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Abstract: Orbital angular momentum (OAM) encoding is a promising technique to boost data
transmission capacity in optical communications. Most recently, azobenzene films have gained
attention as a versatile tool for creating and altering OAM-carrying beams. Unique features of
azobenzene films make it possible to control molecular alignment through light-induced isomerization
about the azo bond. This feature enables the fabrication of diffractive optical devices such as spiral
phase plates and holograms by accurately imprinting a phase profile on the incident light. By forming
azobenzene sheets into diffractive optical elements, such as spiral phase plates, one can selectively
create OAM-carrying beams. Due to the helical wavefront and phase variation shown by these beams,
multiple distinct channels can be encoded within a single optical beam. This can significantly increase
the data transmission capacity of optical communication systems with this OAM multiplexing
technique. Additionally, holographic optical components made from azobenzene films can be used
to build and reconstruct intricate wavefronts. It is possible to create OAM-based holograms by
imprinting holographic designs on azobenzene films, which makes it simpler to control and shape
optical beams for specific communication requirements. In addition, azobenzene-based materials can
then be suitable for integration into optical communication devices because of their reconfigurability,
compactness, and infrastructure compatibility, which are the main future perspectives for achieving
OAM-based technologies for the next generation, among other factors. In this paper, we see the
possible use of azobenzene films in the generation and modification of OAM beams for optical
communications through light-induced isomerization. In addition, the potential role of azobenzene
films in the development of novel OAM-based devices that paves the way for the realization of
high-capacity, OAM-enabled optical communication networks are discussed.

Keywords: orbital angular momentum; azobenzene; photoisomerization; optical communication

1. Introduction

In the modern digital landscape, the effective functioning of the internet and the
operation of data centers heavily rely on the high-speed transmission of data across long
distances through optical fiber networks. This is a result of the revolutionary advancement
that the field of optical communication has undergone over the course of several decades.
Photonics, encompassing a vast spectrum of applications, has played a pivotal role in not
only transforming optical communication but also reshaping various research domains.
The core concept of photonics revolves around the generation, manipulation, and detection
of light beams in numerous ways [1]. These beams have been enabling innovations in
optical communications, imaging, sensing, and beyond. As the demand for higher data
transmission capacity keeps increasing exponentially and as the capacity crunch draws
nearer [2], the quest to explore more innovative technologies and materials has become
more important for researchers in this field.

One of the researched technologies is in Orbital Angular Momentum (OAM) based
communication systems has remained in the limelight since its groundbreaking discovery
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by Allen et al. in 1992 [3] following the initial theoretical research in 1991 [4]. Ongoing
research has consistently demonstrated that harnessing the OAM of light presents a promis-
ing solution to significantly increasing the data transmission capacity of communication
channels [5]. By exploiting unique phase profiles and orthogonal states inherent to OAM
beams [6], these systems can not only enhance channel capacity but also effectively mitigate
the channel capacity limitations of conventional systems reliant on the polarization of
light [7,8]. Beams possess a spatial property characterized by a helical phase front. This
has shown a lot of transformative capabilities in photonics, particularly because of its
potential to enhance data transmission capacity by adding another degree of freedom for
transmitting information in communication channels [9].

In addition to OAM systems, polarization-sensitive materials such as azobenzene [10]
have emerged as a compelling candidate for research and investigation in the photon-
ics field [11]. With the remarkable capacity of azobenzene for light-induced isomeriza-
tion [12,13], the molecules of azobenzene films can dynamically change their orientation,
resulting in the creation and modification of structured light such as OAM beams. Struc-
tured laser beams are laser beams that have been specifically manipulated to have pre-
defined spatial intensity or phase distributions [14]. The photoisomerization capabilities
of azobenzene, combined with the precision to imprint phase profiles onto incident light,
enable azobenzene molecules to undergo reversible structural transformations as light
passes through them [15]. With the use of optical devices such as spiral phase plates and
holograms [16], azobenzene serves as a versatile tool, opening new methods for enhanc-
ing the fabrication of photonics devices [17–19], encoding information and information
security [20] and transmitting data in optical communication systems.

This review article takes a more specific focus on the generation of OAM beams with
the use of azopolymer thin films. Given a shortage of the existing literature in this sector
at the time of writing, the use of azobenzene molecules for OAM synthesis represents a
novel approach to the generation of structured beams such as OAM beams, improving
our understanding of OAM and exploring its potential applications in photonics and
optical communications.

Objectives and Structure of the Paper

In this review, we take a deep look into several useful characteristics of azobenzene
materials and their utilization in the generation of OAM beams for various applications,
with a particular focus on optical communications and photonic devices. This review starts
with a description of the foundational principles of OAM, its significance in modern optical
research, and the conventional techniques employed for its generation. Subsequently,
we explore the unique characteristics of azobenzene materials, why they are suitable for
generating structured light, and the process of producing azobenzene thin films. We then
embark on a detailed journey through the innovative integration of azobenzene-based
components to generate and modify OAM light beams. More importantly, we discuss
recent research findings that shed light on the capabilities, challenges, and potential of this
technology. Lastly, we conclude with a forward-looking perspective on the applications and
future directions of azobenzene materials and the potential to revolutionize OAM-enabled
optical communication networks.

2. Background, Generation, and Application of OAM Light

Electromagnetic waves are characterized by linear momentum and two distinct forms
of angular momentum: spin angular momentum which is associated with circular polariza-
tion and the helicity of individual photons. It can take on values of ±1, corresponding to
left- and right-handed circular polarization, and 0 for linear polarization.

On the other hand, OAM is associated with the spatial mode of a light beam with
optical vortices [21,22], which are characterized by a twisted wavefront and a complex
field amplitude [23]. The OAM of light is a new optical degree of freedom that arises from
the spatial distribution of the wavefront and describes the rotation of the wave around
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its propagation axis with a measure of intensity distribution and phase information [24].
OAM beams are characterized by a helical wavefront, which imparts a rotational motion to
the beam around its propagation axis (Figure 1). Each OAM beam is quantized, meaning
the beam carries a specific value of OAM denoted by the topological charge (TC) ±`. The
±` represents the TC or the number of helical wavefronts the beam possesses in the clock-
wise (−) or anticlockwise (+) direction. Each photon in an OAM-carrying beam possesses
an OAM of `h̄, where h̄ is the reduced Planck constant. The OAM value determines the
number of helical wavefronts present in the beam. Unlike linear momentum or spin angular
momentum, which are associated with polarization, OAM is a more intrinsic property of
the optical field [25].
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Figure 1. Wavefront, phase profile, and intensity profiles of OAM beams. (a) ` = 0 represents a
donut-shaped Gaussian beam with no twist/OAM in the wavefront; (b) ` = 1, which defines one
twist per wavelength; (c) ` = 2, which defines two twists per wavelength; (d) ` = 3, which defines
three twists per wavelength. Reprinted from Ref. [26].

The study of OAM has primarily focused on Laguerre−Gaussian (LG) beams [27,28],
which have well-defined values of OAM [29]. LG beams possess an azimuthal phase
dependence of exp(i`ϕ), where ` also known as the TC is the beam’s azimuthal mode
number. It has a doughnut-shaped intensity profile determined by the beam’s radial mode
number (p). Owing to their helical wavefront, LG beams carry a quantized orbital angular
momentum (OAM) of `h̄ (h̄ is the reduced Planck’s constant) per photon, where the amount
of OAM is dependent on ` [30]. These beams exhibit vortex-like structures (as seen in
Figure 2). They have been extensively researched for their fundamental properties, methods
of production, measurement, and applications in this reference [31].
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Figure 2. Intensity and phase profiles of LG modes. In the top row a combination of p = 0 and ` = 0
represents a Gaussian mode. The other modes represents LG. In each row, azimuthal mode number `
increases from left to right (−4 to +5), while the radial mode number p increases from top to bottom
(0 to 2). Reprinted from [32].

OAM has been recognized as potentially useful for a vast and diverse range of appli-
cations, such as microparticle manipulation [33,34], trapped particle rotation [35], encoding
of information [36], transfer of OAM to atoms [37], and some seen in Figure 3 [38]. Most
especially, it has found utility in optical communications, where OAM multiplexing enables
increased data transmission capacity [21].

Researchers have extensively delved into the generation and manipulation of OAM
beams in free space using spatial-generating devices [39], such as cylindrical lenses [40,41],
spiral phase plates [42,43], phase holograms [44,45], and spatial light modulators [46,47],
and in optical fibers using fiber-generating [48,49] devices [31] which offer more advantages
in terms of characteristics such as miniaturization, lower insertion loss, increased transmis-
sion distance, higher efficiency, and a reduction in external interference, which is lacking in
the spatial generating method [50]. Converters such as fiber gratings [51], mode-selective
couplers [52], photonic crystal fibers [53], and photonic lanterns [54] are attached to spe-
cially designed fibers to support OAM mode transmission. These methods have allowed
the controlled production of light beams with specific OAM values. A detailed review of
the background and overview of OAM beams, the fundamental concepts, various OAM
generators, and the recent experimental and commercial applications of the OAM multi-
plexing technique in optical communications can be seen in the references [38,55]. Many
of the above techniques require bulky configurations and multiple processing steps. To
address this, researchers have proposed azobenzene films as a novel basis for OAM-based
devices. Surface relief gratings (SRG) patterns on azobenzene films can be used to produce
multiple OAM beams with varying topological charges and polarization states [56]. Using
azobenzene also requires the use of the wavelengths or polarization of a writing light to
control OAM beams. This will open new possibilities for fabricating compact and tunable
OAM devices for diverse applications.
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3. Azobenzene Materials

Azobenzene is an organic compound with the chemical formula C6H5N=NC6H5, and
it consists of two benzene rings bound by a nitrogen−nitrogen (-N=N-) double bond, which
is known as the azo group [57]. Azobenzene groups present two distinct structural forms:
the trans and the cis form, as shown in Figure 4. These forms are distinguished in the spatial
arrangement of their atoms; specifically, the orientation of the nitrogen−nitrogen (N=N)
double bond rings on either side of the molecule are aligned in a straight line, which gives
the molecule a longer and extended shape. However, in the cis form, the N=N double bond
is bent, bringing the two benzene rings closer together and giving the molecule a more
compact, bent structure.

A notable feature of azobenzene is its ability to undergo reversible isomerization,
meaning it can switch between the trans and cis forms when exposed to light, particularly
ultraviolet (UV) or visible light [58,59]. This is known as the photoisomerization process,
during which the molecule can change between its trans and cis configurations upon expo-
sure to specific light wavelengths [60]. While the trans form is thermodynamically preferred
due to its stability, exposure to light or heat causes it to convert to the cis form, resulting in
changes in its optical properties. The photochemical isomerization of azobenzene between
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its trans and cis forms was first discovered in 1937 [61]. The photoisomerization process of
the azobenzene group leads to the change of the spatial geometric arrangement, through
the conversion of the isomer from trans to cis (trans→ cis), induced by light absorption,
or from cis to trans (cis → trans), induced by the action of light or heat. This process is
associated with a n-π* transition of low absorption intensity in the visible region together
with a higher intensity transition in the ultraviolet region.
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In 1984, Todorov and his collaborators [62] described for the first time the formation
of photoinduced birefringence by linearly polarized light in polyvinyl alcohol (PVA) mixed
with the polar orange methyl chromophore. Results demonstrated that the photoinduced
photoisomerization process gives rise to alignment of dipolar chromophores in the direction
perpendicular to the polarization of the light electric field which consequently creates
photoinduced birefringence in the medium. This process is a statistical approximation,
since a chromophore preferentially absorbs light polarized along the axis of its dipole.
The major axis of the molecule, with the probability of absorbing photons, is proportional
to cos2θ, where θ is the angle between the direction of the electric field of light and the
molecular dipole moment [63], as demonstrated in Figure 5a. Thus, the chromophores
oriented in the direction of polarization of light absorb the light with a greater probability,
unlike those which are not oriented perpendicularly and are not able to absorb this light
and experience isomerization (see Figure 5b).
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→
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The region where the light falls tends to have chromophores oriented in the direction perpendicular
to that of the light electric field.
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If azobenzene is incorporated into a polymer chain, the photoisomerization reaction
will occur in each azo group inserted in this chain [64]. This is a reversible reaction that
does not involve the formation of secondary products [65], a so-called clean photoreaction.
Photoisomerization was observed in solutions, in liquid crystals, in sol-gel systems, and in
thin films of molecules with azobenzene groups or in mixtures of azobenzene with other
molecules. Therefore, the azo group facilitates reversible photoisomerization, wherein the
molecule can seamlessly transit between its trans and cis configurations upon exposure
to specific light wavelengths. This inherent reversibility is fundamental for manipulating
azobenzene materials in the context of structured light generation. The photoisomerization
process in azobenzene involves the absorption of light energy, prompting the molecule to
shift from its trans to cis configuration. This process exhibits high efficiency, with azoben-
zene displaying a notable quantum yield for photoisomerization. The cis configuration can
then be converted back to the trans form, through either thermal or photochemical means,
completing the reversible cycle. Azobenzene’s capacity for light-driven control makes it an
ideal candidate for crafting structured light.

In parallel to the photoinduced birefringence phenomenon observed in materials
that contain azobenzenes, Natansohn and Rochon [66] in collaboration with Tripathy [67]
found that when linearly polarized light is incident on the medium in the form of an
interference pattern, not only does photoisomerization take place, but also changes in the
medium volume are observed, which are translated by the formation of a relief grating.
The inscription of the grids occurs by impinging two light beams in a given area on the
surface of the film, so that an interference pattern is formed. Modulation amplitudes can be
on the order of 100 to 1000 nm, and the grating period can be adjusted depending on the
incident interference [68]. The creation of optical relief gratings involves the net transport of
mass, a mobility that is only possible thanks to the trans→ cis→ trans photoisomerization
processes of azobenzene chromophores. An image of a relief grid obtained by atomic
force microscopy of self-assembled poly(carbonate chloride) dimethyldiallylammonium)
(PDAC) with Congo red azopolymer (CR) is shown in Figure 6, adapted from an article by
Tripathy [69]. Relief optical gratings have important applications in photonics, particularly
in optical memories and holography [70].
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Azobenzene-based molecules enable precise control in optics, photonics, and nan-
otechnology by creating light-responsive materials and switches. This property allows the
controlled manipulation of molecular structure and properties of azobenzene molecules
upon response to light exposure. They vary widely in profuse chemical structures and
properties with a wide range of applications in the textile as dyes, chemicals, and mate-
rials. These derivatives are used to create functional materials and molecular switches
that respond to light, enabling precise control over various systems and properties. This
inherent light-induced structural change through either thermal or photochemical means
is the fundamental for manipulating azobenzene materials in the context of structured
light generation.

Azobenzene Thin Films

Due to the importance of optical properties that materials containing azobenzene can
offer, it is essential to develop and optimize molecular structures of this type. The basic
idea is to incorporate azobenzene into a host matrix to create a structure that maintains
its photoisomerization capabilities. Several techniques such as casting, spin coating, the
Langmuir−Blodgett (LB) technique, and the layer-by-layer (LbL) technique have been
used to produce ultrathin films of azobenzene molecules. Here, one should highlight
the LbL technique, which was developed in the 1990s by Decher et al. [71,72] based on
adsorption at a solid−liquid interface. In this process, a monolayer of a positively charged
polymer is initially obtained by dipping a hydrophilized substrate in a positively charged
polyelectrolyte solution. Subsequently, the monolayer is washed to remove polyelectrolyte
molecules that are not completely adsorbed. The solid support with a positively charged
monolayer is immersed in a negatively charged polyelectrolyte solution to be adsorbed
on a layer of negative polyelectrolyte. Following this step, a new wash is performed to
remove unadsorbed molecules. This iterative procedure results in the formation of a bilayer
composed of two oppositely charged polyelectrolytes. Repetition of this procedure leads to
the gradual buildup of multilayers, ultimately resulting in the formation of a self-assembled
film [73].

Compared to other known techniques, such as the Langmuir−Blodgett technique [68,74]
or spin coating [75–77], the LbL technique has demonstrated to be an effective method for
obtaining thin films. The advantage of this LbL technique compared to those mentioned
lies in the fact that it is a simple, economical method compatible with large-scale production.
It should be noted that the LbL technique also allows thickness control, which depends
on fundamental factors that condition adsorption at a solid/liquid interface, such as ionic
strength, concentration, pH, and temperature. The LbL technique can also be used on any
type of substrate, regardless of its size or shape, and allows the use of water as a solvent, thus
having potential to cause no harm to the environment. Initially, it was used only to produce
and study oppositely charged polyelectrolyte structures, but quickly extended to functional
molecules such as azopolymers [78]. Oliveira and collaborators carried out a review of the
work already published on LbL azobenzene films and concluded that these azobenzenes are
more difficult to photoisomerize [79]. However, in more recent studies, it was demonstrated
with the use of higher temperatures, the orientation can be well achieved [80].

4. Azobenzene for OAM Generation and Manipulation

Azobenzene materials possess unique properties that render them ideal for creating
and controlling structured light, particularly photons with OAM. In several fields such as
optical communications, quantum computing, and nanophotonics, OAM manipulation is
essential. The reversible photoisomerization of azobenzene aids the manipulation of molec-
ular structure and facilitates the encoding of information within light’s OAM. In addition,
it allows quick modification of OAM states. This offers more flexibility in design options
for photonic devices as well as increasing the response time for transmitting and processing
high-speed information. The broad spectral range is another advantage of azobenzene
isomerization, because it operates over a wide range of wavelengths such as in the UV,
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visible, and near-infrared ranges [81]. This adaptability aids the manipulation of OAM
and makes it suitable to implement with many optical systems. High-quality azopolymer
surface patterns are easily controllable and can be imprinted, erased and reconfigured as
needed. These patterns remain stable for several years under normal storage conditions.
Azopolymers have significant potential for creating various photonic elements, including
diffraction gratings [82], photonic crystals [83], nanostructured polarizers [84], plasmonic
nanostructures [85,86], data storage units [87,88], and optical metasurfaces [89,90].

Scalability has been one of the major drawbacks of commercializing the use of OAM
beams. However, by incorporating azobenzene into patterned structures, the creation of
large-scale OAM modulation devices may be possible for high-speed OAM multiplexing in
optical communication systems and OAM-based quantum information processing. Another
advantage that is notable about azobenzene for OAM manipulation is the compatibility
with existing technologies and materials commonly used in optics and photonics, and it
can be incorporated into various host material structures, such as polymers [91] or liquid
crystals [92,93], to form thin films or bulk materials. It also enables the creation of OAM-
generating structures such as spatial light modulator (SLM) to modulate light’s amplitude,
phase, polarization, direction, and intensity [94,95]. To make an SLM with azobenzene
polymers, a biphotonic holographic grating is used [96,97]. This grating is formed by the
chromatic interference of light beams with different colors and polarizations [98], resulting
in the creation of a physical grating structure/pattern with alternating regions of high and
low intensity on the polymer surface. The photosensitive azobenzene polymer undergoes
a change in its molecular structure in response to the light interference pattern where
azobenzene molecules switch between different isomeric forms. This grating is then used
as a spatial light modulator to diffract and control another light beam to change its phase
and intensity [99]. The biphotonic holographic method in an azobenzene film and its
reversible photoisomerization property is used for the storage of image/information [100].
In addition, liquid crystal systems that incorporates azobenzene enable the manipulation
of refractive indices/birefringence and facilitate the development of optical elements that
shape the OAM of light [101,102].

“Structured light” refers to light that can be controlled spatially in terms of its am-
plitude, phase, and polarization [103]. These parameters, together with the properties of
an azobenzene film, must be manipulated to match certain criteria [14] for generation of
structured light such as OAM beams:

i. The azobenzene-enabled amplitude control plays a pivotal role in encoding informa-
tion onto light by precisely modulating its intensity or brightness at different spatial
points. This can be used to create patterns, enhance contrast, improve resolution and
encode information. It is especially useful in microscopy and other optical applica-
tions. However, historically, lenses, prisms, apertures, and mirrors were the main
static optical devices used in light manipulation, since accurate control over optical
fields frequently required more complicated modifications [104]. One may accurately
control the amplitude of a light beam as a first step toward better control, an idea that
was crucial in the creation of holography. Amplitude masks were used in holography
to simulate a “writing” laser beam which carries the information that is being encoded
onto a holographic plate. Although clearly beneficial, this method is only able to use
specified beam patterns [105].

ii. Azobenzene materials also facilitate phase modulation by altering the timing or
phases of different parts of a light wave. This process is integral to enabling beam
shaping, producing structured wavefronts, and navigating light in desired directions
in applications such as interference patterns, holography [106], and wavefront shaping
within optical communication systems [107].

iii. Polarization control alters the orientation of the electric field vector of light. It is used
in applications such as LCDs, 3D cinema for 3D effects, and optical communications
for transmission of information. Azobenzene plays a valuable role in enabling the
manipulation of light’s polarization state for improving data-carrying capacity using
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polarization-based multiplexing and demultiplexing techniques in optical communi-
cation systems.

The formation of structures in azopolymer thin films strongly depends on the polar-
ization state of the illuminating laser beam [108], even though unpolarized light could also
separate chiral molecules [109]. Hence, understanding the polarization of light is crucial
for manipulating and utilizing light waves. Polarization describes the orientation of the
oscillation of light waves, as they propagate in relation to the reference axis as seen in
Figure 7a. In a process known as photoalignment [110], as polarized light oscillates, the
molecules of azobenzene respond to the light exposure by aligning their orientation with
it [1,111].
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Figure 7. Implementation of polarization-sensitive patterning of azopolymer thin films. (a) In-
tensity distributions (top row) and the longitudinal components (middle row) of focused linearly
polarized (LP) Gaussian laser beams with different polarization directions, as well as images of the
microstructures formed in azopolymers thin films under the illumination of these beams (bottom
row). (b) Splitting of a single LP Gaussian laser beam into a set of LP laser beams with a one-
dimensional diffractive grating. (c) Principle of spatial polarization filtering and generation of a set
of LP laser beams with different polarization directions using a 4-f optical system with a polarizing
filter. Reprinted from [108].

To optimize the rate at which laser operations are performed, multiple laser beams
with the same orientation are used. This is created by splitting a single laser beam using
diffractive optical elements or metasurfaces as illustrated in Figure 7b. It is also possible
to independently manipulate or adjust the polarization state of created light spots using
a 4-f Fourier optical system, as shown in Figure 7c. With azopolymers, it is possible to
control the profile and orientation of each of the formed structures, contrary to using
interferometric lithography which does not allow this control [112,113]. Polarizing filters
make it possible to encode information into incoming light and decode the information
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using photosensitive materials such as azopolymers. Q-plates are useful for producing
linearly polarized laser beams with a variety of polarization orientations, allowing for
simultaneous, non-uniform laser patterning of thin azopolymer films [114].

4.1. Creation of Structured Beams by Spiral Mass Transport

To create structured beams, another important process to consider is spiral mass
transfer [115,116]. During azobenzene photoisomerization, the transition between cis and
trans configurations induces a controlled spiral or helical movement of molecules within
the azopolymer film [117]. This movement is crucial for creating structured spiral-shaped
patterns on the azopolymer thin film by polarization and controlled movement of the azo
molecules [118]. This process or technique allows the modulation of both the amplitude
and the phase of a light beam incident on the patterned thin film and induces a tailored
OAM in the light [119,120]. A recent study [121] showed a novel technique for creating
spiral structures on an azo-polymer film using circularly and linearly polarized beams in
interference pattern processing. This research marked the first use of optical spiral radiation
force in interference laser processing. Additionally, the study revealed the unexpected
appearance of spiral relief patterns on a polymer film when exposed to focused LG beams
with helical wavefronts and an optical vortex. These spiral patterns were found to be
sensitive to both the vortex’s TC and the wavefront’s handedness, despite the unusual
doughnut-shaped intensity profile of the LG beam (Figure 8). Further research is required
to delve more into the method of spiral mass transfer.
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Figure 8. Spiral relief patterns obtained for different illumination doses from a Gaussian laser beam
injected into a microscope. AFM images of the topographical structures were obtained with the
varying illumination intensity and fixed time of exposure (and polarization direction) for topological
charge ` = 10. The white arrow indicates the polarization direction. Different panels correspond to
different values of the laser power injected in the microscope: (a) 15 mW; (b) 18 mW; (c) 21 mW;
(d) 29 mW; (e) 41 mW; (f) 54 mW. Similar results were obtained for varying the time of exposure at a
fixed intensity. Reprinted from [121].

To take advantage of the special qualities of azopolymers for optical and photonics
applications, azobenzenes can be used as an active optical element [122] by directly altering
their surface patterns in the processes of photoisomerization and mass transport; they
can also act as templates or masks for the micro- or nanostructuring of other materials
to produce a wide variety of photonic elements [123]. Both techniques make use of the
special photoresponsive characteristics of azobenzene to fabricate SRGs [124] and produce
structured light, such as OAM beams.
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4.2. Azobenzene as an Optical Element for Generation of Structured Light

Azobenzene units undergo mass migration or transportation, as the N=N double bond
switches between their two isomeric forms, trans and cis, in response to light patterns in
the UV/visible wavelength range, resulting in surface relief patterns [125]. If periodic
relief patterns are created on the material’s surface, these can be exploited to control light.
For example, to produce structured light, such as OAM beams, these relief patterns can
be used to make diffractive optical elements (DOEs). Diffractive optical elements (DOEs)
are specialized devices that are used to modify the amplitude or phase of light waves to
produce specific patterns or images [126]. Spiral phase plates (SPPs) stand out among
these DOEs, as they can produce optical vortices, which are light beams with helical
wavefronts and a central phase singularity. These beams with OAM are generated by
engineering the grating structure in such a way that it imparts a phase gradient across
the diffracted orders, creating the characteristic helical phase profile associated with OAM
beams. Surface gratings can be stacked using spacer layers, enabling the creation of three-
dimensional chiral microstructures (Figure 9) [127] and diffractive azopolymer structures
such as photonic crystals and optical nanomaterials [128].
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Figure 9. SLM-based experimental setup for generating 3D chiral microstructures in isotropic polymer
by interfering beams of helical phase wavefronts and plane waves. In this experimental setup Fs
Laser is a femtosecond laser, L1 and L2 are telescope lenses, HW1 and HW2 are half-wave plates, P is
a polarizer, M is a mirror, SLM is a liquid-crystal spatial light modulator, I is an iris, L3 and L4 are
lenses, DM is a dichroic mirror, S is the sample, and OBJ is a ×100 microscope objective. The square
images below in the figure are SEM images of chiral microstructures achieved.Reprinted from [127].

Additionally, a diffraction grating that functions as a guided-mode resonant (GMR)
filter with specific optical properties can be made by coating an azopolymer SRG with a
layer of titanium dioxide [129]. Depending on the design and characteristics of the GMR
structure, these filters interact with and modify the optical characteristics of the incident
light by selectively transmitting or reflecting some wavelengths of light or its spectrum
components, while suppressing others. By adjusting the filter’s design parameters, such
as the grating spacing, refractive indices, and layer thicknesses in response to various
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wavelengths, structured light with specific spectral properties is produced [130,131], which
can also potentially contribute to generating optical beams with OAM.

4.3. Azobenzene as a Template/Mask for Generation of Structured Light

Additionally, azobenzene molecules can serve as templates or masks for the micro- or
nanostructuring of other materials to create OAM beams. In this method, an azo layer is
applied to a substrate and exposed to light with a particular pattern or intensity distribution,
such as an interference pattern or a Laguerre-Gauss beam. This way, the azobenzene layer
functions as a template or mask for the underlying substrate. The beam triggers the
photoisomerization process and mass transport in the azobenzene layer, causing a change
in orientation and pattern/structure. The relief patterns made by the structured light are
subsequently transferred from the azobenzene layer to the substrate. When irradiated with
the proper incident light, this method enables the controlled micro- or nanostructuring
of the substrate surface [132], which can then be used to produce OAM beams or other
structured light patterns. This technique allows the design of unique surface patterns for
desired optical effects [133].

Azobenzene can imprint OAM into a light propagating from a coherent laser source.
A spatial light modulator (SLM) is used to design and create a phase pattern corresponding
to the desired OAM mode in the laser beam. When the laser beam passes through the
azobenzene film, the molecules of the azobenzene interacts with the laser light by changing
their orientation, depending on the orientation and polarization of the light. The interfero-
metric technique or the use of spiral phase plate detects and measures the presence and
value of the OAM mode imprinted in the beam, after it interacts with thee azobenzene
molecules [134]. This research describes how multi-spiral microstructures are generated by
an interferometric approach in azopolymer thin films in the Mach−Zehnder interferometer.
Spiral-shaped Intensity distributions/patterns are generated by the co-axial interference of
OAM/optical vortex beams [135] with different topological charges (TC) `, and a gaussian
beam with a spherical wavefront [136]. Due to the phase difference function of the two
wavefronts, multi-spiral intensity patterns are generated. The fabrication method is simple
to use, allowing for the profiles of the created microstructures to be changed without
requiring changes to the optical configuration. The multi-spiral elements that are produced
are compact and enable the creation of OVs at the microscale, with no restrictions on the
quantity of spirals that can be formed (Figure 10a). A spiral-shaped intensity pattern is
also formed using a spatial light modulator (Figure 10b) by interfering a focused optical
vortex (OAM beam) [137], which is produced by a phase mask on the modulator, with a
non-modulated portion of the original Gaussian beam.

The researchers further conducted another experiment using the Mach−Zehnder
interferometer-based optical setup which consisted of a He-Ne laser source, beam splitters,
lenses, diaphragms, and a video camera to generate OAM beams. The laser beam was
focused on an azopolymer thin film which served as a template for the fabricated multi-
spiral microstructures on a glass substrate. These structures were intended to modulate
the incident laser beam by altering the phase and intensity of the incident beams, creating
interference patterns. In the experiment, different multi-spiral structures with OVs of TCs
+1, +2, and +3 were investigated. This resulted in an increase in the number of formed
light spirals and reflected the value of the topological charge (TC) of the generated optical
vortex (OV) beam. In the experimental setup in Figure 11a, it was noted that the thickness
of the azopolymer thin film exceeded the heights of the microstructures, with the latter
diminishing as TCs increased. No effect of the glass substrate on the properties of the
patterned azopolymer films was seen; however, due to the reduction in the height of the
formed patterns, the quality of the generated interference patterns reduced, as the number
of formed spirals increased (Figure 11b). This is because the effectiveness of modulating
the incident laser beam with microstructures relying on their height and the quality of
interference patterns was directly impacted by the success of this modulation [138,139].
Hence, if the height of the microstructures is low, they may not adequately alter the phase
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and intensity of the incident beam as intended. Consequently, the resulting interference
patterns lacked high precision.
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Figure 10. Generation of multi-spiral structures. (a) Spiral-shaped Intensity distribution/pattern
generated by the interference of optical vortex beams with topological charges (` = +1, +2, +3, and
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spatial light modulator by interfering a focused optical vortex (OAM beam), produced by a phase
mask on the modulator with a non-modulated portion of a Gaussian beam. Reprinted from [134].
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thin films using direct multi-spiral laser patterning. (a) The experimental setup to examine the light
field created as a result of the diffraction of a linearly polarized Gaussian beam on the manufactured
microstructures; (b) intensity distributions and interference fringes produced at a 30-micrometer
separation from the azopolymer thin film surface. Reprinted from [134].
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The result also demonstrated that the intensity pattern of the longitudinal component
is strongly influenced by the state of polarization, and a more symmetrical distribution was
detected with circular polarization [140].

5. Summary and Outlook

In this review, we have examined the properties of azobenzene-based materials for
the creation and manipulation of OAM beams for optical communication applications.
These materials have shown tremendous promise for developing the field of structured
light, particularly in the production and manipulation of OAM and vortex beams, thanks
to their distinctive photoresponsive characteristics. The review has touched on some
of azobenzene’s functions in optical transmission, with its effects on amplitude control,
phase modulation, and polarization modification. Materials based on azobenzene have
opened new possibilities such as the fabrication of a rewritable photonic crystal papers
for patterned display applications [141], as well as for photonics optical communication,
holography, and creation of cutting-edge optical components. Contrary to the current
cumbersome setups of the other OAM generation or manipulation techniques, the com-
pact nature of azobenzene-based materials makes them more attractive. It is possible to
create novel data transmission, display, and imaging solutions by manipulating the phase,
amplitude, and polarization states of light and encoding information into it. With further
research and investigations, it is possible to see the integration of azobenzene materials into
existing optical communication devices. Azobenzene materials play a pivotal role in these
advancements, offering new opportunities for high-resolution imaging and data transfer.

Although azobenzene materials have many benefits, there are still problems such as
scalability, environmental stability, and integration into practical devices for commercial-
ization. OAM-enabled optical communication is very promising, and azobenzene-based
materials will play a central role in enabling faster data transmission, higher-resolution
displays, and improved optical systems. For future research, researchers are actively work-
ing on accurately tuning the parameters of the laser beam and exposure time during laser
patterning and the possibilities of using phase masks of more complex diffractive optical
elements for implementing the direct laser patterning of azo-polymer thin films [135].

In conclusion, azobenzene-based materials have become powerful and effective in-
struments for manipulating light and creating structured light such as OAM beams. Their
potential in optical communication is evident, and ongoing research promises even more
exciting developments. With their unique properties and versatility, they hold the key to un-
locking new possibilities and reshaping the way we harness light for photonic applications
and beyond.
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