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Abstract: In this paper, the refractive index and extinction coefficient of ferroelectric liquid crystals
have been examined by the terahertz time-domain spectroscopy system. Two modes of ferroelectric
liquid crystal materials, deformed helix ferroelectric liquid crystal (DHFLC), and electric suppressed
helix ferroelectric liquid crystal (ESHFLC) are tested as experimental samples. Nematic liquid crystal
(NLC) was also investigated for comparison. The birefringence of DHFLC 587 slowly increases with
the growth of frequency, and it averages at 0.115. Its extinction coefficients gradually incline to their
stable states at 0.06 for o-wave and 0.04 for e-wave. The birefringence of ESHFLC FD4004N remains
between around 0.165 and 0.175, and both of its e-wave and o-wave extinction coefficients are under
0.1, ranging from 0.05 to 0.09. These results of FLC will facilitate the examination and improve the
response performance of THz devices using fast liquid crystal materials.

Keywords: liquid crystal; birefringence; extinction; terahertz

1. Introduction

Terahertz (THz) radiation refers to a radiation wave with a frequency of 0.1 to 10 THz
and wavelength of 30 µm to 3000 µm. Due to its unique spectrum range, it includes both
properties of microwave radiation and infrared radiation, such as great penetration to
non-conducting surfaces and traveling in line-of-sight without ionizing [1]. Nowadays,
THz radiation has been implemented in a great number of researches and applications such
as imaging [2–4], sensing [5–8], fast or wireless communication systems [9–13], and medical
diagnoses for diseases [14–17]. Also, the THz wave has been widely used in photonic and
electronic devices [18–21] and modulation systems [22–24].

Liquid crystal (LC) is a substance composed of rod-like molecules with particular
directions [25], and these molecules can modulate and regulate optical field [26,27], es-
pecially in the THz domain due to its high birefringence in the THz region [28]. Thus,
LC is a suitable material for tunable photonic devices working in the THz environment,
such as a voltage-controlled THz phase shifter and quarter-wave plate [29–33]. Recently,
plasmon-induced LC metamaterial was implemented to fabricate an electrically tunable
THz modulator with a large modulation depth and low insertion loss [34]. Therefore, it is
of great importance to measure the birefringence of LC material in THz devices in order to
test and improve their performance [35,36].

Currently, to enhance the response speed, many new kinds of LC have been applied
in scientific research and industrial productions. For example, blue-phase LC [37,38]
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and cholesteric LC [39,40] were used in tunable optical devices to achieve a fast switch.
However, they suffer from problems of controlling with a high voltage and difficult material
processing procedures and conditions. Recently, ferroelectric LC (FLC) materials have
proven their excellent optical quality and fast response time to the microsecond level [41,42],
making them promising materials for THz devices. In addition, the birefringence properties
of NLC [43] and blue-phase LC [44] in the THz region have been researched, but the
properties of FLCs have rarely been investigated.

In this paper, the refractive index and extinction coefficient of FLC in the THz range
were measured by a THz time-domain spectroscopy system. Two FLC modes, including de-
formed helix FLC (DHFLC) and electric suppressed helix FLC (ESHFLC), were tested in this
system. NLC as the compared sample was also investigated. After Fourier transformation
and several calculations for the THz wave amplitudes in a time-domain, the birefringence
and extinction coefficient of each LC material in the THz range are acquired. The birefrin-
gence of DHFLC 587 averages 0.115 between frequency from 0.2 THz to 1 THz. Its extinction
coefficients remain at 0.06 for o-wave and 0.04 for e-wave. Meanwhile, the birefringence
of ESHFLC FD4004N is around 0.165 to 0.175 in the same THz frequency-domain, and its
e-wave extinction coefficient is about 0.01 smaller than its o-wave extinction coefficient,
which ranges from 0.05 to 0.09. These results of FLC will facilitate the examination of and
improvement in the performance of THz devices using FLC materials.

2. Experiment

To align the LC molecules used in the following experiments, a polarization pho-
tosensitive alignment sulphonic azo-dye (SD1) is chosen as the aligning material for its
high anchoring energy, lack of mechanical damages, and minimized unwanted electronic
charges. Under exposure from a polarized light source in the UV-to-blue spectrum, the
SD1 molecule tends to orient perpendicularly to the polarization of the incident light,
giving planer alignment for LC molecules. Two optically flat indium tin-oxide-coated glass
plates coated with SD1 were used for preparing a sandwich-type sample holder with a
cell thickness of 150 µm. After being exposed under a polarized UV light, LCs were then
filled into the cells. In this work, DHFLC 587 (from P. N. Lebedev Physical Institute of
Russian Academy of Sciences) was selected as the material for its high transmission in the
visible spectrum and fast switching. DHFLC 587 is composed with two achiral biphenylpir-
imidines to form the smectic C matrix, and a chiral nonmesogenic substance with a very
high twisting power [45]. The phase transitions sequence of this LC during heating up
from the solid crystalline phase is Cr→ 12 ◦C→ SmC*→ 110 ◦C→ SmA*→ 127 ◦C→
Is, while cooling from smectic C* phase crystallization occurs around −10 ◦C–15 ◦C. The
spontaneous polarization Ps and the tilt angle θ at room temperature are 150 nC/cm2 and
36.5◦, respectively. A ESHFLC FD4004N (DIC, Japan) was chosen for these FLC switches
with a phase transition scheme as SmC*→SmA→N*→Iso at temperatures of 72 ◦C, 85 ◦C,
and 105 ◦C, respectively. At room temperature, the helix pitch is P0 = 350 nm, sponta-
neous polarization Ps = 61 nC/cm2, and tilt angle θ ≈ 22.5◦. NLC E7 was used as the
compared LC material, and an empty cell without LC filled was also prepared serving for
comparison. Figure 1 shows the image of E7, DHFLC587, and FD4004N mixtures pictured
by a polarizing optical microscope, respectively. The microscopic photos indicate a good
alignment quality in this large thickness. DHFLC 587 and FD4004N were selected for their
fast-switching time, with DHFLC587 having a switching time of τon = 175 µs at 1.5 V/µm
and τo f f = 150 µs at 1.5 V/µm, and FD4004N having a switching time of τ0n+o f f = 160 µs
at 1 V/µm.

The THz time-domain spectroscopy system shown in Figure 2 was exerted to measure
the amplitude and phase of the samples during transmission in the time-domain. A
femtosecond laser beam was split into two beams by the beam splitter, one as the probe
beam was injected into the detector to detect the THz signal and the other one as the signal
beam ran through the delay line and the THz emitter to generate the THz signal. The
generated signal was transmitted through the sample and finally injected into the detector
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at the same time as the probe signal. The alignment direction of the LC molecules was
parallel to the polarization of the signal beam, as shown in Figure 3a. Amplitude and
phase were able to be obtained from the connected computer system. Then, the sample
was rotated 90◦ to make the alignment of the sample perpendicular to the polarization
of the signal beam, as shown in Figure 3b, and the same experiment procedures were
exerted. Thus, LC molecules were photoaligned in the y-axis for NLC E7 and helixes were
aligned in the y-axis for FLCs, parallel to the substrates. These two time-domain results
were calculated and then processed by Fourier transform to acquire the information of
the refractive index and extinction coefficient. The former and latter experiment results
show the refractive index and extinction coefficient of e-wave and o-wave, respectively.
Therefore, the birefringence of these three different kinds of LC can be obtained from the
difference in the o-wave and e-wave refractive index.
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Figure 3. The setup for measuring the birefringence of LC samples: the directors of LC molecules are
parallel (a) or perpendicular (b) to the polarization of the incident THz wave.

3. Results and Discussion

Figure 4a–c show the THz transmission amplitudes of NLC E7, DHFLC 587, and ESH-
FLC FD4004N and the empty cell as the reference sample, respectively, in the measurement
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range from 0 ps to 30 ps measured by the THz time-domain spectroscopy system. The THz
time-domain spectra transmission spectrum of o-wave, e-wave, and empty cells (reference
samples) of three LC materials were obtained. It is obvious that there is a certain time delay
for each transmission spectrum of these three LC materials with the comparison of the
reference samples.
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Figure 4. The THz time-domain spectra transmission spectrum of o-wave, e-wave, and empty cells
(reference samples) of E7 (a), DHFLC (b), and FD4004N (c).

The information about the refractive indices and extinction coefficient of three dif-
ferent LC materials can be gained by Fourier transform. The transmission spectrums of
the experimental sample and reference sample are Fourier transformed as Eexp and Ere f ,
respectively. Then, the complex transmission coefficient H(ω) shows as follows:

H(ω) =
Eexp

Ere f
= ρ(ω)exp [−jΦ(ω)]. (1)

In this equation, ω is the frequency, ρ(ω) is the magnitude of H(ω), and Φ(ω) is the
argument of H(ω). The refractive index of air in this experiment can be regarded as one.
Then, the refractive index n(ω) and extinction coefficient k(ω) can be calculated as follows:

n(ω) =
cΦ(ω)

ωd
+ 1, (2)

k(ω) =

−cln
{

ρ(ω) [
n(ω)+1]2

4n(ω)

}
ωd

. (3)

In these two equations, c is the light speed in air. d is the gap between two substrates.
After these calculations, the refractive index and extinction coefficient of one wave (o-wave
or e-wave) for one LC material can be acquired. The results of the other wave (e-wave or
o-wave) for the same material can also be obtained by using the experiment and calculation
procedures above, but only by rotating the sample by 90◦. Finally, the birefringence of
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this particular LC material is acquired from the difference in the o-wave and e-wave
refractive index.

Figure 5 illustrates the birefringence derived from the refractive index of o-wave
and e-wave, and the extinction coefficients of E7, FLC 587, and FLC FD4004N in the THz
frequency-domain. The frequency range of the measurements is from 0.2 THz to 1 THz. In
Figure 5a,b, the birefringence of NLC E7 remains around 0.14 in this certain frequency range,
calculated from the difference between its e-wave index of 1.50 and its o-wave index of 1.36.
Both of its o-wave and e-wave extinction coefficient are lower than 0.05, with its extinction
coefficient of o-wave (upper green curve) being 0.04 at 1 THz and extinction coefficient of
e-wave (upper yellow curve) being 0.014 at 1 THz. Figure 5c,d show the complex refractive
indices, birefringence, and extinction coefficients of FLC 587. The birefringence is gradually
stabled with the growth of the frequency to 0.115. Its extinction coefficients remain stable
at 0.06 for o-wave and 0.04 for e-wave. The same parameters were also tested using FLC
FD4004N. In Figure 5e,f, its birefringence remains between around 0.165 and 0.175. This
large birefringence of ESHFLC will facilitate the fabrication of the high performance of THz
liquid crystal devices, such as the phase shifter. Its e-wave extinction coefficient is around
0.01 smaller than the o-wave extinction coefficient, which ranges from 0.05 to 0.09. The
extinction coefficient of extraordinary waves (upper green curve) is smaller than that of
ordinary waves (lower yellow curve) since rod-like LCs have more obstacles moving on
their short axis than on their long axis. In addition, the extinction coefficient of FLCs is
smaller than the result of NLC, showing the low transmission loss of terahertz radiation for
the relatively low extinction coefficient.
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Figure 5. The complex refractive indices (o-wave refractive index no and e-wave refractive index
ne) and birefringence ∆n (∆n = ne − no) of NLC E7 (a), FLC 587 (c) and FLC FD4004N (e) and
their corresponding extinction coefficients (o-wave extinction coefficient ko and e-wave extinction
coefficient ke) (b,d,f) in THz frequency-domain.

4. Conclusions

In conclusion, the refractive index and extinction coefficient of ferroelectric liquid
crystal has been examined by the terahertz time-domain spectroscopy system. Two kinds of
ferroelectric liquid crystal material, deformed helix ferroelectric liquid crystal and FD4004N,
are tested as experimental samples, and E7 nematic liquid crystal is also investigated for
comparison. The frequency range of the measurements was from 0.2 THz to 1 THz. The
birefringence of DHFLC slowly increases with the growth of frequency, and it averages
0.115, and its extinction coefficient inclines to remain stable at 0.06 for the o-wave extinction
coefficient and 0.04 for the e-wave extinction coefficient. The birefringence of FD4004N
in the THz frequency-domain remains between around 0.165 and 0.175, and both its e-
wave and o-wave extinction coefficients are under 0.1. These results will become useful
information for the examination of, adjustment of, and improvement in FLC THz devices.
They also provide potential opportunities for fast liquid crystal THz devices.
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