Polarization-Sensitive Nonlinear Optical Interaction of Ultrashort Laser Pulses with HPHT Diamond
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
3.1. Luminous Channels Length vs. Polarization
3.2. PL Intensity vs. Polarization
3.3. Filamentation Threshold Power vs. Polarization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Feofilov, P.P. Polarized luminescence in cubic crystals. Usp. Fiz. Nauk 1956, 58, 69–84. [Google Scholar] [CrossRef]
- Elliott, R.J.; Matthew, I.G.; Mitchell, E.W.J. The polarization of luminescence in diamond. Philos. Mag. 1958, 3, 360–369. [Google Scholar] [CrossRef]
- Temnov, V.V.; Sokolowski-Tinten, K.; Zhou, P.; El-Khamhawy, A.; von der Linde, D. Multiphoton Ionization in Dielectrics: Comparison of Circular and Linear Polarization. Phys. Rev. Lett. 2006, 97, 237403. [Google Scholar] [CrossRef] [PubMed]
- Gertsvolf, M.; Jean-Ruel, H.; Rajeev, P.P.; Klug, D.D.; Rayner, D.M.; Corkum, P.B. Orientation-Dependent Multiphoton Ionization in Wide Band Gap Crystals. Phys. Rev. Lett. 2008, 101, 243001. [Google Scholar] [CrossRef]
- Kozák, M.; Otobe, T.; Zukerstein, M.; Trojánek, F.; Malý, P. Anisotropy and polarization dependence of multiphoton charge carrier generation rate in diamond. Phys. Rev. B 2019, 99, 104305. [Google Scholar] [CrossRef]
- Heinrich, T.; Taucer, M.; Kfir, O.; Corkum, P.B.; Staudte, A.; Ropers, C.; Sivis, M. Chiral high-harmonic generation and spectroscopy on solid surfaces using polarization-tailored strong fields. Nat. Commun. 2021, 12, 3723. [Google Scholar] [CrossRef]
- Suthar, P.; Trojánek, F.; Malý, P.; Derrien, T.J.-Y.; Kozák, M. Role of Van Hove singularities and effective mass anisotropy in polarization-resolved high harmonic spectroscopy of silicon. Commun. Phys. 2022, 5, 288. [Google Scholar] [CrossRef]
- Liu, H.; Lysenko, S.; Vikhnin, V.; Rua, A.; Fernandez, F. Azimuth Dependence of Light-Induced Ultrafast Insulator-to-Metal Phase Transition in VO2 Thin Film. ECS Trans. 2006, 3, 37–49. [Google Scholar] [CrossRef]
- Dachraoui, H.; Oberer, C.; Heinzmann, U. Femtosecond crystallographic experiment in wide-bandgap LiF crystal. Opt. Express 2011, 19, 2797–2804. [Google Scholar] [CrossRef] [Green Version]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Chekalin, S.V.; Kandidov, V.P. From self-focusing light beams to femtosecond laser pulse filamentation. Phys.-Usp. 2013, 56, 123–140. [Google Scholar] [CrossRef]
- Kosareva, O.; Daigle, J.-F.; Panov, N.; Wang, T.; Hosseini, S.; Yuan, S.; Roy, G.; Makarov, V.; Chin, S.L. Arrest of self-focusing collapse in femtosecond air filaments: Higher order Kerr or plasma defocusing? Opt. Lett. 2011, 36, 1035–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martynovich, E.F.; Dresviansky, V.P.; Kuznetsov, A.V.; Kuzakov, A.S.; Popov, A.A.; Alekseev, S.V.; Losev, V.F.; Ratakhin, A.N.; Bagayev, S.N. Simulation of filamentation of single femtosecond laser pulses in LiF. Laser Phys. 2014, 24, 074001. [Google Scholar] [CrossRef]
- Li, Q.; Perrie, W.; Li, Z.; Edwardson, S.P.; Dearden, G. Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation. Opto-Electron. Adv. 2022, 5, 210036. [Google Scholar] [CrossRef]
- Chen, L.; Hong, M. Functional nonlinear optical nanoparticles synthesized by laser ablation. Opto-Electron. Sci. 2022, 1, 210007. [Google Scholar] [CrossRef]
- Zukerstein, M.; Trojánek, F.; Rezek, B.; Šobáň, Z.; Kozák, M.; Malý, P. Coherent phonon dynamics in diamond detected via multiphoton absorption. Appl. Phys. Lett. 2019, 115, 161104. [Google Scholar] [CrossRef]
- Krasin, G.; Kovalev, M.; Danilov, P.; Stsepuro, N.; Oleynichuk, E.; Bibicheva, S.; Martovitskii, V.; Kudryashov, S. Ablation of (111) and (001) Crystal Plates by Ultrashort Laser Pulses with Rotated Linear Polarization. JETP Lett. 2021, 114, 117–123. [Google Scholar] [CrossRef]
- Krasin, G.K.; Kovalev, M.S.; Kudryashov, S.I.; Danilov, P.A.; Martovitskii, V.P.; Gritsenko, I.V.; Podlesnykh, I.M.; Khmelnitskii, R.A.; Kuzmin, E.V.; Gulina, Y.S.; et al. Polarization-dependent near-IR ultrashort-pulse laser ablation of natural diamond surfaces. Appl. Surf. Sci. 2022, 595, 153549. [Google Scholar] [CrossRef]
- Krasin, G.K.; Stsepuro, N.G.; Martovitsky, V.P.; Kovalev, M.S. Polarization-dependent filamentation of femtosecond laser pulses in synthetic diamond. Opt. Spectrosc. 2022, 132, 418–421. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Danilov, P.A.; Kuzmin, E.V.; Gulina, Y.S.; Rupasov, A.E.; Krasin, G.K.; Zubarev, I.G.; Levchenko, A.O.; Kovalev, M.S.; Pakholchuk, P.P.; et al. Pulse-width-dependent critical power for self-focusing of ultrashort laser pulses in bulk dielectrics. Opt. Lett. 2022, 47, 3487–3490. [Google Scholar] [CrossRef]
- Li, X.; Rong, W.; Jiang, L.; Zhang, K.; Li, C.; Cao, Q.; Zhang, G.; Lu, Y. Generation and elimination of polarization-dependent ablation of cubic crystals by femtosecond laser radiation. Opt. Express 2014, 22, 30170–30176. [Google Scholar] [CrossRef] [PubMed]
- Kudryashov, S.; Danilov, P.; Smirnov, N.; Levchenko, A.; Kovalev, M.; Gulina, Y.; Kovalchuk, O.; Ionin, A. Femtosecond-laser-excited luminescence of the A-band in natural diamond and its thermal control. Opt. Mater. Express 2021, 11, 2505–2513. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Khmelnitskii, R.A.; Danilov, P.A.; Smirnov, N.A.; Levchenko, A.O.; Kovalchuk, O.E.; Uspenskaya, M.V.; Oleynichuk, E.A.; Kovalev, M.S. Broadband and fine-structured luminescence in diamond facilitated by femtosecond laser driven electron impact and injection of “vacancy-interstitial” pairs. Opt. Lett. 2021, 46, 1438–1441. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Petit, S.; Becker, A.; Aközbek, N.; Bowden, C.M.; Chin, S.L. Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun. 2002, 202, 189–197. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Fedorov, V.Y.; Tverskoi, O.V.; Kosareva, O.G.; Chin, S.L. Intensity clamping in the filament of femtosecond laser radiation. Quant. Electron. 2011, 41, 382–386. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Levchenko, A.O.; Danilov, P.A.; Smirnov, N.A.; Ionin, A.A. IR femtosecond laser micro-filaments in diamond visualized by inter-band UV photoluminescence. Opt. Lett. 2020, 45, 2026–2029. [Google Scholar] [CrossRef]
- Gruzdev, V.E. Fundamental mechanisms of laser damage of dielectric crystals by ultrashort pulse: Ionization dynamics for the Keldysh model. Opt. Eng. 2014, 53, 122515. [Google Scholar] [CrossRef]
- Mao, S.; Quéré, F.; Guizard, S.; Mao, X.; Russo, R.E.; Petite, G.; Martin, P. Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A 2004, 79, 1695–1709. [Google Scholar] [CrossRef]
- Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D. Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses. Phys. Rev. Lett. 1995, 74, 2248–2251. [Google Scholar] [CrossRef] [Green Version]
- Keldysh, L.V. Ionization in the Field of a Strong Electromagnetic Wave. Sov. Phys. JETP 1965, 20, 1307–1314. [Google Scholar]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784–1794. [Google Scholar] [CrossRef]
- Eaton, S.M.; Cerullo, G.; Osellame, R. Fundamentals of Femtosecond Laser Modification of Bulk Dielectrics. In Femtosecond Laser Micromachining; Osellame, R., Cerullo, G., Ramponi, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–18. [Google Scholar]
- Mero, M.; Liu, J.; Rudolph, W.; Ristau, D.; Starke, K. Scaling laws of femtosecond laser pulse induced breakdown in oxide films. Phys. Rev. B 2005, 71, 115109. [Google Scholar] [CrossRef]
- Apostolova, T.T.; Ionin, A.A.; Kudryashov, S.I.; Seleznev, L.V.; Sinitsyn, D.V. Self-limited ionization in bandgap renormalized GaAs at high femtosecond laser intensities. Opt. Eng. 2012, 51, 121808. [Google Scholar] [CrossRef]
- Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Saltuganov, P.N.; Seleznev, L.V.; Sinitsyn, D.V.; Sharipov, A.R. Ultrafast electron dynamics on the silicon surface excited by an intense femtosecond laser pulse. JETP Lett. 2012, 96, 375–379. [Google Scholar] [CrossRef]
- Thonke, K.; Schliesing, R.; Teofilov, N.; Zacharias, H.; Sauer, R.; Zaitsev, A.M.; Kanda, H.; Anthony, T.R. Electron–hole drops in synthetic diamond. Diam. Relat. Mater. 2000, 9, 428–431. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Danilov, P.A.; Smirnov, N.A.; Stsepuro, N.G.; Rupasov, A.E.; Khmelnitskii, R.A.; Oleynichuk, E.A.; Kuzmin, E.V.; Levchenko, A.O.; Gulina, Y.S.; et al. Signatures of ultrafast electronic and atomistic dynamics in bulk photoluminescence of CVD and natural diamonds excited by ultrashort laser pulses of variable pulsewidth. Appl. Surf. Sci. 2022, 575, 151736. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Antonius, G.; Poncé, S.; Boulanger, P.; Côté, M.; Gonze, X. Many-body effects on the zero-point renormalization of the band structure. Phys. Rev. Lett. 2014, 112, 215501. [Google Scholar] [CrossRef]
- Giustino, F.; Louie, S.G.; Cohen, M.L. Electron-phonon renormalization of the direct band gap of diamond. Phys. Rev. Lett. 2010, 105, 265501. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, R.; Herrero, C.P.; Hernández, E.R. Path-integral molecular dynamics simulation of diamond. Phys. Rev. B 2006, 73, 245202. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, S.; Danilov, P.; Rupasov, A.; Khonina, S.; Nalimov, A.; Ionin, A.; Krasin, G.; Kovalev, M. Energy deposition parameters revealed in the transition from 3D to 1D femtosecond laser ablation of fluorite at high-NA focusing. Opt. Mater. Express 2020, 10, 3291–3305. [Google Scholar] [CrossRef]
- Krasin, G.K.; Kudryashov, S.I.; Danilov, P.A.; Smirnov, N.A.; Levchenko, A.O.; Kovalev, M.S. Ultrashort-laser electron–hole plasma and intragap states in diamond. Eur. Phys. J. D 2021, 75, 221. [Google Scholar] [CrossRef]
- Jing, X.; Tian, Y.; Zhang, J.; Chen, S.; Jin, Y.; Shao, J.; Fan, Z. Modeling validity of femtosecond laser breakdown in wide bandgap dielectrics. Appl. Surf. Sci. 2012, 258, 4741–4749. [Google Scholar] [CrossRef]
- Jürgens, P.; Jupé, M.; Gyamfi, M.; Ristau, D. Ultrafast polychromatic ionization of dielectric solids. In Proceedings of the SPIE Laser Damage 2016, Boulder, CO, USA, 6 December 2016. [Google Scholar] [CrossRef] [Green Version]
- Starke, K.; Ristau, D.; Welling, H.; Amotchkina, T.V.; Trubetskov, M.; Tikhonravov, A.A.; Chirkin, A.S. Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses. In Proceedings of the XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium, Boulder, CO, USA, 10 June 2004; Volume 5273, pp. 501–514. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasin, G.K.; Gulina, Y.S.; Kuzmin, E.V.; Martovitskii, V.P.; Kudryashov, S.I. Polarization-Sensitive Nonlinear Optical Interaction of Ultrashort Laser Pulses with HPHT Diamond. Photonics 2023, 10, 106. https://doi.org/10.3390/photonics10020106
Krasin GK, Gulina YS, Kuzmin EV, Martovitskii VP, Kudryashov SI. Polarization-Sensitive Nonlinear Optical Interaction of Ultrashort Laser Pulses with HPHT Diamond. Photonics. 2023; 10(2):106. https://doi.org/10.3390/photonics10020106
Chicago/Turabian StyleKrasin, George K., Yulia S. Gulina, Evgeny V. Kuzmin, Victor P. Martovitskii, and Sergey I. Kudryashov. 2023. "Polarization-Sensitive Nonlinear Optical Interaction of Ultrashort Laser Pulses with HPHT Diamond" Photonics 10, no. 2: 106. https://doi.org/10.3390/photonics10020106
APA StyleKrasin, G. K., Gulina, Y. S., Kuzmin, E. V., Martovitskii, V. P., & Kudryashov, S. I. (2023). Polarization-Sensitive Nonlinear Optical Interaction of Ultrashort Laser Pulses with HPHT Diamond. Photonics, 10(2), 106. https://doi.org/10.3390/photonics10020106