Plasmonic Generation of Spatiotemporal Optical Vortices
Abstract
:1. Introduction
2. Theoretical Description of the Generation of a Spatiotemporal Optical Vortex
3. Geometry of the Generalized Kretschmann Setup and the Zero Reflection Condition
4. Results and Discussion
4.1. Numerical Investigation of the Generalized Kretschmann Setup with a Reflection Zero
4.2. Numerical Demonstration of the STOV Generation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Vortex Laser Beams, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Lian, Y.; Qi, X.; Wang, Y.; Bai, Z.; Wang, Y.; Lu, Z. OAM beam generation in space and its applications: A review. Opt. Lasers Eng. 2022, 151, 106923. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Almazov, A.A.; Khonina, S.N.; Soifer, V.A.; Elfstrom, H.; Turunen, J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J. Opt. Soc. Am. A 2005, 22, 849–861. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Friese, M.E.J.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 1995, 75, 826–829. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of Optical Trapping by an Optical Vortex Beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef] [Green Version]
- Heffernan, B.M.; Meyer, S.A.; Restrepo, D.; Siemens, M.E.; Gibson, E.A.; Gopinath, J.T. A fiber-coupled stimulated emission depletion microscope for bend-insensitive through-fiber imaging. Sci. Rep. 2019, 9, 11137. [Google Scholar] [CrossRef] [Green Version]
- Tyler, G.A.; Boyd, R.W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 2009, 34, 142–144. [Google Scholar] [CrossRef] [Green Version]
- Doster, T.; Watnik, A.T. Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: Analysis of channel efficiency. Appl. Opt. 2016, 55, 10239–10246. [Google Scholar] [CrossRef]
- Chong, A.; Wan, C.; Chen, J.; Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics 2020, 14, 350–354. [Google Scholar] [CrossRef]
- Bliokh, K.Y. Spatiotemporal vortex pulses: Angular momenta and spin-orbit interaction. Phys. Rev. Lett. 2021, 126, 243601. [Google Scholar] [CrossRef]
- Hancock, S.W.; Zahedpour, S.; Goffin, A.; Milchberg, H.M. Free-space propagation of spatiotemporal optical vortices. Optica 2019, 6, 1547. [Google Scholar] [CrossRef]
- Jhajj, N.; Larkin, I.; Rosenthal, E.W.; Zahedpour, S.; Wahlstrand, J.K.; Milchberg, H.M. Spatiotemporal optical vortices. Phys. Rev. X 2016, 6, 031037. [Google Scholar] [CrossRef] [Green Version]
- Hancock, S.W.; Zahedpour, S.; Milchberg, H.M. Mode structure and orbital angular momentum of spatiotemporal optical vortex pulses. Phys. Rev. Lett. 2021, 127, 193901. [Google Scholar] [CrossRef]
- Huang, S.; Wang, P.; Shen, X.; Liu, J.; Li, R. Diffraction properties of light with transverse orbital angular momentum. Optica 2022, 9, 469–472. [Google Scholar] [CrossRef]
- Hancock, S.W.; Zahedpour, S.; Milchberg, H.M. Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum. Optica 2021, 8, 594. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Zhu, T.; Ruan, Z. Spatiotemporal Differentiators Generating Optical Vortices with Transverse Orbital Angular Momentum and Detecting Sharp Change of Pulse Envelope. Laser Photonics Rev. 2022, 16, 2100357. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.; Kravchenko, I.I.; Valentine, J. Flat optics for image differentiation. Nat. Photonics 2022, 14, 316–323. [Google Scholar] [CrossRef]
- Bykov, D.A.; Doskolovich, L.L.; Soifer, V.A. Temporal differentiation of optical signals using resonant gratings. Opt. Lett. 2011, 36, 3509–3511. [Google Scholar] [CrossRef]
- Bykov, D.A.; Doskolovich, L.L.; Soifer, V.A. Single-resonance diffraction gratings for time-domain pulse transformations: Integration of optical signals. J. Opt. Soc. Am. A 2012, 29, 1734–1740. [Google Scholar] [CrossRef]
- Doskolovich, L.L.; Bykov, D.A.; Bezus, E.A.; Soifer, V.A. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt. Lett. 2014, 39, 1278–1281. [Google Scholar] [CrossRef]
- Bykov, D.A.; Doskolovich, L.L.; Morozov, A.A.; Podlipnov, V.V.; Bezus, E.A.; Verma, P.; Soifer, V.A. First-order optical spatial differentiator based on a guided-mode resonant grating. Opt. Express 2018, 26, 10997–11006. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Si, J.; Yu, X.; Deng, X. Optical spatial differentiator based on subwavelength high-contrast gratings. Appl. Phys. Lett. 2018, 112, 181102. [Google Scholar] [CrossRef]
- Yang, W.; Yu, X.; Zhang, J.; Deng, X. Plasmonic transmitted optical differentiator based on the subwavelength gold gratings. Opt. Lett. 2020, 45, 2295–2298. [Google Scholar] [CrossRef] [PubMed]
- Kulishov, M.; Azaña, J. Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings. Opt. Express 2007, 15, 6152–6166. [Google Scholar] [CrossRef]
- Berger, N.K.; Levit, B.; Fischer, B.; Kulishov, M.; Plant, D.V.; Azaña, J. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Opt. Express 2007, 15, 371–381. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhan, J.; Chen, R.; Chen, W.; Wang, Y.; Shao, Y.; Ma, Y. Analogue Optical Spatiotemporal Differentiator. Adv. Opt. Mater. 2021, 9, 2002088. [Google Scholar] [CrossRef]
- Zhu, T.; Zhou, Y.; Lou, Y.; Ye, H.; Qiu, M.; Ruan, Z.; Fan, S. Plasmonic computing of spatial differentiation. Nat. Commun. 2017, 8, 15391. [Google Scholar] [CrossRef] [Green Version]
- Golovastikov, N.V.; Doskolovich, L.L.; Bezus, E.A.; Bykov, D.A.; Soifer, V.A. An optical differentiator based on a three-layer structure with a W-shaped refractive index profile. J. Exp. Th. Phys. 2018, 127, 202–209. [Google Scholar] [CrossRef]
- Zhang, J.; Ying, Q.; Ruan, Z. Time response of plasmonic spatial differentiators. Opt. Lett. 2019, 44, 4511–4514. [Google Scholar] [CrossRef]
- Kashapov, A.I.; Doskolovich, L.L.; Bezus, E.A.; Bykov, D.A.; Soifer, V.A. Spatial differentiation of optical beams using a resonant metal-dielectric-metal structure. J. Opt. 2021, 23, 023501. [Google Scholar] [CrossRef]
- Refractive Index Database. Available online: https://refractiveindex.info (accessed on 10 October 2022).
- Moharam, M.G.; Pommet, D.A.; Grann, E.B.; Gaylord, T.K. Stable implementation of the rigorous coupled wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A 1995, 12, 1077. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashapov, A.I.; Bezus, E.A.; Bykov, D.A.; Doskolovich, L.L. Plasmonic Generation of Spatiotemporal Optical Vortices. Photonics 2023, 10, 109. https://doi.org/10.3390/photonics10020109
Kashapov AI, Bezus EA, Bykov DA, Doskolovich LL. Plasmonic Generation of Spatiotemporal Optical Vortices. Photonics. 2023; 10(2):109. https://doi.org/10.3390/photonics10020109
Chicago/Turabian StyleKashapov, Artem I., Evgeni A. Bezus, Dmitry A. Bykov, and Leonid L. Doskolovich. 2023. "Plasmonic Generation of Spatiotemporal Optical Vortices" Photonics 10, no. 2: 109. https://doi.org/10.3390/photonics10020109
APA StyleKashapov, A. I., Bezus, E. A., Bykov, D. A., & Doskolovich, L. L. (2023). Plasmonic Generation of Spatiotemporal Optical Vortices. Photonics, 10(2), 109. https://doi.org/10.3390/photonics10020109