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Abstract: Detection of dissolved gases in oceans is critically needed for global carbon cycle inves-
tigation. However, most in situ optical detection techniques, as far as we know, have restricted
measurement efficiency due to large gas consumption. Herein, we develop a sub-mL photoa-
coustic gas sensor with a simple configuration. A single-mode fiber directly guides the incident
laser into the photoacoustic cell without any other free-space optics. Thus, a reduced inner size of
12 mm × 6 mm × 4 mm enables the effective detection of limited dissolved gas. We employ methane
(CH4) as an example to demonstrate its sensing performance. The sensor achieves a good linear
response with an R-square value of 0.9989 and a minimum detection limit of 1.1 ppmv, corresponding
to a normalized noise equivalent absorption coefficient of 7.75 × 10−8 W·cm−1·Hz−1/2.

Keywords: deep-sea dissolved gas; quartz-enhanced photoacoustic spectroscopy; photoacoustic cell;
methane; in situ gas detection

1. Introduction

As an important part of the global carbon cycle, oceans store 38,000 Gt of carbon [1],
which is dozens of times greater than that achieved by atmospheric and terrestrial carbon
storage. Greenhouse gases such as methane (CH4) and carbon dioxide (CO2) are crucial
dissolved gases, especially in the extreme window of cold springs and hydrothermal
solutions [2,3]. Precise measurement of the components, concentrations and spatiotemporal
distribution of dissolved gases is essential to investigate the global carbon cycle, the deep sea
ecological environment, and global climate change [4–6]. The main current techniques for
dissolved gas detection include sampling analysis and in situ optical detection. Sampling
analysis with precise laboratory instruments, such as gas chromatography [7–9], is a
common method to analyze dissolved gases in surface seawater in the early stage of marine
detection. However, potential sample change and discontinuous sampling may result in
systematic errors, which must be considered in data analysis. Spectroscopic technologies,
such as evanescent wave and Raman spectroscopy, have been implemented for high-
concentration dissolved gas measurement [10,11], demonstrating the advantages of high
precision and non-contact measurement, as well as the challenges of limited sensitivity.
Further, the emergence of polymer materials with hydrophobic permeability [12] enables
in situ deep-sea dissolved gas detection by encapsulating instruments in a cavity with high
pressure-bearing capacity and separating the dissolved gases from seawater [13–15].

Infrared absorption-based spectroscopic sensors with high sensitivity and high se-
lectivity have been developed for dissolved gas measurement. These techniques include
non-dispersive infrared spectroscopy (NDIR), tunable diode laser absorption spectroscopy
(TDLAS) and cavity-enhanced absorption spectroscopy (CEAS). Using a broadband laser
as light source, the NDIR selects strong absorption lines of target gases for detection with
filters [16]. TDLAS uses a narrow linewidth laser to obtain high spectral resolution and
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leverages wavelength modulation spectroscopy to further improve its sensitivity and immu-
nity to interference [17]. CEAS enhances the detection sensitivity by significantly increasing
the light–gas interaction length for a limited chamber size. Using the CEAS with an off-axis
integrated cavity, Wankel et al. measured the dissolved CH4 and its isotopes in oceans [18].
A long optical path contributes to the improvement of detection sensitivity. However, an
increased gas consumption of as large as several hundred milliliters is needed. Limited by
the low permeation rate of the water–gas separation membrane such as polydimethylsilox-
ane (PDMS), typically 20–40 µL/min [19], the equilibration of the detection system could
take a very long time. Therefore, real-time dissolved gas detection remains unsolved for
absorption-based spectroscopic techniques.

Photoacoustic spectroscopy (PAS) enables target gas measurement by the detection
of the gas-absorption-induced acoustic wave using an acoustic transducer rather than the
attenuated laser after long-distance absorption [20–26]. Therefore, PAS could offer a choice
with low gas consumption. Since 2002, the invention of quartz-enhanced photoacoustic
spectroscopy (QEPAS) used a tiny quartz tuning fork (QTF), known as the wrist watch
crystal, as the acoustic transducer [27]. Its unique properties enable QEPAS gas sensors with
excitation wavelength independence, low gas consumption and high noise immunity [28].
Continuous efforts have been contributed to this field towards practical measurement of
numerous atmospheric trace gases, such as CO2 with a minimum detection limit of 300
ppt and 90 ppb for CH4 [29,30], and even state-of-the-art performance with an ultra-low
detection limit and an ultra-wide dynamic range [31,32]. Usually, QEPAS systems force
the laser to pass through the gap between the QTF prongs to avoid touching any surfaces
by the employment of collimators, matching lenses and other spatial filtering mechanics if
necessary [33]. This limits the further optimization of the QEPAS sensor footprint, which
still requires gas samples of a few to a dozen mL for effective analysis.

In this paper, we develop a QEPAS sensor with sub-mL gas consumption for dissolved
gas measurement. The spectrophone has a simple configuration with a micro-resonator
for acoustic wave enhancement and a standard QTF for signal detection. Only a piece
of single-mode fiber guides the excitation laser into the spectrophone without any other
free-space optics. All the above components are assembled inside a stainless chamber with
a total gas consumption of ~300 µL. We selected CH4, as an example, to evaluate the sensor
performance. An in situ dissolved CH4 measurement has been carried out at the Haima
Cold Spring Area of the South China Sea.

2. Materials and Methods

When the incident laser frequency is consistent with the molecular absorption line of
the detection gas, the gas molecules absorb the optical radiation and release heat, which
causes local expansion of the gas [34]. For QEPAS, a QTF serves as the acoustic transducer
instead of a microphone in traditional PAS. Commercially standard QTFs have a resonant
frequency of approximately 32.768 kHz. When the acoustic wave has the same frequency,
QTF prongs symmetrically vibrate to generate piezoelectric signal, which can be governed
by [35]

S = C
αPQ

f
(1)

where α is the absorption coefficient per unit concentration of the target gas, C is a constant
describing the transfer function, P is the laser power, Q is the quality factor of the folk, and
f is the resonant frequency. The QTF has a typical Q-factor of >100,000 in vacuum, while
approximately 10,000 under atmospheric pressure due to the environmental gas-induced
damping effect. In the QEPAS system, the resonant frequency and absorption coefficient
can be precisely calibrated, thus the target gas absorption coefficient per unit concentration
can be obtained by detecting the PAS signal.

In the implementation, we use a short microtube to further amplify the weak acous-
tic signal. It works as a one-dimensional resonator to form a standing wave along its
length [36,37], and the acoustic wave can thus be enhanced at the antinode of the standing
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wave. The resonator operates as an orifice ended tube with a short gap of 50 µm between
the QTF and the resonator.

3. Sensor Configuration and Experimental Setup
3.1. Fiber-Coupled Spectrophone

We design a spectrophone with an external size of 30 mm × 20 mm × 10 mm as
depicted in Figure 1. Different from the on-beam resonators widely used in QEPAS [38,39],
a half on-beam configuration [40] is used to amplify the acoustic wave and to minimize the
internal size to 12 mm × 6 mm × 4 mm. Without other free-space optics for collimation
and convergence, the fiber pigtail directly guides laser to the spectrophone. A groove
with a diameter of 1 mm is etched for coaxial installation of the fiber and the micro-
resonator tube. Vertical distance from the top surface of QTF prongs to resonator’s axis
is adjusted to maximize the QEPAS signal by referring to the experimentally optimized
result [41]. A through hole with a 2 mm diameter holds the QTF. To suppress potential
airflow disturbance on the acoustic detection, the gas inlet is designed at the corner with
a buffer (2 mm × 6 mm × 4 mm) etched. The total gas consumption is evaluated to be
approximately 300 µL, which is at least 100-fold less than most direct absorption-based
gas cells.
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Figure 1. The schematic of the fiber-coupled spectrophone. The QTF, micro-resonator tube and fiber
are fixed with epoxy resin. (a) The diagram of QEPAS cell design. (b) Photo of the spectrophone.

3.2. Experimental Setup

The QEPAS sensor with the fiber-coupled spectrophone is illustrated in Figure 2. A
distributed feedback (DFB) diode laser with an emission at 1653.73 nm, as the excitation
source, targets the absorption of CH4. The laser wavelength is controlled by a commercial
laser driver (LDC 501, Stanford Research System, Montana, USA) with its temperature fixed
at 20°C. A LabVIEW program simultaneously scans and modulates the laser wavelength by
superposing a sinusoidal modulation on a ramp current from 62.5 to 87.5 mA. To perform
the second harmonic detection, modulation frequency is chosen at half of the QTF resonant
frequency, which is calibrated to be f 0 = 32.716 kHz. The 0.2 Hz ramp scanning signal leads
to a response time of 5 s. Acoustic wave-induced piezoelectric current is converted into
voltage signal by a transimpedance amplifier, which is then digitized for demodulation by
a software-based lock-in amplifier.
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Figure 2. Schematic of sub-mL QEPAS system. WFG: Waveform Generator; NI DAQ board: National
Instruments data acquisition board; TEC: Thermoelectric Cooler; mR: micro-resonator tube; QTF:
quartz tuning fork; TA: transimpedance amplifier.

4. Experimental Results and Discussion
4.1. System Parameter Optimization

For the half on-beam QEPAS configuration, the micro-resonator generates enhanced
acoustic signal by constructive interference. To demonstrate the performance of the half
on-beam configuration, we compared the QEPAS signal of 5000-ppmv CH4 with a base
QTF to that with a micro-resonator. As shown in Figure 3a, the magnification contributed
by the micro-resonator (length: 4.7 mm) is evaluated to be approximately 8 fold. When the
modulation frequency is fixed at f 0/2, the enhancement performance would depend on the
micro-resonator size, especially its length, which will affect how much the signal can be
amplified. Figure 3b plots the normalized QEPAS signals with micro-resonators at varying
lengths for a selected diameter of 0.6 mm.
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Figure 3. (a) The QEPAS signals with and without the micro-resonator. (b) The QEPAS signals with
micro-resonator tubes at different lengths.

Different from the laser beam in common acoustic detection modules, the laser emit-
ted from the fiber has a non-negligible divergence angle. In the case of a long distance
between the fiber end and the resonator, the divergent laser could hit on the tube wall or be
partially blocked by the QTF. While in the case of a too short or negative distance, less gas
molecules would be illuminated by the laser at the entrance of the resonator. The fiber end
location from the acoustic resonator can hence affect laser-gas interaction efficiency, then
the QEPAS signal.

When the laser passes through the resonator tube, the sound waves generated by
the interaction between the laser and the gas oscillate inside the resonator tube. The
higher the intensity of the sound wave amplified by the resonator tube is, the stronger
the photoacoustic signal will be. An experiment to optimize the fiber location was carried
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out. The fiber was moved by a 1D precision stage to obtain accurate position information.
As the results shown in Figure 4, the signal amplitude presents the strongest value at a
distance of 75 µm.
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Error bars show the standard deviation from 60 measurements and the magnitudes of the error bars
are scaled up by 10 fold.

The QEPAS signal also relates to the modulation depth. With a small modulation
depth, it is difficult for the sinusoidal modulation to cover the gas absorption line width,
generating a small second harmonic signal from a Lorentz absorption profile. Similarly,
a degraded signal amplitude can also be inferred from an excessive modulation [42]. We
experimentally obtained the response of the photoacoustic signal to the modulation depth,
which was adjusted by varying the modulation current applied on the laser source. A
calibrated 5000 ppmv CH4 was sealed inside the acoustic detection module. As shown
in Figure 5, the amplitude of QEPAS signal increases at the onset of the curve and then
decreases slowly. According to the experimental results, the optimized modulation current
of 12.5 mA was chosen in the following experiments.
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4.2. Sensor Performance

We measured the photoacoustic signal under different CH4 concentrations to acquire
the linear relationship between the signal amplitude and gas concentration. The CH4
samples ranging from 1000 ppmv to 10% were generated by diluting the calibrated pure
CH4 with pure N2. A continuous measurement of each sample was performed over 10 min
and the result is shown in Figure 6. The R-square of the fitted curve can reach 0.9989, which
proves the good linearity of this sensor.
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Figure 6. Linearity of QEPAS signal to concentrations of CH4. Error bars show the standard deviation
from 60 measurements and the magnitudes of the error bars are scaled up by 10 fold.

As the laser is not collimated or shaped by the free-space optics, its influence on the
system noise should be investigated. The laser diameter from the fiber end is approximately
10 µm, while the gap between QTF prongs is approximately 300 µm [43]. Considering the
fiber divergence angle of approximately 8◦ and the resonator length of 4.7 mm, the spot
diameter is approximately 400 µm when the uncollimated laser passes through the QTF.
Thus, the laser will inevitably touch the micro-resonator during its propagation. Further,
part of laser also hits the QTF prongs. Periodic laser intensity variations during the turning
could lead to thermal deformation, which therefore generates the thermoelastic noise [44,45].
Thanks to the large irradiated area, corresponding to a low power intensity, the noise is
much smaller than that of imperfectly shaped free-space laser. To numerically evaluate the
effect of fiber coupling on system noise, we conducted a comparative experiment while the
cell was filled with pure N2. The noise with modulated incident laser and without laser
was successively measured. As the experimental data shown in Figure 7, within 1500 s,
the averaged signal amplitude with incident laser is Offset1 = 3.6 µV, while the averaged
amplitude without laser is Offset2 = 2.5 µV. The standard deviations are σ1 = 0.6 and σ2
= 0.7 µV, respectively. Experimental results show that fiber-coupled operation has a little
impact on the amplitude of the system noise.
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Figure 7. Influence of incident laser on system noise.

To evaluate the stability and minimum detection limit of the system in the long-term
detection, an Allan–Werle deviation analysis was performed with the results shown in
Figure 8. The measurement was conducted for 5 h at 760 Torr with pure N2. The detection
limit is determined to be 16.7 ppmv at an averaging time of 5 s. The ultimate detection
limit can be improved to 1.1 ppmv at a much longer averaging time of 1245 s, within which
the white noise dominates, demonstrating a very stable performance for the fiber-coupled
spectrophone. Taking the laser power into consideration, we calculate the normalized
noise equivalent absorption (NNEA) coefficient as 7.75 × 10−8 W·cm−1·Hz−1/2, which is
comparable to the traditional QEPAS technology.
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4.3. In situ Detection of Deep-Sea Dissolved CH4

With the fiber-coupled sensor calibrated, we performed an in situ measurement of
dissolved CH4 at the Haima Cold Spring Area in the South China sea. In this measurement,
our sensor was integrated into a metal cavity that can protect the inside instruments from
a seawater pressure as high as 35 MPa. The acoustic detection module and the dissolved
gas separation unit with a PDMS membrane were connected by a short 1/8 stainless steel
pipe. The gas separated from the PDMS membrane diffused into the photoacoustic cell
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for measurement with the result shown in Figure 9. The instrument was placed by the
submersible near the cold spring vent and then began to operate after 1 h. With a low
separating rate of 30 µL/min, the measured dissolved CH4 concentration reached a plateau
level of approximately 6% after 90 min. Compared with a recently reported demonstration
of near-coast CO2 using cavity ring-down spectroscopy (CRDS) technique, the balancing
time has been shortened by more than 7 fold [46]. This measurement illustrates that the
dissolved CH4 concentration near the vent of the cold spring is much higher than that of
the background seawater, which is usually approximately 10–20 ppmv [47].
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Figure 9. In situ measurement of dissolved CH4 at the Haima Cold Spring Area in the South
China sea.

5. Conclusions

In conclusion, we have reported a sub-mL QEPAS sensor with a compact spectrophone
for the detection of deep-sea dissolved gases. It has a gas consumption of approximately
300 µL, at least two orders of magnitude smaller than traditional optical absorption-based
gas chambers, which is important to reduce the balance time for in situ dissolved gas detec-
tion. Instead of free-space laser alignment, the use of fiber coupling without any other optics
offers a simple configuration for assembly. The detection limit and linearity have been ex-
perimentally evaluated, achieving a minimum detection limit of 1.1 ppmv for CH4 measure-
ment and a good linear response with an R-square value of 0.9989. The normalized noise
equivalent absorption (NNEA) coefficient is calculated to be 7.75 × 10−8 W·cm−1·Hz−1/2.
An in situ dissolved gas measurement was carried out at the Haima Cold Spring Area to
verify the practicability of this sensor.
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