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Abstract: We consider the formation of forked diffraction gratings on the surface of a multilayer
structure based on chalcogenide glass semiconductors As2S3 and a-Se is. The distribution of elec-
tric field components upon interference of beams with different polarization states is analyzed
theoretically. The possibility of direct holographic writing of diffraction gratings with a “forked”
structure is demonstrated. The parameters of vortex laser beams generated by the microrelief formed
are examined.
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1. Introduction

Vortex laser beams [1–3] are currently attracting considerable attention of researchers
due to a wide use of these beams in problems of atmospheric communication [4–8] and
optical manipulation [9–11]. Vortex beams can be generated using a spatial light modulator
(SLM) [12–14], anisotropic crystals [15–18], diffractive optical elements (DOEs) [19–24],
metasurfaces [25–30], and various microelements [31,32]. Beams with a given phase dis-
tribution are most efficiently formed using DOEs; however, their production is a complex
and expensive technological process.

One of the solutions to this problem is the use of anisotropic materials (for example,
azobenzene-containing polymers (azopolymers)) that are sensitive to the orientation of
the illuminating light polarization. Porfirev et al. [33,34] developed a technology for
fabricating microstructures with specified profiles in azopolymer thin films patterned using
structured light beams. Possibilities of producing helical microstructures [33], as well
as various specified combinations of microprotrusions [34], were shown. The obtained
relationship between the longitudinal component of the illuminating beam and the profile
of the microstructure formed in a thin film allows the polarization state of the light to
be used (both uniform and nonuniform) and information encoding/decoding based on
this approach be implemented [34]. The authors of papers [35,36] presented a method of
polarization holographic writing of forked diffraction gratings on the surface of films of a
poly-N-epoxypropyl-carbazole copolymer and 4-(4-nitrophenyl azo)-aniline chromophore.
The resulting surface structures make it possible to form vortex laser beams; however, the
writing time at which the maximum diffraction efficiency of 24% is reached is 12 min.

Papers [37–39] present various methods for direct holographic writing of microreliefs
on diffraction gratings in polarization-sensitive multilayer structures based on chalcogenide
glass semiconductors As2S3 and a-Se, prepared by cyclic thermal vacuum evaporation
of two materials from two isolated boats onto a constantly rotated glass substrate [39].
This technology makes it possible to obtain a more uniform application of nano multilayer
coating and more homogeneous layers, unlike holographic coatings based on polymers.
At the same time, chalcogenide materials have a high refractive index and can be effective
in creating optical holographic metastructures. The diffraction efficiency of the formed
gratings described in [38] reached 34% at a writing time of 5 min. This result was achieved
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with the interference of linearly polarized beams incident at polarization angles of +45◦ and
−45◦. Moreover, a focusing system was used to increase the power density of the incident
light. However, the mechanisms of influence of the polarization state of interfering beams
on the writing process were not studied in the work.

In this paper, we consider the process of forming forked diffraction gratings in a
multilayer structure based on chalcogenide glass semiconductors using a focusing system.
It is known that such gratings are effectively used to generate and detect vortex beams [1–3].
The distribution of electric field components upon interference of beams with different
polarization states is analyzed theoretically. The parameters of vortex laser beams formed
by diffraction of the light on the formed microstructures are studied.

2. Theoretical Analysis

Holographic writing of linear diffraction gratings for various states of incident light
polarization was studied by Achimova et al. [37] and Meshalkin et al. [40]. The experiments
showed that the diffraction efficiency of the fabricated elements has a maximum value when
one beam is linearly polarized at an angle of +45◦, and the other is linearly polarized at an
angle of −45◦. Upon interference of P- and S-polarized beams, as well as of beams with
left- and right-hand circular polarizations, the diffraction efficiency of surface structures is
approximately the same and is two times lower than the maximum value. We analyze the
interaction processes by simulating the distributions of various components of the electric
field upon interference of differently polarized Gaussian beams. A Gaussian beam with a
diameter σ in Cartesian coordinates (x, y) is described by the expression:

G(x, y) = exp
(
− x2 + y2

σ2

)
(1)

In our simulation, we consider a situation when two Gaussian beams are shifted
relative to each other along the x axis in the input plane. The distributions of the total
intensity in the focal plane and the distributions of the intensity of individual electric
field components of the studied laser beams were calculated using the Richards–Wolf
expressions [41,42]. Figure 1 presents the calculation results, and Figure 2 shows the
intensity cross sections for the corresponding components of the focused field.
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With S-polarization (Figures 1a and 2a), the Y-component makes the main contribution
to the total intensity distribution, whereas the remaining components are virtually absent.
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In the case of P-polarization, the Y-component is virtually absent (Figures 1b and 2b),
and the X- and Z-components form shifted gratings. The Z-component here has a maximum
energy of all the scenarios in question (Figure 2). According to [37], S- and P-polarizations
result in the same deformations of the surface, but with different profile heights. Therefore,
we can conclude that the contribution of the Z-component in the case of P-polarization
leads to a decrease in the holographic writing efficiency.

Writing with polarized beams at incidence angles of +45◦ and −45◦, as already men-
tioned, results in the highest relief height. This scenario is well illustrated by the spatial
coincidence of the intensity maxima for the Y- and Z-components (Figures 1c and 2c).

For circularly polarized beams, the intensity distribution for the components is iden-
tical to the previous case. However, the diffraction efficiency being lower than that for
S-polarized beams [37]. This feature can be explained by the fact that in the first case the Y-
and Z-components are real (Figure 3a, both green and blue solid lines), and in the second
case the Y-component is imaginary (Figure 3b, the green dotted line), which corresponds to
the phase difference of the Y- and Z-components equal to 90◦.
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The analysis shows that the Z-component has a dramatic effect on the formation of
linear diffraction gratings on the surface of a multilayer structure based on chalcogenide
glass semiconductors As2S3 and a-Se. Coincidence or displacement of the grating for the
longitudinal component with respect to the grating in other components determines the
height of the reliefs formed on the surface of chalcodenides.

On the whole, the above approach makes it possible to obtain a relationship between
the distribution of the focused field components and the relief of the produced gratings.
Therefore, to study the process of writing forked diffraction gratings, we calculate the
components of the electric field upon interference of a Gaussian beam and a first-order
vortex beam. A first-order vortex beam with a diameter σ in Cartesian coordinates (x, y) is
described by the expression:

V(x, y) = exp
(
− x2 + y2

σ2

)
(x + iy) (2)

In our simulation, we consider a situation when Gaussian and vortex beams are shifted
relative to each other along the x axis in the input plane G (x − x0, y) ± V (x + x0, y). The
distributions of the total intensity in the focal plane and the distributions of the intensity of
individual electric field components of the studied laser beams were calculated using the
Richards–Wolf expressions [41,42]. The calculation results are shown in Figure 4.
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One can see from Figure 4 that the calculated characteristics have significant differ-
ences depending on the polarization state of interfering beams. In the case of P- and
S-polarizations, the shape of the total intensity of the electric field corresponds to that of
the transverse components (Figure 4a,b). Upon interference of beams with orthogonal
directions of linear (±45◦) and circular polarizations, a spatial coincidence of the intensity
distributions of the Y- and Z-components is observed. Moreover, the shape of the total
electric field intensity corresponds to their shape (Figure 4c,d).

3. Experimental

As2S3 and a-Se chalcogenide glass semiconductors described in this paper have an
advantage over azopolymer-based materials [33,34] in the formation of lattice structures.
The initial material formed by spraying has high indicators of uniformity of structure
and uniformity of thickness. At the same time, the technology of applying multilayer
coatings can be carried out by standard industrial technologies for automated application
of optical coatings. The use of two types of layers As2S3 and a-Se allows optically forming a
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microrelief without the use of etching. Moreso, the use of a large number of thin alternating
As2S3 and a-Se nanolayers makes it possible to increase the degree of heaving of the
material with a small response in each pair of layers. This technology is described and
studied in detail in earlier works [38]. The optimal parameters of the thickness of the layers
were also selected. As in [38], we used a sample of 110 pairs of nanolayers with 9 nm As2S3
and 3 nm a-Se with a total thickness of 1.3 microns.

Direct holographic writing of surface forked diffractive structures was performed
using a 532-nm, single-mode, linearly polarized laser. A schematic of the experimental
setup, which forms the microrelief and records the image of the reflected beam, is shown in
Figure 5.
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Figure 5. Schematic of the optical setup used in the experiment.

The main element of the setup is a Mach–Zehnder interferometer. The initial linearly
polarized Gaussian beam from a solid-state laser was expanded and spatially filtered using
a system consisting of a pinhole PH (aperture size of 40 µm) and a lens L1 (focal length of
150 mm). Wave plates PR1 and PR2 were used to rotate the initial linear beam polarization
in each of the interferometer arms.

The Mach–Zehnder interferometer consists of two mirrors (M1 and M2) and two
non-polarizing beam splitters (BS1 and BS2). A spiral phase plate (E) was installed in one
of the interferometer arms, generating a vortex beam with a topological charge m = 1. The
non-polarizing beam splitters BS1 and BS2 have a 50:50 shoulder ratio. Losses when using
a spiral phase plate are low. The same optical components PS1 and PS2 were used in the
interferometer arms, which provides the intensity ratio of the reference, and the vortex
beams close to 50:50. A micro-objective MO1 (4×, NA = 0.1) focused the interfering laser
beams from different interferometer arms on the surface of a sample P. The duration of the
writing time was 3 min, and the power density was 10 W/cm2. A micro-objective MO2 (8×,
NA = 0.2) and a video camera CAM were used to observe the writing process. A system
consisting of a lamp IB, a spherical lens L2 (focal length of 50 mm), and a beam splitter BS3
was used to illuminate the sample surface.

The parameters of the formed gratings were measured using a Solver PRO-M scanning
probe microscope (SPM) from the NT-MDT company in the semi-contact regime. According
to the measurements, the gratings shown in Figure 4c,d have the highest reliefs. In other
cases, microreliefs with a low height comparable to the surface roughness were obtained.
SPM images of the formed diffraction gratings are shown in Figure 6a,b.
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Figure 6. SPM images of the produced structure upon interference of beams with the same polariza-
tion: (a) linear polarization at incidence angles of +45◦ and −45◦; (b) circular right- and left-hand
polarizations.

The gratings, as can be seen from Figure 6, have a ‘forked’ structure. The period of
the formed gratings is 5 µm. The height of the lattice formed by interference of beams
with linear polarizations of +45◦ and −45◦ is 271 nm. The height of the lattice formed
by interference of beams with circular polarization of left and right rotation is 115 nm.
The height of the profile written with polarized beams at incidence angles of +45◦ and
−45◦ is two times higher than the profile written with circularly polarized beams. The
microreliefs resemble the appearance of the superimposed intensities of the Y- and Z-
components, which repeats the result obtained with writing linear gratings. Moreover,
some asymmetry is observed, which is characteristic of the distribution of the Z-component
for crossed polarization (Figure 4c). A similar effect illustrating the relationship between
the longitudinal component of the illuminating beam and the relief of the microstructure
formed in a thin film of azopolymers was also observed in [33,34]. Note that this effect is
mainly due to the state of polarization of the incident laser light (which may be nonuniform),
rather than due to the magnitude of the longitudinal component. The point is that the state
of polarization determines nongradient [42,43], or so-called polarization [44–46], optical
forces, which most significantly affect the molecules of photosensitive polymers.

4. Results and Discussion

Parameters of vortex beams formed by an element with the highest relief (Figure 6a)
were studied using an optical setup in which a collimated laser beam 532 nm was focused
by a micro-objective onto the surface of a sample with a fabricated diffraction grating.
Using a three-axis translation stage, the diffraction grating was aligned with the beam. The
wavelength was the same as that used for holographic writing. The beam intensity was
350 mW/cm2, and the intensity distribution of the formed vortex beams was recorded by a
video camera with a micro-objective. In addition, the topological charge was controlled
with a cylindrical lens, which performs astigmatic transformation of the beam.

The intensity distribution of the generated vortex beams before and after passing
through the cylindrical lens is shown in Figure 7a,b.
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Figure 7. Intensity distributions of vortex beams: (a,b) before and after passing through a cylindrical
lens; (c) cross-section profile.

Figure 7a shows that after the beam passes through the diffraction grating, a central
beam without a vortex singularity and two off-axis vortex beams are generated. An
additional effect of a cylindrical lens allows the astigmatic transformation of the produced
beams to be implemented [47–51] in order to visualize the value of the topological charge.
Figure 7b shows that the central beam has a zero topological charge, and two off-axis
beams have a topological charge equal to unity with different signs (m = ±1). Note that the
diffraction efficiency of the written element is no worse than 37%, which was determined
from the intensity profile of the output beams (Figure 7c) by the intensity of the beam of −1
order of diffraction relative to the intensity of the beam of 0 order. However, in the image
there is an uneven intensity in the intensity distributions of the vortex beam of +1 and
−1 orders of magnitude Figure 7a, which causes an error in determining the diffraction
intensity from the image. The actual diffraction efficiency is significantly less.

5. Conclusions

We have presented a method for the formation of forked diffraction gratings in a
multilayer structure based on chalcogenide glass semiconductors As2S3 and a-Se. The
theoretical analysis has shown a strong dependence of the relief height on the longitudinal
component of the electric field, with the maximum profile height of the formed gratings
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being obtained when the Y- and Z-components coincide. Moreover, this feature is observed
both in the formation of linear and forked gratings.

An optical setup based on a Mach–Zehnder interferometer has made it possible to
perform holographic writing of diffraction gratings. In this case, a spiral phase plate, which
generates a vortex beam with a topological charge m = 1,is used to form a vortex phase.

Studies of the parameters of the vortex beams formed by the relief written with crossed
polarization have shown that the topological charge of the generated vortex beams is also
equal to unity, with the beams in different orders having different signs (m = ±1). The
diffraction efficiency of the written forked grating reaches 37%.

Note in conclusion that the proposed approach can be easily adapted to fabricate
other types of DOEs by replacing the phase plate with an element of desired functionality.
The numerical and experimental results presented in this study on the formation of lattice
structures, as well as fork-shaped structures focused by laser radiation in chalcogenide
semiconductor structures, can also be used in areas where high resolution of microrelief
formation, high radiation resistance of materials are required; for example, optical memory
formation technologies, the formation of optical elements with a metasurface, and plasmon
structures [52]. Using focused radiation of different polarizations, it is possible to alternately
form different sections of the diffraction element based on lattice elements with different
relief features. An example of how the design of the elements took place is described in [53].
Furthermore, research is of applied importance for describing the processes of writing and
reading in a polarization-sensitive material [54,55].
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