Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights
Abstract
:1. Introduction
2. Structure and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Guo, Z.; Zhou, K.; Ran, L.; Zhu, L.; Wang, W.; Sun, Y.; Shen, F.; Gao, J.; Liu, S. Circular polarization analyzer based on an Archimedean nano-pinholes array. Opt. Express 2015, 23, 30523–30531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Liu, H.; Cheng, H.; Tian, J.G.; Chen, S.Q. Multi-dimensional manipulation of wave fields based on artificial microstructures. Opto-Electron. Adv. 2020, 3, 200002. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Zhang, Y. Simultaneous airy beam generation for both surface plasmon polaritons and transmitted wave based on metasurface. Opt. Express 2017, 25, 23589–23596. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.Z.; Lv, T.G.; Zhang, Y.P.; Yu, B.B.; Lian, J.Q.; Jing, M.; Zhang, D.W. Polarization controllable device for simultaneous generation of surface plasmon polariton bessel-like beams and bottle beams. Nanomaterials 2018, 8, 975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhao, P.; Feng, X.; Xu, Y.; Liu, F.; Cui, K.; Zhang, W.; Huang, Y. Dynamically sculpturing plasmonic vortices: From integer to fractional orbital angular momentum. Sci. Rep. 2016, 6, 36269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garoli, D.; Zilio, P.; Gorodetski, Y.; Tantussi, F.; De Angelis, F. Optical vortex beam generator at nanoscale level. Sci. Rep. 2016, 6, 29547. [Google Scholar] [CrossRef] [Green Version]
- Song, E.Y.; Lee, S.Y.; Hong, J.; Lee, K.; Lee, Y.; Lee, G.Y.; Kim, H.; Lee, B. A double-lined metasurface for plasmonic complex-field generation. Laser Photonics Rev. 2016, 10, 299–306. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, K.; Lee, G.Y.; Lee, B. Polarization-multiplexed plasmonic phase generation with distributed nanoslits. Opt. Express 2015, 23, 15598–15607. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, K.; Kim, S.J.; Park, H.; Kim, K.Y.; Lee, B. Plasmonic meta-slit: Shaping and controlling near-field focus. Optica 2015, 2, 6–13. [Google Scholar] [CrossRef]
- Lin, J.; Mueller, J.P.B.; Wang, Q.; Yuan, G.; Antoniou, N.; Yuan, X.C.; Capasso, F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 2013, 340, 331–334. [Google Scholar] [CrossRef]
- Bachman, K.A.; Peltzer, J.J.; Flammer, P.D.; Furtak, T.E.; Collins, R.T.; Hollingsworth, R.E. Spiral plasmonic nanoantennas as circular polarization transmission filters. Opt. Express 2012, 20, 1308–1319. [Google Scholar] [CrossRef]
- Ziegler, J.I.; Haglund, R.F. Plasmonic response of nanoscale spirals. Nano Lett. 2010, 10, 3013–3018. [Google Scholar] [CrossRef] [PubMed]
- Gorodetski, Y.; Niv, A.; Kleiner, V.; Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 2008, 101, 043903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshinmanesh, F.; White, J.S.; Cai, W.; Brongersma, M.L. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics 2012, 1, 125–129. [Google Scholar] [CrossRef]
- Zaman, M.A.; Hesselink, L. Dynamically controllable plasmonic tweezers using C-shaped nano-engravings. Appl. Phys. Lett. 2022, 121, 181108. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef]
- Feng, J.; Li, D.; Pacifici, D. Circular slit-groove plasmonic interferometers: A generalized approach to high-throughput biochemical sensing [invited]. Opt. Mater. Express 2015, 5, 2742–2753. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Su, S.; Ma, H.; Zhao, Z.; Lin, Z.; Qiu, W.; Qiu, P.; Huang, B.; Kan, Q. Chiral graphene plasmonic archimedes’ spiral nanostructure with tunable circular dichroism and enhanced sensing performance. Opt. Express 2020, 28, 31954–31966. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, G.; Gao, Y.; Wu, B.; Wan, C.; Jian, S. Graphene circular polarization analyzer based on spiral metal triangle antennas arrays. Opt. Express 2015, 23, 24730–24737. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, G.; Gao, Y.; Wu, B.; Wan, C.; Jian, S. Graphene circular polarization analyzer based on unidirectional excitation of plasmons. Opt. Express 2015, 23, 32420–32428. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, G.; Cryan, M.J.; Wan, C.; Gao, Y.; Yang, Y.; Jian, S. Tunable graphene-coated spiral dielectric lens as a circular polarization analyzer. Opt. Express 2015, 23, 8348–8356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Guo, Z.; Li, R.; Wang, W.; Zhang, A.; Liu, J.; Qu, S.; Gao, J. Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure. Plasmonics 2015, 10, 1255–1261. [Google Scholar] [CrossRef]
- Li, J.; Tang, P.; Liu, W.; Huang, T.; Wang, J.; Wang, Y.; Lin, F.; Fang, Z.; Zhu, X. Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation. Appl. Phys. Lett. 2015, 106, 161106. [Google Scholar] [CrossRef]
- Li, R.; Guo, Z.; Wang, W.; Zhang, J.; Zhang, A.; Liu, J.; Qu, S.; Gao, J. Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators. Opt. Express 2014, 22, 27968–27975. [Google Scholar] [CrossRef]
- Chen, W.; Nelson, R.L.; Zhan, Q. Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt. Lett. 2012, 37, 1442–1444. [Google Scholar] [CrossRef] [PubMed]
- Zhi, W.; Chen, W.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q. Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers. Opt. Lett. 2010, 35, 1755–1757. [Google Scholar] [CrossRef]
- Chen, W.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett. 2010, 10, 2075–2079. [Google Scholar] [CrossRef]
- Yang, S.; Chen, W.; Nelson, R.L.; Zhan, Q. Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett. 2009, 34, 3047–3049. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Kan, Q.; Qu, S.; Zhang, Y. Circular polarization analyzer with polarization tunable focusing of surface plasmon polaritons. Appl. Phys. Lett. 2015, 107, 243504. [Google Scholar] [CrossRef]
- Guo, W.P.; Liang, W.Y.; Cheng, C.W.; Wu, W.L.; Wang, Y.T.; Sun, Q.; Zu, S.; Misawa, H.; Cheng, P.J.; Chang, S.W.; et al. Chiral second-harmonic generation from monolayer WS2/Aluminum plasmonic vortex metalens. Nano lett. 2020, 20, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Gorodetski, Y.; Drezet, A.; Genet, C.; Ebbesen, T.W. Generating far-field orbital angular momenta from near-field optical chirality. Phys. Rev. Lett. 2013, 110, 203906. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.Z.; Bai, C.Y.; Mao, Y.H.; Zhang, D.W. Circular polarization analyzer based on surface plasmon polariton interference. Opt. Express 2021, 29, 37907–37916. [Google Scholar] [CrossRef] [PubMed]
- Yavas, O.; Kocabas, C. Plasmon interferometers for high-throughput sensing. Opt. Lett. 2012, 37, 3396–3398. [Google Scholar] [CrossRef] [Green Version]
- Uulu, D.A.; Ashirov, T.; Polat, N.; Yakar, O.; Balci, S.; Kocabas, C. Fourier transform plasmon resonance spectrometer using nanoslit-nanowire pair. Appl. Phys. Lett. 2019, 114, 251101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Bai, C.; Xu, Y.; Pang, T.; Zang, X.; Zeng, D.; Qiu, P. Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights. Photonics 2023, 10, 87. https://doi.org/10.3390/photonics10010087
Zhang L, Bai C, Xu Y, Pang T, Zang X, Zeng D, Qiu P. Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights. Photonics. 2023; 10(1):87. https://doi.org/10.3390/photonics10010087
Chicago/Turabian StyleZhang, Lina, Chunyan Bai, Yan Xu, Tao Pang, Xufeng Zang, Dakui Zeng, and Peizhen Qiu. 2023. "Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights" Photonics 10, no. 1: 87. https://doi.org/10.3390/photonics10010087
APA StyleZhang, L., Bai, C., Xu, Y., Pang, T., Zang, X., Zeng, D., & Qiu, P. (2023). Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights. Photonics, 10(1), 87. https://doi.org/10.3390/photonics10010087