L, Yu L. Research on A High-Sensitivity Temperature Sensor with Multi-Indicator Based on Nano-Cylinder-Loaded Ring Resonator. Photonics. 2023; 10(1):69. https://doi.org/10.3390/photonics10010069
Chicago/Turabian StyleZhou, Peng, Kun Liang, Yilin Wang, Qing’an Sun, Jiaqi Guo, Lei Jin, and Li Yu. 2023. "Research on A High-Sensitivity Temperature Sensor with Multi-Indicator Based on Nano-Cylinder-Loaded Ring Resonator" Photonics 10, no. 1: 69. https://doi.org/10.3390/photonics10010069
APA StyleZhou, P., Liang, K., Wang, Y., Sun, Q., Guo, J., Jin, L., & Yu, L. (2023). Research on A High-Sensitivity Temperature Sensor with Multi-Indicator Based on Nano-Cylinder-Loaded Ring Resonator. Photonics, 10(1), 69. https://doi.org/10.3390/photonics10010069