1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wysoccski, P.F.; Digonnet, M.J.; Kim, B.Y.; Shaw, H.J. Characteristics of Er3+-doped super-fluorescent fiber source for interferometric sensor application. J. Light Wave Technol. 1994, 12, 550–567. [Google Scholar] [CrossRef]
- Digonnet, M.J.F. Theory of superfluorescent fiber lasers. J. Light Wave Technol. 1986, 4, 1631–1639. [Google Scholar] [CrossRef]
- Fercher, A.F.; Drexler, W.; Hitzenhberger, C.K. Optical coherence tomography principles and applications. Rep. Prog. Phys. 2003, 66, 239–303. [Google Scholar] [CrossRef]
- Martin-Lopez, S.; Gonzalez-Herraez, M.; Carrasco-Sanz, A.; Vanholsbeeck, F.; Coen, S.; Fernandez, H.; Solis, J.; Corredera, P.; Hernanz, M.L. Broadband spectrally flat and high power density fbeam source for fibre sensing purposes. Meas. Sci. Technol. 2006, 17, 1014–1019. [Google Scholar] [CrossRef] [Green Version]
- Kurkov, A.S. Oscillation spectral range of Yb-doped fiber lasers. Laser Phys. Lett. 2007, 4, 93–102. [Google Scholar] [CrossRef]
- Stiles, E. New developments in IPG fiber laser technology. In Proceedings of the 5th International Workshop on Fiber Lasers, Dresden, Germany, 30 September 2009. [Google Scholar]
- He, B.; Zhou, J.; Lou, Q.; Xue, Y.; Li, Z.; Wang, W.; Dong, J.; Wei, Y.; Chen, W. 1.75 KW continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber. Microw. Opt. Technol. Lett. 2010, 52, 1668–1671. [Google Scholar] [CrossRef]
- Wirth, C.; Schmidt, O.; Tsybin, I.; Schreiber, T.; Peschel, T.; Brückner, F.; Clausnitzer, T.; Limpert, J.; Eberhardt, R.; Tünnermann, A.; et al. 2KW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers. Opt. Express 2009, 17, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sahu, J.K.; Clarkson, W.A. 110 W double-ended ytterbium-doped fiber super-fluorescent source with M2 = 1.6. Opt. Lett. 2006, 31, 3116–3118. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sahu, J.K.; Clarkson, W.A. High-power broadband ytterbium-doped helical-core fiber super-fluorescent source. IEEE Photon. Technol. Lett. 2007, 19, 300–302. [Google Scholar] [CrossRef]
- Wang, P.; Clarkson, W.A. High-power, single-mode, linearly polarized, ytterbium-doped fiber super-fluorescent source. Opt. Lett. 2007, 32, 2605–2607. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, O.; Rekas, M.; Wirth, C.; Rothhardt, J.; Rhein, S.; Kliner, A.; Strecker, M.; Schreiber, T.; Limpert, J.; Eberhardt, R.; et al. High power narrow-band fiber-based ASE source. Opt. Express 2011, 19, 4421–4427. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, J.; Wang, K.; Wang, P. All-fiber hundred-Watt-level broadband ytterbium-doped double cladding fiber super-fluorescent source. Chin. J. Lasers 2012, 39, 0802008. [Google Scholar] [CrossRef]
- Liu, J.; Liu, K.; Tan, F.; Wang, P. High-power thulium-doped all-fiber super-fluorescent sources. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3100306. [Google Scholar]
- Xu, J.M.; Huang, L.J.; Chen, J.B. 1.01 KW super-fluorescent source in all-fiberized MOPA configuration. Opt. Express 2015, 23, 5485–5490. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.F.; Huang, L.; Wang, X.L. High power broadband all fiber super fluorescent source with linear polarization and near diffraction-limited beam quality. Opt. Express 2016, 24, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; An, Y.; Pan, Z.; Huang, Z.; Yu, Y.; Guo, S.; Chen, J. A 186-Watt all-fiber single-stage super-fluorescent source. In Proceedings of the CLEO: Science and Innovations 2016, San Jose, CA, USA, 5–10 June 2016; p. SM4Q.7. [Google Scholar]
- Li, Z.; Li, G.; Gao, Q.I.; Wu, P.; She, S.F.; Wang, Z.L.; Huang, N.; Sun, C.; Gao, W.; Ju, P.; et al. Kilowatt-level tunable all-fiber narrowband super-fluorescent fiber source with 40 nm tuning range. Opt. Express 2020, 28, 10378–10385. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wu, H.S.; Ren, S.; Liu, W.; Ma, P.F.; Xiao, H.; Zhou, P. Comparisons of kilowatt Yb-Raman fiber amplifiers employing a super-fluorescent fiber source and fiber oscillator. Opt. Express 2021, 29, 22966–22972. [Google Scholar] [CrossRef] [PubMed]
- Perevezentsev, E.; Poteomkin, A.; Khazanov, E. Comparison of phase-aberrated laser beam quality criteria. Appl. Opt. 2007, 46, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Siegman, A.E. New developments in laser resonators. Proc. SPIE 1990, 1224, 2–14. [Google Scholar]
- Siegman, A.E. How to (maybe) measure laser beam quality. In DPSS (Diode Pumped Solid State) Lasers: Applications and Issues; Vol. 17 of OSA Trends in Optics and Photonics, Paper MQ1; Dowley, M., Ed.; Optical Society of America: Washington, DC, USA, 1998. [Google Scholar]
- Borgentun, C.; Bengtsson, J.; Larsson, A. Full characterization of a high-power semiconductor disk laser beam with simultaneous capture of optimally sized focus and farfield. Appl. Opt. 2011, 50, 1640–1649. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, Z.; Xu, X.; Liu, J.; Bai, X. 1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System. Photonics 2023, 10, 81. https://doi.org/10.3390/photonics10010081
Li X, Zhang Z, Xu X, Liu J, Bai X. 1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System. Photonics. 2023; 10(1):81. https://doi.org/10.3390/photonics10010081
Chicago/Turabian StyleLi, Xin, Zhe Zhang, Xinyang Xu, Junjie Liu, and Xiaolei Bai. 2023. "1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System" Photonics 10, no. 1: 81. https://doi.org/10.3390/photonics10010081
APA StyleLi, X., Zhang, Z., Xu, X., Liu, J., & Bai, X. (2023). 1.73 kW CW Amplification ASE Source Based on Yb3+ Ions-Doped All-Fiber System. Photonics, 10(1), 81. https://doi.org/10.3390/photonics10010081