Optical Properties of LiGdF4 Single Crystal in the Terahertz and Infrared Ranges
Abstract
:1. Introduction
2. Experimental Methods and Data Analysis
3. Experimental Results
4. THz-IR Spectra Fitting and Parameters Calculation
5. Absorption Processes in the THz Range
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Li, K.; Zhao, H. Intense terahertz: Generation and application. Front. Optoelectron. 2021, 14, 4–36. [Google Scholar] [CrossRef]
- Recur, B.; Guillet, J.P.; Manek-Hönninger, I.; Delagnes, J.C.; Benharbone, W.; Desbarats, P.; Mounaix, P. Propagation beam consideration for 3D THz computed tomography. Opt. Express 2012, 20, 5817–5829. [Google Scholar] [CrossRef] [PubMed]
- Cherkassky, V.S.; Gerasimov, V.V.; Ivanov, G.M.; Knyazev, B.A.; Kulipanov, G.N.; Lukyanchikov, L.A.; Merzhievsky, L.A.; Vinokurov, N.A. Techniques for introscopy of condense matter in terahertz spectral region. Nucl. Instrum. Methods Phys. Res. A 2007, 575, 63–67. [Google Scholar] [CrossRef]
- Samuels, A.C.; Woolard, D.L.; Globus, T.; Gelmont, B.; Brown, E.R.; Jensen, J.O.; Suenram, R.; Loerop, W.R. Environmental sensing of chemical and biological warfare agents in the THz region. Int. J. High Speed Electron. Syst. 2002, 12, 479–489. [Google Scholar] [CrossRef]
- Kellarev, A.; Sheffer, D. Terahertz Remote Sensing. In Proceedings of the Terahertz Physics, Devices, and Systems V: Advance Applications in Industry and Defense, Orlando, FL, USA, 23–27 April 2011; p. 80230N. [Google Scholar] [CrossRef]
- Dolfi, D.; Morvan, L.; Pillet, G.; Larat, C.; Legagneux, P.; Montanaro, A.; de Rossi, A.; Crété, D.; Marcilhac, B.; Bortolotti, P.; et al. Building Blocks and Concepts for THz Remote Sensing and Communications. In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Zaytsev, K.I.; Dolganova, I.N.; Chernomyrdin, N.V.; Katyba, G.M.; Gavdush, A.A.; Cherkasova, O.P.; Komandin, G.A.; Shchedrina, M.A.; Khodan, A.N.; Ponomarev, D.S.; et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: A review. J. Opt. 2020, 22, 013001. [Google Scholar] [CrossRef]
- Cherkasova, O.P.; Serdyukov, D.S.; Nemova, E.F.; Ratushnyak, A.S.; Kucheryavenko, A.S.; Dolganova, I.N.; Xu, G.; Skorobogatiy, M.; Reshetov, I.V.; Timashev, P.S.; et al. Cellular effects of terahertz waves. J. Biomed. Opt. 2021, 26, 90902. [Google Scholar] [CrossRef]
- Smolyanskaya, O.A.; Chernomyrdin, N.V.; Konovko, A.A.; Zaytsev, K.I.; Ozheredov, I.A.; Cherkasova, O.P.; Nazarov, M.M.; Guillet, J.-P.; Kozlov, S.A.; Kistenev, Y.V.; et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Prog. Quantum Electron. 2018, 62, 1–77. [Google Scholar] [CrossRef]
- Vasyliev, V.; Villora, E.G.; Nakamura, M.; Sugahara, Y.; Shimamura, K. UV–visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3. Opt. Express 2012, 20, 14460–14470. [Google Scholar] [CrossRef]
- Angeluts, A.A.; Bezotosnyi, V.V.; Cheshev, E.A.; Goltsman, G.N.; Finkel, M.I.; Seliverstov, S.V.; Evdokimov, M.N.; Gorbunkov, M.V.; Kitaeva, G.K.; Koromyslov, A.L.; et al. Compact 1.64 THz source based on a dualwavelength diode endpumped Nd:YLF laser with a nearly semiconfocal cavity. Laser Phys. Lett. 2014, 11, 015004. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhong, K.; Wang, A.; Zhou, M.; Li, S.; Gao, L.; Zhang, Z. Optical Terahertz Sources Based on Difference Frequency Generation in Nonlinear Crystals. Crystals 2022, 12, 936. [Google Scholar] [CrossRef]
- Zhang, X.X.; Bass, M.; Villaverde, A.B.; Lefaucheur, J.; Pham, J.; Chai, B.H.T. Efficient laser performance of Nd:GdLiF4: A new laser crystal. Appl. Phys. Lett. 1993, 62, 1197. [Google Scholar] [CrossRef] [Green Version]
- Danger, T.; Sandrock, T.; Heumann, E.; Huber, G.; Chai, G. Pulsed Laser Action of Pr:GdLiF4 at Room Temperature. Appl. Phys. B 1993, 57, 239–241. [Google Scholar] [CrossRef]
- Cornacchia, F.; Di Lieto, A.; Tonelli, M. LiGdF4:Tm3+: Spectroscopy and diode-pumped laser experiments. Appl. Phys. B 2009, 96, 363–368. [Google Scholar] [CrossRef]
- Goryunov, A.V.; Popov, A.I.; Khajdukov, N.M.; Fedorov, P.P. Crystal Structure of Lithium and Yttrium Complex Fluorides. Mater. Res. Bull. 1992, 27, 213–220. [Google Scholar] [CrossRef]
- Numazawa, T.; Kamiya, K.; Shirron, P.; DiPirro, M.; Matsumoto, K. Magnetocaloric Effect of Polycrystal GdLiF4 for Adiabatic Magnetic Refrigeration. AIP Conf. Proc. 2006, 850, 1579. [Google Scholar] [CrossRef]
- Semashko, V.V.; Korableva, S.L.; Fedorov, P.P. Lithium Rare-Earth Fluorides as Photonic Materials: 2. Some Physical, Spectroscopic, and Lasing Characteristics. Inorg. Mater. 2022, 58, 447–492. [Google Scholar] [CrossRef]
- Salaün, S.; Fornoni, M.T.; Bulou, A.; Rousseau, M.; Simon, P.; Gesland, J.Y. Lattice dynamics of fluoride sheelites: I. Raman and infrared study of LiYF4 and LiLnF4 (Ln=Ho, Er, Tm and Yb). J. Phys. Condens. Matter. 1997, 9, 6941. [Google Scholar] [CrossRef]
- Salaün, S.; Bulou, A.; Rousseau, M.; Hennion, B.; Gesland, J.Y. Lattice dynamics of fluoride scheelites: II. Inelastic neutron scattering in LiYF4 and modelization. J. Phys. Condens. Matter. 1997, 9, 6957. [Google Scholar] [CrossRef]
- Babkevich, P.; Finco, A.; Jeong, M.; Dalla Piazza, B.; Kovacevic, I.; Klughertz, G.; Krämer, K.W.; Kraemer, C.; Adroja, D.T.; Goremychkin, E.; et al. Neutron spectroscopic study of crystal-field excitations and the effect of the crystal field on dipolar magnetism in LiRF4 (R=Gd, Ho, Er, Tm, and Yb). Phys. Rev. B 2015, 92, 144422. [Google Scholar] [CrossRef] [Green Version]
- Stolen, R.; Dransfield, K. Far-Infrared lattice absorption in alkali halide crystals. Phys. Rev. 1965, 139, A1295. [Google Scholar] [CrossRef]
- Sparks, M.; King, D.F.; Mills, D.L. Simple theory of microwave absorption in alkali halides. Phys. Rev. B 1982, 26, 6987. [Google Scholar] [CrossRef]
- Fedorov, P.P.; Semashko, V.V.; Korableva, S.L. Lithium Rare-Earth Fluorides as Photonic Materials: 1. Physicochemical Characterization. Inorg. Mater. 2022, 58, 223–245. [Google Scholar] [CrossRef]
- Chai, B.; Lefaucheur, J.; Pham, A. Growth of Nd:GdLiF4 Single Crystals. Proc. SPIE 1993, 1863, 9–12. [Google Scholar]
- Komandin, G.A.; Gavdush, A.A.; Goncharov, Y.G.; Porodinkov, O.E.; Nozdrin, V.S.; Chuchupal, S.V.; Spektor, I.E. Electrodynamical characteristics of α-lactose monohydrate in the terahertz range. Opt. Spectrosc. 2019, 126, 514–522. [Google Scholar] [CrossRef]
- Harbecke, B. Coherent and incoherent reflection and transmission of multilayer structures. Appl. Phys. B 1986, 39, 165–170. [Google Scholar] [CrossRef]
- Grosse, P.; Harbecke, B.; Heinz, B.; Meyer, R.; Offenberg, M. Infrared spectroscopy of oxide layers on technical Si wafers. Appl. Phys. A 1986, 39, 257–268. [Google Scholar] [CrossRef]
- Komandin, G.A.; Nozdrin, V.S.; Spektor, I.E.; Porodinkov, O.E.; Seregin, D.S.; Vishnevskiy, A.S.; Vorotilov, K.A. Dielectric contribution of the IR absorption bands of porous organosilicate glass thin films on platinum sublayer. J. Phys. D Appl. Phys. 2021, 54, 215304. [Google Scholar] [CrossRef]
- Komandin, G.A.; Porodinkov, O.E.; Spector, I.E.; Volkov, A.A. Multiphonon absorption in a MgO single crystal in the Terahertz Range. Phys. Sol. State 2009, 51, 2045. [Google Scholar] [CrossRef]
- Komandin, G.; Nozdrin, V.; Chuchupal, S.; Lomonov, S.; Pisarevskii, Y.; Porodinkov, O.; Spektor, I. Assessment of the application of paratellurite for the acousto-optical deflection of terahertz rays based on broadband spectroscopy data. J. Phys. D Appl. Phys. 2020, 53, 495102. [Google Scholar] [CrossRef]
- Salaun, S.; Bulou, A.; Gesland, J.Y.; Simon, P. Lattice dynamics of the fluoride scheelite CaZnF4. J. Phys. Condens. Matter 2000, 12, 7395. [Google Scholar] [CrossRef]
- Porto, S.P.S.; Scott, J.F. Raman spectra of CaWO4, SrWO4, CaMoO4 and SrMoO4. Phys. Rev. 1967, 157, 716. [Google Scholar] [CrossRef]
- Burstein, E.; Johnson, F.A.; Loudon, R. Selection rules for second-order infrared and Raman processes in the Rocksalt structure and interpretation of the Raman spectra of NaCl, KBr, and NaI. Phys. Rev. 1965, 139, A1239. [Google Scholar] [CrossRef]
- Gervais, F.; Piriou, B. Temperature dependence of transverse and longitudinal optic phonon modes in the α and β phases of quartz. Phys. Rev. B 1975, 11, 3944. [Google Scholar] [CrossRef]
- Knight, S.; Korlacki, R.; Dugan, C.; Petrosky, J.C.; Mock, A.; Dowben, P.A.; Mann, J.M.; Kimani, M.M.; Schubert, M. Infrared-active phonon modes in single crystal thorium dioxide and uranium dioxide. J. Appl. Phys. 2020, 127, 125103. [Google Scholar] [CrossRef]
- Gervais, F.; Piriou, B. Anharmonicity in several-polar-mode crystals: Adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to far infrared reflectivity. J. Phys. C Solid State Phys. 1974, 7, 2374. [Google Scholar] [CrossRef]
- Walter, U. Treating Crystal field parameters in lower than cubic symmetry. J. Phys Chem. Solids 1984, 45, 401–408. [Google Scholar] [CrossRef]
Nosc | Assign. | ∆ε | ν, cm−1 | γ, cm−1 | f, cm−2 |
---|---|---|---|---|---|
1 | Dmp | 0.011 | 21.5 | 18 | 5.5 |
2 | Dmp | 0.066 | 58.6 | 60 | 229 |
3 | Dmp | 0.05 | 95 | 60 | 475 |
4 | Au(1) | 2.8 | 195.5 | 3.7 | 10,845 |
5 | Au(2) | 0.66 | 232.5 | 5.8 | 35,679 |
6 | Au(3) | 0.88 | 338.5 | 11 | 10,0846 |
7 | Au(4) | 1.02 | 354.8 | 9.7 | 128,983 |
8 | ∑mp | 0.005 | 494 | 37 | 11.79 |
9 | ∑mp | 0.026 | 423 | 65 | 4568 |
Nosc | Assign. | ∆ε | ν, cm−1 | γ, cm−1 | f, cm−2 |
---|---|---|---|---|---|
1 | Dmp | 0.028 | 41 | 29 | 47 |
2 | Dmp | 0.04 | 64 | 38 | 177 |
3 | Dmp | 0.04 | 84 | 28 | 298 |
4 | Eu(1) | 3.05 | 129.2 | 2.9 | 50,906 |
5 | Eu(2) | 1.22 | 275.3 | 5.1 | 92,128 |
6 | Eu(3) | 0.51 | 309.7 | 8.9 | 49,031 |
7 | Eu(4) | 0.8 | 413.8 | 15.2 | 137,600 |
8 | ∑mp | 0.17 | 432 | 102 | 31,963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komandin, G.A.; Lebedev, S.P.; Korableva, S.L.; Morozov, O.A.; Kyashkin, V.M.; Semashko, V.V.; Fedorov, P.P. Optical Properties of LiGdF4 Single Crystal in the Terahertz and Infrared Ranges. Photonics 2023, 10, 84. https://doi.org/10.3390/photonics10010084
Komandin GA, Lebedev SP, Korableva SL, Morozov OA, Kyashkin VM, Semashko VV, Fedorov PP. Optical Properties of LiGdF4 Single Crystal in the Terahertz and Infrared Ranges. Photonics. 2023; 10(1):84. https://doi.org/10.3390/photonics10010084
Chicago/Turabian StyleKomandin, Gennady A., Sergey P. Lebedev, Stella L. Korableva, Oleg A. Morozov, Vladimir M. Kyashkin, Vadim V. Semashko, and Pavel P. Fedorov. 2023. "Optical Properties of LiGdF4 Single Crystal in the Terahertz and Infrared Ranges" Photonics 10, no. 1: 84. https://doi.org/10.3390/photonics10010084
APA StyleKomandin, G. A., Lebedev, S. P., Korableva, S. L., Morozov, O. A., Kyashkin, V. M., Semashko, V. V., & Fedorov, P. P. (2023). Optical Properties of LiGdF4 Single Crystal in the Terahertz and Infrared Ranges. Photonics, 10(1), 84. https://doi.org/10.3390/photonics10010084