An All Optical 2 × 1 Multiplexer Using a Metal-Insulator-Metal based Plasmonic Waveguide for Processing at a Rapid Pace
Abstract
:1. Introduction
2. Design and Operating Principle of 2 × 1 Multiplexer
3. Simulation and Results of the Proposed 2 × 1 Multiplexer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Goswami, K.; Mondal, H.; Datta, H.T.; Sen, M. A review on photonic crystal based all-optical logic decoder: Linear and nonlinear perspectives. Opt. Quant. Electron 2022, 54, 90. [Google Scholar] [CrossRef]
- Rao, D.G.S.; Fathima, M.S.; Manjula, P.; Swarnakar, S. Design and optimization of all-optical demultiplexer using photonic crystals for optical computing applications. J. Opt. Comm. 2020, 000010151520200057. [Google Scholar] [CrossRef]
- Rao, D.G.S.; Palacharla, V.; Swarnakar, S.; Kumar, S. Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking. App. Opt. 2020, 59, 7139–7143. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, Z.; Tian, X.; Käll, M.; Xu, H. Cascaded logic gates in nanophotonic plasmon networks. Nature commun. 2011, 2, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathi, S.; Swarnakar, S.; Kumar, S. Design of one-bit magnitude comparator using photonic crystals. J. Opt. Commun 2019, 40, 363–367. [Google Scholar] [CrossRef]
- Goswami, K.; Mondal, H.; Das, P.; Thakuria, A. Realization of ultra-compact all-optical logic AND Gate based on photonic crystal waveguide. In Advances in Communication. Devices and Networking; Springer: Singapore, 2022; pp. 61–68. [Google Scholar] [CrossRef]
- Swarnakar, S.; Kumar, S.; Sharma, S. All-optical half-adder circuit based on beam interference principle of photonic crystal. J. Opt. Commun. 2017, 39, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Pareek, P.; Kumar, G.M.; Revathi, D. A Microscale numerical analysis of ex-or and ex-nor logic gates by using single plasmonic MZI. Plasmon 2021, 16, 1127–1136. [Google Scholar] [CrossRef]
- Swarnakar, S.; Anguluri, S.P.; Kumar, S. Design and analysis of miniaturized all-optical binary to gray code converter using Y-shaped plasmonic waveguide for optical processors. Photon. Netw. Commun. 2022, 13, 21–29. [Google Scholar] [CrossRef]
- Swarnakar, S.; Kumar, S.; Sharma, S. Design of all-optical full adder circuit using 2-D photonic crystal waveguides. J. Comput. Electron 2018, 17, 1124–1134. [Google Scholar] [CrossRef]
- Swarnakar, S.; Kumar, S.; Sharma, S. Design of all-optical half-subtractor circuit device using 2-D principle of photonic crystal waveguides. J. Opt. Comm 2019, 40, 195–203. [Google Scholar] [CrossRef]
- Rachana, M.; Swarnakar, S.; Priya, N.H. High-speed optimisation of an all-optical half adder using a T-shaped photonic crystal waveguide with an improved contrast ratio. J. Phys. 2022, 96, 174. [Google Scholar] [CrossRef]
- Swarnakar, S.; Reddy, S.K.; Ramanand Harijan, R.; Kumar, S. Design and modelling of all-optical NAND gate using metal–insulator–metal (MIM) waveguides-based Mach-Zehnder interferometers for high-speed information processing. Opt. Quant. Electron 2021, 53, 493. [Google Scholar] [CrossRef]
- Anguluri, S.P.K.; Banda, S.R.; Krishna, S.V. The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices. J. Comput. Electron. 2021, 20, 1892–1899. [Google Scholar] [CrossRef]
- Nanda, R.; Rath, R.; Swarnakar, S. Design of All-Optical Directional Coupler Using Plasmonic MIM Waveguide for Switching Applications. Plasmon 2022, 17, 2153–2159. [Google Scholar] [CrossRef]
- Rezaei, M.H.; Zarifkar, A.; Miri, M. Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt. Materials 2018, 84, 572–578. [Google Scholar] [CrossRef]
- Swarnakar, S.; Guddati, A.; Reddy, S.K.; Harijan, R.; Kumar, S. Performance analysis of optimized plasmonic half-adder circuit using Mach-Zehnder interferometer for high-speed switching applications. Microelectron. J. 2021, 111, 1–6. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, S. 340 Gb/s all-optical NOT, XOR, XNOR, A¯ B, AB¯, OR and NOR logic gates based on cross-gain modulation in semiconductor optical amplifiers. Optik 2021, 247, 168016. [Google Scholar] [CrossRef]
- Rachana, M.; Swarnakar, S.; Krishna, S.V.; Kumar, S. Design and analysis of an optical three-input AND gate using a photonic crystal fiber. Appl. Opt. 2022, 61, 77–83. [Google Scholar] [CrossRef]
- Priya, N.H.; Swarnakar, S.; Krishna, S.V.; Kumar, S. Design and analysis of a photonic crystal-based all-optical 3-input OR gate for high-speed optical processing. Opt. Quant. Electron. 2021, 53, 720. [Google Scholar] [CrossRef]
- Masoud, A.M.; Ahmed, I.S.; El-Naggar, S.A.; Asham, M.D. Design and simulation of all-optical logic gates based on two-dimensional photonic crystals. J. Opt. 2022, 51, 343–351. [Google Scholar] [CrossRef]
- Li, E.P. Speed-up electronic integrated circuits with plasmonic technology. In Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 7–11 November 2010; IEEE: New York, NY, USA, 2010; pp. 387–388. [Google Scholar] [CrossRef]
- Dolatabady, A.; Granpayeh, N. All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators. J. Opt. Soc. Korea 2012, 16, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, T.; Golmohammadi, S.; Farmani, A.; Baghban, H. Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. App. Phys. B. 2019, 125, 189. [Google Scholar] [CrossRef]
- Singh, A.; Pal, A.; Singh, Y.; Sharma, S. Design of optimized all-optical NAND gate using metal-insulator-metal waveguide. Optik 2019, 182, 524–528. [Google Scholar] [CrossRef]
- Al-Musawi, H.K.; Al-Janabi, A.K.; Al-abassi, S.A.; Abusiba, N.A.H.A.; Al-Fatlawi, N.A.H.Q. Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands. Optik 2020, 223, 372–377. [Google Scholar] [CrossRef]
- Fakhruldeen, H.F.; Mansour, T.S.A. Design and Simulation of All-Optical Plasmonic Logic Gates Based on Nano-Ring Insulator-Metal-Insulator Waveguides. Int. J. Adv. Sci. Tech. 2020, 29, 405–424. [Google Scholar]
- Fakhruldeen, H.F.; Mansour, T.S. Design of Plasmonic NOT Logic Gate Based on Insulator–Metal–Insulator (IMI) waveguides. Adv. Electromagn. 2020, 9, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Kumar, V.D. Hybrid insulator metal insulator planar plasmonic waveguide-based components. IEEE Photon. Technol. Lett. 2017, 29, 1360–1363. [Google Scholar] [CrossRef]
- Cui, L.; Yu, L. Multifunctional logic gates based on silicon hybrid plasmonic waveguides. Modern Phys. Lett. B. 2018, 32, 1–7. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, V.D. All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photon. Technol. Lett. 2018, 30, 959–962. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, D.K.; Ranjan, R. Design of Nanoscale Hybrid Insulator-metal-insulator Plasmonic Waveguide. Silicon 2021, 14, 3449–3459. [Google Scholar] [CrossRef]
- Chhipa, M.K.; Madhav, B.T.; Robinson, S.; Janyani, V.; Suthar, B. Realization of all-optical logic gates using a single design of 2D photonic band gap structure by square ring resonator. Opt. Eng. 2021, 60, 075104. [Google Scholar] [CrossRef]
- Rao, D.G.S.; Swarnakar, S.; Palacharla, V.; Raju, K.S.R.; Kumar, S. Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photon. Netw. Commun. 2021, 41, 109–118. [Google Scholar] [CrossRef]
- Oh, G.Y.; Kim, D.G.; Kim, H.S.; Choi, Y.W. All optical logic gates using active plasmonic device block. In Physics and Simulation of Optoelectronic Devices XVIII; SPIE: Bellingham, WA, USA, 2010; Volume 7597, pp. 1–8. [Google Scholar] [CrossRef]
- Sreevani, A.; Charles, I.; Swarnakar, S.; Krishna, S.V.; Kumar, S. Design and characteristic analysis of an all-optical AND, XOR, and XNOR Y-shaped MIM waveguide for high-speed information processing. Appl. Opt. 2022, 61, 1212–1218. [Google Scholar] [CrossRef]
- Charles, I.; Sreevani, A.; Krishna, S.V.; Swarnakar, S.; Sharma, P.S.; Kumar, S. Enhanced all-optical Y-shaped plasmonic OR, NOR and NAND gate models, analyses, and simulation for high speed computations. Opt. Quant. Electron. 2022, 54, 330. [Google Scholar] [CrossRef]
- Sang, Y.; Wu, X.; Raja, S.S.; Wang, C.Y.; Li, H.; Ding, Y.; Liu, D.; Zhou, J.; Ahn, H.; Gwo, S.; et al. Broadband multifunctional plasmonic logic gates. Adv. Opt. Mater. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Singh, L.; Bedi, A.; Kumar, S. Design of signal router employing optical switching in MIM plasmonic waveguides. Opt. Interconnects XVII 2017, 10109, 1–6. [Google Scholar] [CrossRef]
- Younis, R.M.; Areed, N.F.; Obayya, S.S. Fully integrated AND and OR optical logic gates. IEEE Photon. Technol. Lett. 2014, 26, 1900–1903. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, X.; Lu, C.; Yue, S.; Yang, H.; Gong, Q. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 2012, 12, 5784–5790. [Google Scholar] [CrossRef]
- Guo, B.; Gan, Q.; Song, G.; Gao, J.; Chen, L. Numerical study of a high-resolution far-field scanning optical microscope via a surface plasmon-modulated light source. J. Light. Technol. 2007, 25, 830–833. [Google Scholar] [CrossRef]
- Singh, L.; Bedi, A.; Kumar, S. Modeling of all-optical even and odd parity generator circuits using metal-insulator-metal plasmonic waveguides. Photon. Sens. 2017, 7, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Yin, F.; Song, G.; Zou, Y.; Wang, L.; Yu, L. AND logic device based on chiral surface plasmon polaritons in Y-shape nanowire. Modern Phys. Lett. B. 2019, 33, 1950373. [Google Scholar] [CrossRef]
- Hayashi, S.; Okamoto, T. Plasmonics: Visit the past to know the future. J. Phys. D Appl. Phys. 2012, 45, 1–24. [Google Scholar] [CrossRef]
- Rao, D.G.S.; Swarnakar, S.; Kumar, S. Design of photonic crystal based compact all-optical 2 × 1 multiplexer for optical processing devices. Microelectron. J. 2021, 112, 1–6. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low-Dimens. Syst. Nanostructures 2013, 1, 97–101. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J. Mod. Opt. 2016, 63, 1078–1086. [Google Scholar] [CrossRef]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators. J. Electromagn. Waves Appl. 2012, 26, 1700–1707. [Google Scholar] [CrossRef]
Control Signal (S) | Inputs | Output | |
---|---|---|---|
A0 | A1 | Y | |
0 | 0 | 0 | 0 |
0 | 1 | 0 | |
1 | 0 | 1 | |
1 | 1 | 1 | |
1 | 0 | 0 | 0 |
0 | 1 | 1 | |
1 | 0 | 0 | |
1 | 1 | 1 |
Simulation Parameters | Considered Value |
---|---|
Low power intensity | W/m |
High power intensity | W/m |
X mesh cells | 349 |
Z mesh cells | 603 |
Transverse Input field | Gaussian |
Simulation type | 2D |
Mesh size | 0.0114 µm (X)/0.0114 µm (Y) |
Boundary conditions | Anisotropic perfectly matched layer (PML) |
Time Step size | 9.77 × |
Anisotropic PML layer number | 10 |
Theoretical reflection coefficient | 1.0 × |
Real Anisotropic PML tensor parameter | 5 |
Power of grading polynomial | 3.5 |
2 × 1 Multiplexer Conditions | Output Power | ||
---|---|---|---|
n = 2.05 | n = 2.1 | n = 2.15 | |
1 | 0.4 | 0.2 | 0.3 |
2 | 0.58 | 0.3 | 0.4 |
3 | 0.4 | 0.58 | 0.43 |
4 | 0.9 | 1.22 | 0.8 |
5 | 0.01 | 0.08 | 0.05 |
6 | 3.12 | 6.22 | 2.3 |
7 | 0.3 | 0.14 | 0.25 |
8 | 0.7 | 1.48 | 0.83 |
Control Signal (S) | Inputs | Output | Logic Power Output | |
---|---|---|---|---|
A0 | A1 | Y | PY | |
0 | 0 | 0 | 0 | 0.20 |
0 | 1 | 0 | 0.40 | |
1 | 0 | 1 | 0.58 | |
1 | 1 | 1 | 1.22 | |
1 | 0 | 0 | 0 | 0.08 |
0 | 1 | 1 | 6.22 | |
1 | 0 | 0 | 0.14 | |
1 | 1 | 1 | 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charles, I.; Swarnakar, S.; Nalubolu, G.R.; Palacharla, V.; Kumar, S. An All Optical 2 × 1 Multiplexer Using a Metal-Insulator-Metal based Plasmonic Waveguide for Processing at a Rapid Pace. Photonics 2023, 10, 74. https://doi.org/10.3390/photonics10010074
Charles I, Swarnakar S, Nalubolu GR, Palacharla V, Kumar S. An All Optical 2 × 1 Multiplexer Using a Metal-Insulator-Metal based Plasmonic Waveguide for Processing at a Rapid Pace. Photonics. 2023; 10(1):74. https://doi.org/10.3390/photonics10010074
Chicago/Turabian StyleCharles, Ipshitha, Sandip Swarnakar, Geetha Rani Nalubolu, Venkatrao Palacharla, and Santosh Kumar. 2023. "An All Optical 2 × 1 Multiplexer Using a Metal-Insulator-Metal based Plasmonic Waveguide for Processing at a Rapid Pace" Photonics 10, no. 1: 74. https://doi.org/10.3390/photonics10010074
APA StyleCharles, I., Swarnakar, S., Nalubolu, G. R., Palacharla, V., & Kumar, S. (2023). An All Optical 2 × 1 Multiplexer Using a Metal-Insulator-Metal based Plasmonic Waveguide for Processing at a Rapid Pace. Photonics, 10(1), 74. https://doi.org/10.3390/photonics10010074