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Abstract: We have experimentally created perfect vortex beams (PVBs) by Fourier transformation of
Bessel–Gaussian vortex beams, which are generated by modulating the fundamental Gaussian beam
with the spiral phase plates and the axicons, respectively. Although the method has been used many
times by other authors, as far as we know, few people pay attention to the quantitative relationship
between the control parameters of the PVB and ring width. The effects of the waist radius of the
fundamental Gaussian beam wg, base angle of the axicon γ, and focal length of the lens f on the
spot parameters (ring radius ρ, and ring half-width ∆) of PVB are systematically studied. The beam
pattern of the generated Bessel–Gaussian beam for different propagation distances behind the axicon
and the fundamental Gaussian beam wg is presented. We showed experimentally that the ring radius
ρ increases linearly with the increase of the base angle γ and focal length f, while the ring half-width
∆ decreases with the increase of the fundamental beam waist radius wg, and increases with enlarging
the focal length f. We confirmed the topological charge (TC) of the PVB by the interferogram between
the PVB and the reference fundamental Gaussian beam. We also studied experimentally that the size
of the generated PVB in the Fourier plane is independent of the TCs. Our approach to generate the
PVB has the advantages of high-power tolerance and high efficiency.

Keywords: perfect vortex beam; ring radius; ring width

1. Introduction

A vortex beam is a special light beam carrying orbital angular momentum (OAM)
and taking the shape of a doughnut ring. It attracts more and more people to study
from fundamental and applied perspectives, such as optical microscopy [1–3], hyper-
entanglement [4,5], strong coupling between light and matter [6], optical trapping and
optical spanners [7–10], and classical and quantum communications [11,12], etc. Its expres-
sion usually contains an exp(ilθ) term. Here, θ is the azimuthal angle, l is named as the
topological charge (TC), and the OAM of the vortex beam is lh̄ per photon (h̄ is the reduced
Planck constant). The typical vortex beam includes the Laguerre–Gaussian (LG) vortex
beam [13], the Bessel–Gaussian (BG) vortex beam [14,15], and the perfect vortex beam
(PVB) [16], etc. For transverse modes of LG vortex beam and BG vortex beam, the mode
profile and radius of peak intensity depend on the order, or TC l. This property makes
coupling multiple OAM beams simultaneously into a single optical fiber with fixed annular
index profile to realize multiplexed communication more difficult [17], since the ring radius
of vortex beam and radial intensity profile changes with the variation in the TC it carries.
Furthermore, the vortex beam with fixed radial intensity profile and radius is generally
expected for trapping and manipulating the nano-particles, and it allows us to indepen-
dently study the relationship between the particle rotation rate and the OAM [18]. PVB is a
typical representative of a vortex beam whose radial intensity profile and radius are both
independent of TC. The creation of such a beam would be of significant interest. The most
commonly used method for creating the PVB is Fourier transformation of the Bessel vortex
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beam [19–21], which is usually replaced by a BG vortex beam in reality. Here, the BG vortex
beam is usually created by a computer-controlled liquid-crystal spatial light modulator
(SLM) [19–34] or digital micromirror device (DMD) [35], a special designed hybrid phase
plate [36], a transparent variable diffractive spiral axicon based on a single liquid-crystal
cell [37], polymer-based phase plate [38], metasurface [39], Pancharatnam–Berry phase
element [40], axicon [41–43], or diffraction of the BG vortex beam by using curved fork
grating [44], and so on. In addition, the PVB can be directly generated by schemes including
a computer-generated hologram (CGH) displayed on the reflective phase SLM [45–48] or
the DMD [49,50], a radial phase shift spiral zone plate [51,52], a planar Pancharatnam–
Berry (PB) phase element [53], or metasurfaces [54–62], etc. Recently, the coherent beam
combining technology is also employed to generate the PVB [63,64]. In these studies, effects
of control parameters (e.g., input beam radius, axicon parameter, etc.) on ring radius has
always been the focus of scholars. Few people pay attention to the quantitative relationship
between the control parameters and the ring width. Furthermore, the independent control
of the ring radius and ring width in PVBs has not yet been demonstrated in its entirety.

In this work, the BG vortex beam with different order generated by combining spiral
phase plates (SPPs) and axicon is Fourier transformation to the PVB at the focal plane of the
Fourier lens. We demonstrate the generation of arbitrary PVBs whose transverse intensity
profile (i.e., ring width and ring radius) and TCs can be independently and easily controlled
via adjusting the waist radius of the input fundamental Gaussian beam wg, choosing axicons
with different base angle γ, changing the focal length of the Fourier lens f, and cascading
different SPPs, respectively. Section 2 is devoted to a concise description of the formulas
of each beam in every step of generating the PVB. In Section 3, we describe experimental
procedures to generate the PVB. The experimental results and discussions, including effects
of control parameters on the spot parameters of the PVBs, and the characteristics of PVBs
with different TCs, are presented in Section 4. Finally, the conclusion is presented in
Section 5. The ability of complete control over the spot parameters has implications in the
field of optical tweezers or optical manipulation, and for the efficient launch of optical
modes in the solid-state laser or in an annular core fiber laser, etc.

2. Theoretical Analysis

Figure 1 shows the physical procedure for transforming an input Gaussian beam into a
PVB through three different stages. For the sake of simplicity, we assume the waist location
of the fundamental Gaussian beam is at z = 0. The transverse field distribution of the
amplitude for the input fundamental (TEM00) Gaussian beam propagating along the z-axis
in the cylindrical coordinate system can be mathematically written as

EG(r, θ, z) = AG exp
[
−r2/w2

g(z)
]

exp
[
iϕG + ikr2/2R(z) + ikz

]
(1)

where (r, θ, z) represents the coordinate parameters of the cylindrical coordinate system.

AG =

√
PG/

[
πn0cε0w2

g(z)
]

(details can be found in Equations (A2) and (A3)) denotes

the amplitude of the beam on the axis (r = 0). Here, PG represents the power of the
fundamental Gaussian beam, n0 is the refractive index of the transmission medium (n0 ≈ 1
in air), ε0 is the permittivity of the vacuum, and c is the speed of light in the vacuum.

wg(z) = wg

√
1 + (z/zR)

2 and wg indicate the beam radius and waist radius of the input
fundamental Gaussian beam, respectively. zR = kw2

g/2 = πw2
g/λ is the Raleigh range. λ

is the wavelength of the incident beam. ϕG = −arctan(z/zR) is the Gouy phase, k is the
wave vector. R(z) = z + z2

R/z, is the radius of curvature of the wavefront.
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Figure 1. Schematic diagram showing a set of refractive devices for producing PVBs. Insets show the
intensity patterns in each step of this system. (a) Input fundamental (TEM00) Gaussian beam; (b) LG
vortex beam generated by modulating the TEM00 Gaussian beam with the spiral phase plate; (c) BG
vortex beam obtained by modulating the LG vortex beam with the axicon; (d) PVB created at the
focal plane by Fourier transformation of the BG vortex beam.

After passing through the spiral phase plates (SPPs), the input fundamental Gaussian
beam obtains the spiral phase function exp(ilθ), and transforms to the higher-order LG
vortex beam [65–68], whose amplitude can be expressed as

ELG(r, θ, z) = ALG

[ √
2r

wg(z)

]|l|
exp

[
− r2

w2
g(z)

]
exp

[
iϕLG +

ikr2

2R(z)
+ ikz + ilθ

]
(2)

where ALG =

√
PLG/

[
πn0cε0|l|!w2

g(z)
]

is the amplitude (details can be found in Equations

(A4)–(A6)). PLG represents the power of the LG vortex beam, and l is the TC number of
the LG vortex beam. ϕLG = −(|l|+ 1)arctan(z/zR) is the Gouy phase for the LG0,l vortex
beam. It can be seen from Equation (2), that the amplitude and phase of the LG0,l vortex
beam depend on the TC l.

Now further assume that the axicon is positioned at z = 0. An axicon possessing
conical surface brings the axicon function to the LG vortex beam and transforms the LG
vortex beam into the BG vortex beam [69,70], which can be simply described as

EBG(r, θ, z) = ABG Jl(krr) exp
[
−r2/w′2

g (z)
]

exp(ikzz + ilθ) (3)

where ABG =

√
PBG/

[
πn0cε0w′2

g (z)
]

is the amplitude (details can be found in Equations

(A7)–(A9)), w′
g(z) = w′

g

√
1 + (z/zR)

2 and w′
g indicate the beam radius and waist radius

of Gaussian beam which is used to confine the Bessel beam, respectively. PBG represents
the power of the BG vortex beam, and Jl is the lth order Bessel function of the first kind.
kr and kz are the radial and longitudinal wavevectors, respectively. k =

√
k2

r + k2
z = 2π/λ

and kr/k = sin[(n − 1)γ]. Here, n is the refractive index of the axicon, and γ is the base
angle of the axicon. Unlike the ideal Bessel beam, the BG beam diverges to a certain
distance, which is called the Rayleigh range (or diffraction-free range) and can be given
by Zmax = w′

g/(n − 1)γ [71]. From Equation (3), we know that the amplitude distribution
and phase of the BG vortex beam have a strong dependence on the TC l.

The intensity distribution of the BG vortex beams can be obtained using

I = 2n0cε0|EBG|2 =
2PBG

πw′2
g (z)

J2
l (krr) exp

[
−2r2/w′2

g (z)
]

(4)
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Finally, a plano-convex lens with focus length f is used to implement the Fourier
transformation of the BG vortex beam. Set s0 as the distance between the axicon and
the lens. Only when f < s0 < Zmax, the PVB with fixed annular intensity (ring radius
ρ and ring width 2∆) can be produced at the focal plane of the lens. For ρ >> ∆, the
transverse distribution of complex amplitude for the PVB can be simply expressed by the
ideal model [21]

EPV(r, θ) = APV exp
[
−(r − ρ)2/∆2

]
exp(ilθ) (5)

where APV =
√

PPV/
(
4πncε0ρ∆

√
π/2

)
is the amplitude (details can be found in Equations

(A10) and (A11) in Appendix A), and PPV represents the power of the PVB. Equation (5)
indicates that the TC will not affect the amplitude distribution of the PVB. The amplitude
distribution only depends on two parameters, ring radius ρ and ring width 2∆. The value
of ring radius ρ can be written as

ρ = kr f /k = f sin[(n − 1)γ] ≈ f (n − 1)γ (6)

Its value depends on the focal length of lens f and the radial wave vector kr, which can
be modulated by the axicon parameters (refractive index n and base angle γ). It is found
that the value of ρ increases linearly with the increase of focal length f and base angle γ.

The ring half-width ∆ is governed by the relation

∆ = 2 f /kw′
g (7)

The value of ring width 2∆ is mainly determined by two parameters, the fundamental
beam waist w′

g and the focal length f. The effect of f and w′
g are found to have reverse trends.

As evident from Equations (6) and (7) above, both the ring radius ρ and ring width
2∆ of the PVB increase with enlarging the focal length f of the Fourier transforming lens.
The ring radius ρ can be independently controlled by the base angle of the axicon, while
the ring width 2∆ can be independently tuned by varying the Gaussian beam waist w′

g.
Equations (6) and (7) are useful for guiding the experimental realization of PVBs and to
analyze the results.

Finally, the intensity distribution of the PVBs can be obtained using

I = 2n0cε0|EPV|2 =
PPV

2πρ∆
√

π/2
exp

[
−2(r − ρ)2/∆2

]
(8)

3. Experimental Setup

The experimental setup for the generation of PVB is schematically shown in Figure 2. A
continuous-wave, high-power (as high as 15 W), single-frequency (linewidth of <100 kHz),
linearly polarized Yb-doped fiber laser and amplifier (NKT Photonics, Birkerød, Denmark,
Koheras Y10) at 1064 nm is used as the laser source. To prevent the reflected beam from
feeding back to the laser system, an optical isolator is employed. To adjust the pump power
in the subsequent optical path, the power-control system, including a half-wave plate
(HWP) and polarizing beam splitters (PBS), is inserted on the optical path. To improve
the quality of the beam spot and to make the beam spot more circular, and symmetrical, a
circle pinhole with a diameter of 100 µm is used to diffract the laser beam, and the Airy
spot (the center bright spot) of the diffraction beam is selected by a circular diaphragm.
The generated-circularly symmetric Airy spot, will be regarded as the standard spot of
the fundamental Gaussian beam in the subsequent optical path. After that, the Airy spot
is collimated by a lens f 1 with focal length of 200 mm. The radius of the collimated
beam wg in the experiment is measured to be 2.434 mm. An improved Mach–Zehnder
interferometer (MZI), composed of M1, M2, NPBS1, and NPBS2, is employed to generate
and detect the PVB. Arm 1 of the MZI (NPBS1-M4-NPBS2) is used to generate the PVB
under different experimental conditions. Arm 2 of the MZI (NPBS1-M4-NPBS2) serves
as reference light to interfere with the generated PVB and measure its TC. In arm 1, the



Photonics 2023, 10, 1382 5 of 17

beam expander, composed of two lenses f 2 and f 3 (focusing with lens f 2, and collimating
with lens f 3), is used to adjust the waist radius wg of the fundamental Gaussian beam
radius (the combination of lenses f 2 and f 3 with different focal lengths are used here to
generate different waist radius wg (measured in the experiment), as shown in the inset).
The cascaded spiral phase plates (UPO Labs, SPP1-SPP3) are illustrated by the collimated
fundamental Gaussian beam and transform the fundamental Gaussian beam to the LG
vortex beam with TC l = ±1~±6 [72]. The axicon (LBTEK, base angle γ = 0.5◦, 1◦, and
2◦) transforms the LG vortex beam to the BG vortex beam with the same order. Then, the
generated BG vortex beam is Fourier transformed by using lens f 5 so as to form a single
PVB at the focus point. In arm 2, the collimated reference beam (sphere-wave reference
light) is reflected by M3 (mounted on a translation stage), and then combined with the beam
of arm 1 by a NPBS2. Finally, a CMOS camera (CinCam, CMOS-1202) is used to capture the
beam patterns (intensity profiles) of the generated PVB in arm 1 and the interferograms
generated by the MZI. The spiral interferograms are generated when two beams with
different wavefront curvature radius interfere coaxially [73]. Here, the lens f 4 (focal length
of 40 mm) is used to focus the reference Gaussian beam and generate sphere-wave reference
light. The fork wire interferograms are formed when there exists an oblique angle between
two interference beams [74]. At this time, the lens f 4 in the dashed frame in Figure 2 is
removed, and the reference beam is a plane wave.
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Figure 2. Experimental setup. HWP: half-wave plate; PBS: polarizing beam splitter; NPBS: non-
polarizing beam splitter; SPP: spiral phase plate; M: high-reflection mirror.

4. Results and Discussion

We will begin this study in three major areas. Firstly, the generated BG beam is studied
for different propagation distance z behind the axicon and input fundamental Gaussian
beam waist radius wg. Secondly, the relationship between the spot parameters (ring radius
ρ and ring half-width ∆) of the PVBs and the control parameters (such as the waist radius of
the fundamental Gaussian beam wg, the base angle of the axicon γ, and the focal length of
the Fourier lens f ) are studied in experiment. For the sake of simplicity, the PVB with a TC
of zero (TC = 0) is created by Gaussian beam illumination of an axicon in combination with
a lens. The spot parameters (ring radius ρ and ring half-width ∆) of the PVB can be obtained
by fitting its intensity distribution with that of the standard PVB expressed by Equation (7).
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Thirdly, the characteristics of the PVB carrying different TCs are generated and compared.
For a better comparison, we have considered the same scale for all the images.

4.1. Characteristics of the Generated BG Beam for Different Propagation Distance z behind the
Axicon and the Input Fundamental Beam with Waist Radius wg

The beam pattern of the BG beam generated by modulating the input fundamental
Gaussian beam for different propagation distance z behind the axicon is shown in Figure 3.
Here, the base angle of the axicon is chosen to be γ = 0.5◦ and the waist radius of the
incident fundamental Gaussian beam is wg = 2.434 mm. Considering the refractive index n
of the axicon (material: UV fused silica) is about 1.4 at 1064 nm, and assuming w′

g = wg, the
diffraction-free distance is Zmax ≈ 700 mm. It can be seen that the spot of the generated
BG beam is not ideal for propagation distance z < 150 mm. The standard BG beams are
generated for propagation distance z ≥ 200 mm, and the beam spot image hardly changes
with the propagation distance in experiment (200 mm ≤ z ≤ 300 mm). This is because the
propagation distance z < Zmax.
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Figure 3. Experimentally obtained beam patterns of the BG beams for different propagation distance
z behind the axicon, Sub-figure (a–h) represents the beam patterns of the BG beams at (a) z = 30 mm,
(b) 50 mm, (c) 80 mm, (d) 100 mm, (e) 150 mm, (f) 200 mm, (g) 250 mm, and (h) 300 mm, respectively.

The intensity distributions of the Bessel beam and BG beams are shown in Figure 4.
Here, the intensity distributions of the BG beams are drawn by using Equation (4), and
the intensity distribution of the Bessel beam is drawn by ignoring the Gaussian term in
Equation (4). It can be seen that the higher order maxima of different beam spots (w′

g) will
have significant differences. Thus, the beam waist radius w′

g of the experimental generated
BG beams can be obtained by fitting the experimental intensity distributions using Equation
(4). Figure 5 shows the measured intensity distribution of the BG beams in experiment for
z = 200 mm. Here, wg represents the waist radius of the incident fundamental Gaussian
beam, while w′

g represents the simulated one using Equation (4). We find that w′
g = wg/2.

4.2. Effects of Waist Radius wg, Base Angle γ and Focal Length f on the Spot Parameters of the
PVB for TC = 0

Firstly, the effect of the axicon base angle on the spot parameters (ring radius ρ, and ring
half-width ∆) of the generated PVB is quantitatively studied. To increase the non-diffraction
range, the fundamental beam waist wg is chosen to be 3.487 mm here (w′

g = 1.743 mm). The
axicons with base angle γ = 0.5◦, 1◦, and 2◦ are employed to generate the BG beams,
respectively. The diffraction-free distance Zmax for γ = 0.5◦, 1◦, and 2◦ are calculated to be
about 499 mm, 250 mm, and 125 mm, respectively. The Fourier lens f 5 with a focal length of
100 mm is used to create the PVB at the focus. To generate the PVB at the focal plane of f 5,
the distance between the axicon and the lens s0 is chosen to be 120 mm in this experiment.
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g = 1 mm, 2 mm, 4 mm, and 8 mm, respectively.
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The measured beam patterns and their intensity distributions of the PVBs for different
base angles γ are shown in Figure 6. It is obvious that the ring radius ρ of the PVB increases
when enlarging the base angle γ of the axicon. The ideal PVBs are generated in rows (1)
and (2) of Figure 6, while a deteriorating PVB is generated in row (3) of Figure 6. For the
deteriorating PVB, there exists a weak dark ring inside the PVB, resulting in a significant
asymmetry in the ring half-width for each peak. This is because the s0 value selected in
experiment (120 mm) is too close to the value of Zmax (125 mm for γ = 2◦), resulting in a
suboptimal generation of the PVB under this condition. In order to quantitatively describe
the generated PVB, the experimental measured intensity distribution (black dots in row 2 of
Figure 6) is fitted with the expression of the PVB Equation (8), and the values of ring radius
ρ, and ring half-width ∆ are obtained for each PVB. The ring has radius ρ = 0.316 mm,
0.671 mm, and 1.379 mm for the γ values of 0.5◦, 1◦, and 2◦, respectively. The values of
ring radius ρ and ring half-width ∆ versus base angles γ are also plotted in Figure 7. The
black solid line shown in Figure 7 is plotted according to Equation (6), where f is chosen to
be 100 mm and the refractive index n of the axicon (material: UV fused silica) is chosen
to be 1.4 at 1064 nm. Experimental results are verified with the theoretical plot obtained
from Equation (6). The average value of the experimental measured ring half-width ∆ is
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19.3 µm, which is quite close to the theoretical value ∆ = fλ/πw′
g = 2fλ/πwg = 19.4 µm. The

ring radius ρ increases linearly with the base angle γ, while the ring half-width ∆ remains
basically unchanged with γ, which verifies that ∆ is independent of γ.
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Figure 7. The relationship between the PVB parameters and the base angle of the axicon. The black
dot (blue square) represents the experimental value of annular radius ρ (the annular half-width
∆), and the black solid line represents the ring radius of the PVB fitted by using Equation (6) of
ρ = f (n − 1)γ.

Secondly, the effect of the waist radius of the fundamental Gaussian beam wg on the
spot parameters of the PVB is also studied. Here, the axicon with the base angle of γ = 0.5◦

is employed, and the focal length of the Fourier lens f is fixed to 200 mm. By selecting the
focal length of lenses f 2 and f 3 of the beam expander, the waist radius of the fundamental
Gaussian beam wg can be changed to f 3/f 2 of the original one.

Beam patterns and their intensity distributions of PVBs for different waist radius wg
are shown in Figure 8. It can be seen from row (a) of Figure 8 that the ring radius ρ remains
almost the same for the increase of wg, while the ring half-width ∆ narrows with increasing
wg. This can be verified by the fitting results shown in row (b) of Figure 8. In order to
quantitatively describe the relationship between the spot parameters of the PVB and the
waist radius wg, the spot parameters of the PVB presented in in row (b) of Figure 8 are
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shown again in Figure 9. It is clear that the ring half-width ∆ is inversely proportional to
the waist radius wg, and the relationship between ∆ and wg can be approximately fitted
by ∆ = 2 f λ/πwg. The results of ring radius ρ shown in Figure 8 indicate the fluctuation
between 0.750 mm and 0.860 mm for the value of ring radius ρ while the wg is varied. The
average ρ is 0.792 mm, which is relatively close to the theoretical value of 0.785 mm.
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Figure 8. Beam patterns and intensity distributions of the generated PVBs for different waist radius
of the fundamental Gaussian beam wg. (a1–a6) shows the beam pattern, and row (b1–b6) shows the
corresponding intensity distributions. The black dot represents the experimental result, while the
solid red line represents the simulation one using Equation (8).

Photonics 2023, 10, x FOR PEER REVIEW 9 of 17 
 

 

Secondly, the effect of the waist radius of the fundamental Gaussian beam wg on the 

spot parameters of the PVB is also studied. Here, the axicon with the base angle of γ = 0.5° 

is employed, and the focal length of the Fourier lens f is fixed to 200 mm. By selecting the 

focal length of lenses f2 and f3 of the beam expander, the waist radius of the fundamental 

Gaussian beam wg can be changed to f3/f2 of the original one. 

Beam patterns and their intensity distributions of PVBs for different waist radius wg 

are shown in Figure 8. It can be seen from row (a) of Figure 8 that the ring radius ρ remains 

almost the same for the increase of wg, while the ring half-width Δ narrows with increasing 

wg. This can be verified by the fitting results shown in row (b) of Figure 8. In order to 

quantitatively describe the relationship between the spot parameters of the PVB and the 

waist radius wg, the spot parameters of the PVB presented in in row (b) of Figure 8 are 

shown again in Figure 9. It is clear that the ring half-width Δ is inversely proportional to 

the waist radius wg, and the relationship between Δ and wg can be approximately fitted by 

2 / gf w  = . The results of ring radius ρ shown in Figure 8 indicate the fluctuation between 

0.750 mm and 0.860 mm for the value of ring radius ρ while the wg is varied. The average 

ρ is 0.792 mm, which is relatively close to the theoretical value of 0.785 mm. 

 

Figure 8. Beam patterns and intensity distributions of the generated PVBs for different waist radius 

of the fundamental Gaussian beam wg. (a1–a6) shows the beam pattern, and row (b1–b6) shows the 

corresponding intensity distributions. The black dot represents the experimental result, while the 

solid red line represents the simulation one using Equation (8). 

 

Figure 9. Variation of the PVB parameters for varying waist radius of the fundamental Gaussian 

beam wg. The black dot (blue square) represents the value of ring radius ρ (ring half-width ∆) in the 

experiment, and the blue line represents the fit curve of 2 / gf w  = . 

Next, we will consider the effect of the focal length f of the Fourier lens on the beam 

parameter of the PVB. Here γ = 0.5° and wg = 2.434 mm. The effect of the focal length f of 

the Fourier lens on the spot parameters is analyzed. 

The images of the beam pattern and intensity distribution of the PVB for different 

focal length f is shown in Figure 10a1–a6,b1–b6, respectively. Both the ring radius ρ and 

ring half-width ∆ increase with the enlarfment of focal length f. The detailed relationship 

Figure 9. Variation of the PVB parameters for varying waist radius of the fundamental Gaussian
beam wg. The black dot (blue square) represents the value of ring radius ρ (ring half-width ∆) in the
experiment, and the blue line represents the fit curve of ∆ = 2 f λ/πwg.

Next, we will consider the effect of the focal length f of the Fourier lens on the beam
parameter of the PVB. Here γ = 0.5◦ and wg = 2.434 mm. The effect of the focal length f of
the Fourier lens on the spot parameters is analyzed.

The images of the beam pattern and intensity distribution of the PVB for different
focal length f is shown in Figure 10(a1–a6,b1–b6), respectively. Both the ring radius ρ and
ring half-width ∆ increase with the enlarfment of focal length f. The detailed relationship
between the spot parameters of the PVB and the focal length is depicted in Figure 11. The
experimental results are verified with the theoretical plots obtained by using Equation (6)
and with the real experimental parameters. From the fitted lines, a linear relationship can
be clearly seen for both the ring radius ρ and ring half-width ∆.



Photonics 2023, 10, 1382 10 of 17

Photonics 2023, 10, x FOR PEER REVIEW 10 of 17 
 

 

between the spot parameters of the PVB and the focal length is depicted in Figure 11. The 
experimental results are verified with the theoretical plots obtained by using Equation (6) 
and with the real experimental parameters. From the fitted lines, a linear relationship can 
be clearly seen for both the ring radius ρ and ring half-width ∆. 

 
Figure 10. Beam patterns and intensity distributions of the generated PVBs for different focal length 
f of the Fourier lens. (a1–a6) shows the beam pattern, and row (b1–b6) shows the corresponding 
intensity distributions. The black dot represents the experimental result, and the red line represents 
the simulation result using Equation (8). 

 
Figure 11. The PVB parameters as a function of focal length f of the Fourier lens. The black dots (blue 
squares) represent the data of ring radius ρ (the ring half-width ∆) in the experiment, while the black 
(blue) line represents the simulation results using ( 1)f nρ γ= −  ( 2 / gf wλ πΔ= ). 

From the above analysis, it can be seen that the value of the ring radius obtained in 
the experiment can be well fitted by ( 1)f nρ γ= − , while the ring half-width obtained in 
the experiment can be approximately fitted by 2 / gf wλ πΔ=  rather than gf wλ πΔ = . This 
can be explained by the experimental fact that the beam waist radius w’g of the 
experimental generated BG beam is about half of the waist radius wg of the incident 
fundamental Gaussian beam (w’g = wg/2). The relationship between the ring half-width ∆ 
and w’g is gf wλ π ′Δ = . 

4.3. Characteristics of PVBs with Different TCs 
Here, we choose the base angle of the axion γ = 0.5°, the waist radius wg = 2.434 mm, 
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PVB, and the fork direction is determined by the sign of the TC [74]. The number of spiral 

Figure 10. Beam patterns and intensity distributions of the generated PVBs for different focal length
f of the Fourier lens. (a1–a6) shows the beam pattern, and row (b1–b6) shows the corresponding
intensity distributions. The black dot represents the experimental result, and the red line represents
the simulation result using Equation (8).
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Figure 11. The PVB parameters as a function of focal length f of the Fourier lens. The black dots (blue
squares) represent the data of ring radius ρ (the ring half-width ∆) in the experiment, while the black
(blue) line represents the simulation results using ρ = f (n − 1)γ (∆ = 2 f λ/πwg).

From the above analysis, it can be seen that the value of the ring radius obtained in
the experiment can be well fitted by ρ = f (n − 1)γ, while the ring half-width obtained in
the experiment can be approximately fitted by ∆ = 2 f λ/πwg rather than ∆ = f λ/πwg.
This can be explained by the experimental fact that the beam waist radius w′

g of the
experimental generated BG beam is about half of the waist radius wg of the incident
fundamental Gaussian beam (w′

g = wg/2). The relationship between the ring half-width ∆
and w′

g is ∆ = f λ/πw′
g.

4.3. Characteristics of PVBs with Different TCs

Here, we choose the base angle of the axion γ = 0.5◦, the waist radius wg = 2.434 mm,
and the focal length of the Fourier lens f 5 = 75 mm. The experimental generated PVBs
carrying different TCs are presented in this section. The combination of 2 pieces of SPPs
with vortex order 1 and 2 pieces of SPPs with vortex order 2 allows the generated PVB
carrying TCs from −6 to 6 [72]. The TCs of PVBs are verified experimentally by the
interferograms generated by the MZI. The fork number is equal to the TC value of the
PVB, and the fork direction is determined by the sign of the TC [74]. The number of spiral
lobes depend on the TC value of the PVB, and the twist direction depends on the ring of
the TC [73].

A group of beam patterns, intensity profiles and interferograms of PVBs with TC
l = −2~6 is obtained as shown in Figures 12 and A1, respectively. As evident from the beam
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patterns of the PVBs with different TCs shown in Figure 12(a1–a5) and Figure A1(a1–a4),
the images of all the PVBs are similar. To determine the spot parameters (ring radius ρ and
ring half-width ∆) of the generated PVB, the measured intensity distribution of each PVB is
simulated using Equation (8), as shown in Figure 12(b1–b5) and Figure A1(b1–b4). The spot
parameters of the PVBs for different TCs are presented in Figure 13. Both the ring radius ρ
and ring half-width ∆ of the generated PVBs are almost the same for all of the TCs. The
results show that the generated PVB is independent of its TC. The spiral interferograms
shown in Figure 12(c1–c5) and Figure A1(c1–c4) are seen to have a spiral structure. The
number of spiral lobes in the central zone is the TC value, and its rotation direction is
clockwise for the negative sign of TC and vice versa. Unlike the spiral interferogram
as observed in the interference of normal vortex beam with a Gaussian with a spherical
wavefront [72,73], the spiral interferogram in Figure 12(c1–c5) and Figure A1(c1–c4) is faint
at the center of the interferogram due to the large dark core of the PVB. The fork wire
interferograms shown in Figure 12(d1–d5) and Figure A1(d1–d4) have a fork wire fringe.
For the fork wire interferogram, the fork number in the central zone is the TC value, and
the fork direction is downward for the negative sign of TC and upward for the positive
sign of TC. Such observations clearly confirm the ability of determining the TCs of PVBs
through the interferograms.
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(b1–b5) Intensity distributions of the corresponding PVBs. (c1–c5,d1–d5) The corresponding interfer-
ograms for spiral interference and fork wire interference, respectively. The black dot represents the
experimental result, and the red line represents the simulation result using Equation (8).
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5. Conclusions

In conclusion, we demonstrated the combination of SPPs, axicons, and lens for gen-
erating PVBs with arbitrary spot parameters and TCs. The ring radius and ring width of
the PVB can be completely controlled by choosing the axicon with a different base angle,
adjusting the Gaussian beam waist, and changing the lens to a different focal length. We
demonstrated that the ring radius increases linearly with the base angle of the axicon or
focal length of the Fourier lens. The ring width decreases when increasing the Gaussian
beam radius, and increases when enlarging the focal length. The approximate relation
among the input fundamental Gaussian beam radius wg, the focal length f, and the ring
half-width (∆), in experiment is ∆ = 2 f λ/πwg. The ring radius and ring width of the PVB
is independent of the TC. The experiment results verify that PVBs have the advantages
of a uniform ring profile and fixed radius compared with the traditional vortex beams.
Our method to generate the PVB is notable for the simplicity and flexibility of its practical
realization, high-power tolerance and high efficiency over the SLM-based method, and
high quality of the results. The high-power PVBs have potential for excitation of OAM
modes in an air-core fiber [75], or solid-state laser crystal [76].
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Appendix A

The power of the optical field E can be expressed as

P = 2ncε0

∫ 2π

0
dθ

∫ ∞

0
|E(r, θ, z)|2rdr (A1)
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For the fundamental Gaussian beam, the power PG is

PG = 2ncε0
∫ 2π

0 dθ
∫ ∞

0 |EG(r, θ, z)|2rdr
= 4πncε0

∫ ∞
0 |AG|2 exp

[
−2r2/w2

g(z)
]
rdr

= πncε0|AG|2w2
g(z)

(A2)

Thus, the amplitude of the fundamental Gaussian beam AG is

AG =

√
PG/

[
πncε0w2

g(z)
]

(A3)

For the LG vortex beam, the power PLG is

PLG = 2ncε0
∫ 2π

0 dθ
∫ ∞

0 |ELG(r, θ, z)|2rdr

= 4πncε0
∫ ∞

0 |ALG|2
[
2r2/w2

g(z)
]|l|

exp
[
−2r2/w2

g(z)
]
rdr

= πncε0w2
g(z)|ALG|2

∫ ∞
0 u|l| exp(−u)du

= πncε0w2
g(z)|ALG|2|l|!

(A4)

Here, the integration formula shown in the following Equation (A5) is used here.∫ ∞

0
u|l| exp(−u)du = |l|! (A5)

Thus, the amplitude of the LG vortex beam ALG is

ALG =

√
PLG/

[
πncε0|l|!w2

g(z)
]

(A6)

For the BG vortex beam, the power PBG is

PBG = 2ncε0
∫ 2π

0 dθ
∫ ∞

0 |EBG(r, θ, z)|2rdr
= 4πncε0

∫ ∞
0 |ABG|2[Jl(krr)]2 exp

[
−2r2/w′2

g (z)
]
rdr

= πncε0|ABG|2w′2
g (z) exp

[
−k2

r w′2
g (z)/4

]
Ip

[
k2

r w′2
g (z)/4

]
= πncε0|ABG|2w′2

g (z)

(A7)

The integration formula shown in the following Equation (A8) is used here.∫ ∞
0 x exp(−q2x2)Jp(ax)Jp(bx)dx = 1

2q2 exp
(
− a2+b2

4q2

)
Ip

(
ab

2q2

)
(a > 0, b > 0, Rep > −1, |argq| < π/4)

(A8)

For x >> 1, Ip(x) ≈ exp(x).
Thus, the amplitude of the BG vortex beam ABG is

ABG =

√
PBG/

[
πncε0w′2

g (z)
]

(A9)

For the perfect vortex beam, the power PPV is
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PPV = 2ncε0
∫ 2π

0 dθ
∫ ∞

0 |EPV(r, θ)|2rdr
= 4πncε0

∫ ∞
0 exp

[
−2(r − ρ)2/∆2

]
rdr

= 4πncε0|APV|2
∫ ∞
−ρ exp

[
−2r′2/∆2

]
(r′ + ρ)dr′

= 4πncε0|APV|2ρ
∫ ∞
−ρ exp

[
−2r′2/∆2

]
dr′ + 4πncε0|APV|2

∫ ∞
−ρ exp

[
−2r′2/∆2

]
r′dr′

≈ 4πncε0|APV|2ρ
∫ ∞
−∞ exp

[
−2r′2/∆2

]
dr′ + 4πncε0|APV|2

∫ ∞
−∞ exp

[
−2r′2/∆2

]
r′dr′

= 4π
√

π/2ncε0|APV|2ρ∆

(A10)

Here, the approximation is rational ρ >> ∆. Thus, the amplitude of the perfect vortex
beam APV is

APV =

√
PPV/

(
4πncε0ρ∆

√
π/2

)
(A11)
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Figure A1. Beam patterns (intensity distribution) of the PVB and their interference with the Gaussian 
beam. (a1–a4) are the measured beam patterns of the PVBs with TCs of l = −2~2. (b1–b4) are the 
intensity distributions of the corresponding PVBs. (c1–c4,d1–d4) are the corresponding 
interferograms for spiral interference and fork wire interference, respectively. 
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