Determining the Orbital Angular Momentum of a Vortex Beam Using Strong Field Ionization
Abstract
:1. Introduction
2. Methods
2.1. Modeling the Vortex and Terahertz Fields
2.2. Classical Trajectory Monte Carlo Simulations
2.3. Monte Carlo Simulations
- The vortex field is strong enough to tunnel ionize the sample. That is, its peak intensity atomic unit and .
- The terahertz field is too weak to significantly change the ionization yields. In other words, the vortex field dominates during ionization. Therefore, .
- The terahertz field is strong enough to alter the variation in y-momentum. This condition implies the terahertz field ponderomotive energy far exceeds the photo-electron momentum standard deviation present in the ADK ionization rate (7):
- Each of the pulses is sufficiently long to employ analytical models which assume plane wave radiation, such as the ADK model [38].
- The terahertz wavelength exceeds the Laguerre–Gaussian pulse’s waist radius. More on this point is stated in the Results and Discussion sections.
3. Results
3.1. Vortex Beam Strong-Field Ionization
3.2. Distinguishing OAM States of Light Using a Terahertz Probe Pulse
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADK | Ammosov–Delone–Krainov (Ref. [38]) |
CEP | carrier envelope phase |
CTMC | classical trajectory Monte Carlo |
LG | Laguerre–Gaussian |
OAM | orbital angular momentum |
SAM | spin angular momentum |
SFI | strong field ionization |
TIPIS | tunnel ionization in parabolic coordinates with induced dipole and Stark shift |
References
- Berestetskii, V.; Lifshitz, E.; Pitaevskii, L. Quantum Electrodynamics; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Dubois, J.; Lévêque, C.; Caillat, J.; Taïeb, R.; Saalmann, U.; Rost, J.M. Strong-field photoionization by circularly polarized light. arXiv 2023, arXiv:2306.12999. [Google Scholar]
- Walker, S.; Kolanz, L.; Venzke, J.; Becker, A. Selectivity in electron emission induced by ultrashort circularly polarized laser pulses. Phys. Rev. Res. 2021, 3, 043051. [Google Scholar] [CrossRef]
- Colton, D.L.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory; Springer: Berlin/Heidelberg, Germany, 1998; Volume 93. [Google Scholar] [CrossRef]
- Matula, O.; Hayrapetyan, A.G.; Serbo, V.G.; Surzhykov, A.; Fritzsche, S. Atomic ionization of hydrogen-like ions by twisted photons: Angular distribution of emitted electrons. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 205002. [Google Scholar] [CrossRef]
- Brambilla, M.; Battipede, F.; Lugiato, L.A.; Penna, V.; Prati, F.; Tamm, C.; Weiss, C.O. Transverse laser patterns. I. Phase singularity crystals. Phys. Rev. A 1991, 43, 5090–5113. [Google Scholar] [CrossRef] [PubMed]
- Bazhenov, V.Y.; Soskin, M.; Vasnetsov, M. Screw dislocations in light wavefronts. J. Mod. Opt. 1992, 39, 985–990. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Coullet, P.; Gil, L.; Rocca, F. Optical vortices. Opt. Commun. 1989, 73, 403–408. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef]
- Berkhout, G.C.G.; Beijersbergen, M.W. Method for Probing the Orbital Angular Momentum of Optical Vortices in Electromagnetic Waves from Astronomical Objects. Phys. Rev. Lett. 2008, 101, 100801. [Google Scholar] [CrossRef]
- Harwit, M. Photon orbital angular momentum in astrophysics. Astrophys. J. 2003, 597, 1266. [Google Scholar] [CrossRef]
- Tamburini, F.; Thidé, B.; Molina-Terriza, G.; Anzolin, G. Twisting of light around rotating black holes. Nat. Phys. 2011, 7, 195–197. [Google Scholar] [CrossRef]
- Jeffries, G.D.; Edgar, J.S.; Zhao, Y.; Shelby, J.P.; Fong, C.; Chiu, D.T. Using polarization-shaped optical vortex traps for single-cell nanosurgery. Nano Lett. 2007, 7, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, Y.; Zheng, X.; Shi, J.; Luo, Y.; Huang, J.; Deng, D. Particle manipulation with twisted circle Pearcey vortex beams. Opt. Lett. 2023, 48, 3535–3538. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ke, M.; Li, W.; Yang, Q.; Qiu, C.; Liu, Z. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Appl. Phys. Lett. 2016, 109, 123506. [Google Scholar] [CrossRef]
- Gibson, G.; Courtial, J.; Padgett, M.J.; Vasnetsov, M.; Pas’ko, V.; Barnett, S.M.; Franke-Arnold, S. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 2004, 12, 5448–5456. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Schmiegelow, C.T.; Schulz, J.; Kaufmann, H.; Ruster, T.; Poschinger, U.G.; Schmidt-Kaler, F. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun. 2016, 7, 12998. [Google Scholar] [CrossRef]
- Picón, A.; Mompart, J.; de Aldana, J.V.; Plaja, L.; Calvo, G.; Roso, L. Photoionization with orbital angular momentum beams. Opt. Express 2010, 18, 3660–3671. [Google Scholar] [CrossRef]
- Picón, A.; Benseny, A.; Mompart, J.; de Aldana, J.V.; Plaja, L.; Calvo, G.F.; Roso, L. Transferring orbital and spin angular momenta of light to atoms. New J. Phys. 2010, 12, 083053. [Google Scholar] [CrossRef]
- Takahashi, H.T.; Proskurin, I.; Kishine, J.i. Landau Level Spectroscopy by Optical Vortex Beam. J. Phys. Soc. Jpn. 2018, 87, 113703. [Google Scholar] [CrossRef]
- Zürch, M.; Kern, C.; Hansinger, P.; Dreischuh, A.; Spielmann, C. Strong-field physics with singular light beams. Nat. Phys. 2012, 8, 743–746. [Google Scholar] [CrossRef]
- Patchkovskii, S.; Spanner, M. High harmonics with a twist. Nat. Phys. 2012, 8, 707–708. [Google Scholar] [CrossRef]
- Dorney, K.M.; Rego, L.; Brooks, N.J.; San Román, J.; Liao, C.T.; Ellis, J.L.; Zusin, D.; Gentry, C.; Nguyen, Q.L.; Shaw, J.M.; et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photonics 2019, 13, 123–130. [Google Scholar] [CrossRef]
- Rego, L.; Dorney, K.M.; Brooks, N.J.; Nguyen, Q.L.; Liao, C.T.; San Román, J.; Couch, D.E.; Liu, A.; Pisanty, E.; Lewenstein, M.; et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 2019, 364, eaaw9486. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, C.; Picón, A.; San Román, J.; Plaja, L. Attosecond Extreme Ultraviolet Vortices from High-Order Harmonic Generation. Phys. Rev. Lett. 2013, 111, 083602. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.; Trines, R.M.G.M.; Alves, E.P.; Fonseca, R.A.; Mendonça, J.T.; Bingham, R.; Norreys, P.; Silva, L.O. High Orbital Angular Momentum Harmonic Generation. Phys. Rev. Lett. 2016, 117, 265001. [Google Scholar] [CrossRef]
- Sen, A.; Sinha, A.; Sen, S.; Sharma, V.; Gopal, R. Above-threshold ionization of argon with ultrashort orbital-angular-momentum beams. Phys. Rev. A 2022, 106, 023103. [Google Scholar] [CrossRef]
- Paufler, W.; Böning, B.; Fritzsche, S. Strong-field ionization with twisted laser pulses. Phys. Rev. A 2018, 97, 043418. [Google Scholar] [CrossRef]
- Leach, J.; Padgett, M.J.; Barnett, S.M.; Franke-Arnold, S.; Courtial, J. Measuring the Orbital Angular Momentum of a Single Photon. Phys. Rev. Lett. 2002, 88, 257901. [Google Scholar] [CrossRef]
- Yu, B.S.; Li, C.Y.; Yang, Y.; Rosales-Guzmán, C.; Zhu, Z.H. Directly Determining Orbital Angular Momentum of Ultrashort Laguerre–Gauss Pulses via Spatially-Resolved Autocorrelation Measurement. Laser Photonics Rev. 2022, 16, 2200260. [Google Scholar] [CrossRef]
- Hickmann, J.M.; Fonseca, E.J.S.; Soares, W.C.; Chávez-Cerda, S. Unveiling a Truncated Optical Lattice Associated with a Triangular Aperture Using Light’s Orbital Angular Momentum. Phys. Rev. Lett. 2010, 105, 053904. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Guo, Z.; Ge, P.; Dou, Y.; Deng, Y.; Gong, Q.; Liu, Y. Probing the orbital angular momentum of intense vortex pulses with strong-field ionization. Light. Sci. Appl. 2022, 11, 34. [Google Scholar] [CrossRef]
- Goldsmith, P.F. Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 1998; pp. 9–38. [Google Scholar] [CrossRef]
- Ammosov, M.V.; Delone, N.B.; Krainov, V.P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. J. Exp. Theor. Phys. 1986, 64, 1191. [Google Scholar]
- Ortmann, L.; Pérez-Hernández, J.A.; Ciappina, M.F.; Schötz, J.; Chacón, A.; Zeraouli, G.; Kling, M.F.; Roso, L.; Lewenstein, M.; Landsman, A.S. Emergence of a Higher Energy Structure in Strong Field Ionization with Inhomogeneous Electric Fields. Phys. Rev. Lett. 2017, 119, 053204. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.; Monoszlai, B.; Hauri, C.P. GV/m Single-Cycle Terahertz Fields from a Laser-Driven Large-Size Partitioned Organic Crystal. Phys. Rev. Lett. 2014, 112, 213901. [Google Scholar] [CrossRef]
- Pfeiffer, A.N.; Cirelli, C.; Smolarski, M.; Dimitrovski, D.; Abu-Samha, M.; Madsen, L.B.; Keller, U. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nat. Phys. 2012, 8, 76–80. [Google Scholar] [CrossRef]
- Mur, V.; Popruzhenko, S.; Popov, V. Energy and momentum spectra of photo-electrons under conditions of ionization by strong laser radiation (The case of elliptic polarization). J. Exp. Theor. Phys. 2001, 92, 777–788. [Google Scholar] [CrossRef]
- Hofmann, C.; Landsman, A.S.; Cirelli, C.; Pfeiffer, A.N.; Keller, U. Comparison of different approaches to the longitudinal momentum spread after tunnel ionization. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 125601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquinilli, H.; Schimmoller, A.; Walker, S.; Landsman, A.S. Determining the Orbital Angular Momentum of a Vortex Beam Using Strong Field Ionization. Photonics 2023, 10, 1322. https://doi.org/10.3390/photonics10121322
Pasquinilli H, Schimmoller A, Walker S, Landsman AS. Determining the Orbital Angular Momentum of a Vortex Beam Using Strong Field Ionization. Photonics. 2023; 10(12):1322. https://doi.org/10.3390/photonics10121322
Chicago/Turabian StylePasquinilli, Harrison, Alex Schimmoller, Spencer Walker, and Alexandra S. Landsman. 2023. "Determining the Orbital Angular Momentum of a Vortex Beam Using Strong Field Ionization" Photonics 10, no. 12: 1322. https://doi.org/10.3390/photonics10121322
APA StylePasquinilli, H., Schimmoller, A., Walker, S., & Landsman, A. S. (2023). Determining the Orbital Angular Momentum of a Vortex Beam Using Strong Field Ionization. Photonics, 10(12), 1322. https://doi.org/10.3390/photonics10121322